Context-Aware Features and Robust Image Representations 5 6 ∗ 7 P
CAKE_article_final.tex Click here to view linked References 1 2 3 4 Context-Aware Features and Robust Image Representations 5 6 ∗ 7 P. Martinsa, , P. Carvalhoa,C.Gattab 8 aCenter for Informatics and Systems, University of Coimbra, Coimbra, Portugal 9 bComputer Vision Center, Autonomous University of Barcelona, Barcelona, Spain 10 11 12 13 14 Abstract 15 16 Local image features are often used to efficiently represent image content. The limited number of types of 17 18 features that a local feature extractor responds to might be insufficient to provide a robust image repre- 19 20 sentation. To overcome this limitation, we propose a context-aware feature extraction formulated under an 21 information theoretic framework. The algorithm does not respond to a specific type of features; the idea is 22 23 to retrieve complementary features which are relevant within the image context. We empirically validate the 24 method by investigating the repeatability, the completeness, and the complementarity of context-aware fea- 25 26 tures on standard benchmarks. In a comparison with strictly local features, we show that our context-aware 27 28 features produce more robust image representations. Furthermore, we study the complementarity between 29 strictly local features and context-aware ones to produce an even more robust representation. 30 31 Keywords: Local features, Keypoint extraction, Image content descriptors, Image representation, Visual 32 saliency, Information theory. 33 34 35 1. Introduction While it is widely accepted that a good local 36 37 feature extractor should retrieve distinctive, accu- 38 Local feature detection (or extraction, if we want 39 rate, and repeatable features against a wide vari- to use a more semantically correct term [1]) is a 40 ety of photometric and geometric transformations, 41 central and extremely active research topic in the 42 it is equally valid to claim that these requirements fields of computer vision and image analysis.
[Show full text]