LA-7482=PR Progress Report

C3● * REPRODUCTION COPY IS-4 REPORT SECTION

Applied Nuclear Data

Research and Development

April 1–June 30, 1978

.-(6 C

L’

i’. ?k !

L%%— LOS ALAMOS SCIENTIFIC LABORATORY Post Office Box 1663 Los Alamos, New Mexico 87545 AnAffmmstiveAction/EqualOpportunityEmployer

Thefourmostrecentreportsinthisseries,unclassified, areLA4i971-PR,LA-7066-PR,LA-7200-PR,and L&7301-PR.

Thisworkwasperformedundertheauspicesofthe ElectricPowerResearchInstituteandtheUS DepartmentofEnergy’sDivisionofMilitaryApplica- tions,ReactorResearchandTechnologyDivision,

DivisionofBasicEnergySciences,andOfficeof b FusionEnergy.

i

.

Thts report w.. prepu.d as . . .. C.UIII of work sponsored bv the United Stale. G.vernmeIM. Nmher the Umted St.ws nor the Un&led St.les Detmrtrnmt of Ener.v. nor .ny of Ihew ●mployees. nor . . . of thctr .mtr.cl. rs. s. bc. nlr..tms. or IJw1, ●nvloyee,. makes .“Y w.,,.”IY. ●xmrest o, ,rrwl,td. o, ●-m.. .“Y 1.”1 h.btlats or r.mon”b, hw (OZ the .CCU”CV. complctencm. y usrfulmss of any !nfonn ation. .IUMr.tus. Droduct. or IMOC.U dmcloxd. or r. Dzewnla lh.t m usc would not mfrmse Pnv.t.!v owned rishu.

UNITED STATES DEPARTMENT OF ENERGY CONTRACT W-740 S-ENG. Sm LA-7482-PR Progress Report

8pecial Distribution Issued: September 1978

Applied Nuclear Data Research and Development

April 1–June 30, 1978

Compiledby

C. 1. Baxman P. G. Young CONTENTS

I. THEORY AND EVALUATION OF NUCIJIAR CROSS SECTIONS...... 1

A. R-Matrix Analysis of the Four-Nucleon System...... 1

B. .EDA Code Development...... 4 c. R-Matrix Analysis of the T-N Scattering...... 4 39 38 D. Calculation of the K(n,2n) K Cross Sections

from Threshold to 100 MeV...... 0..● ...... 5 88,89Y E. Calculation of Proton Production from n + Reactions...... 6 F. Evaluation of the ...... 7 233 G. n+ U Evaluation...... 8 H. n + 242Pu Evaluation...... 8 I. Addition of the Fission Channel to the GNASH Code..... 18 J. Gas Production and Activation Cross Sections...... 20

II. NUCLEAR CROSS-SECTION PROCESSING....● .....0...● ● ...... ● 20

A. Integral Testing of Methods and Data...... 20 B. Phase II Testing of Preliminary ENDF/B-V Data...... 20

c. Power Reactor Cross-Section Processing Methods...... 21 D. The MATXS/TRANSX Cross-Section System...... 21 E. Thermal Reactor Cross Sections...... 24

111. FISSION PRODUCTS AND ACTINIDES: YIELDS, YIELD THEORY, DECAY DATA, DEPLETION, AND BUILD-UP...... 24

A. Fission-Yield Theory...... 24

B. ENDF/B-V Yields.....● ...... ● ...... 26

c. Decay Heat Standard...... 26 D. Spectral Comparisons...... 27 E. Status of Fission-Product Data for Absorption Calculations...... 27 F. Library for Processed ENDF/B Aggregate Fission-Product Spectra...... 27

REFERENCES...... ● ...... ● 42

iv

.. . APPLIED NUCLEAR DATA RESEARCH AND DEVELOPMENT QUARTERLY PROGRESS REPORT April 1 - June 30, 1978

Compiled by

C. I. Baxman and P. G. Young

ABSTRACT

This progress report describes the activities of the Los Alamos Nuclear Data for the April 1 through June 30, 1978. The topical content is summarized in the contents.

I. THEORY AND EVALUATION OF NUCLEAR CROSS SECTIONS A. R-Matrix Analysis of the Four-Nucleon System (G. M. Hale and D. C. Dodder) The four-nucleon system is of interest for applied reasons because it con- tains neutron-source and therumnuclear reactions, but it is also of considerable intrinsic scientific interest, particularly as a testing ground for presumed charge-independence properties of nuclear forces. Our comprehensive R-matrix analysis of this system provides an excellent macroscopic model for these charge- independence properties, while accounting for a large body of experimental measurements for the four-nucleon reactions. The isospin-1 parameters are first determined from analyzing p + 3He scattering data, then incorporated essentially fixed in a larger analysis of data from the six independent reactions possible among p + t, n + 3He, and d + D (i.e., the 4He system). “ One aspect,of this approach is illustrated in Fig. 1 by the analyzing- 3 power differences for p + He and p + T scattering at proton energies near 5 MeV. 3 The differences between measurements of the p and 3He analyzing powers for p + He scattering (left of figure) determines the parameters of the singlet-triplet spin transitions in the T = 1 (isospin-1) levels. The dominant such transition at these energies occurs for Jp = l-. Because the singlet Jp = 1- state is ex- cluded in T = O levels due to symmetrization considerations, the 1- singlet-

1 3HE(P,P)3HE T(P,P)T

.

. r a - T

,“ / A(p) 5.51 MeV A(P) 4.80 MeV ., — i Wisconsin 68 Erlangen 76 ,. I .. ,. /

. / I *

.9 / 4

.* / q ,, ,, ! ..#. r \ ., 1 . i ... \ .a,.lu 9 . .-. . a . . a

CuOmn m Uss Uc4i

* — . A(3He) 4.89 MeV \ A(T) 4.96 MeV Rice 70 LASL 76 “ I \

,.

,. / .. t

-.0 Ii ~

,.. ,-” ● . * n . ., 0.. 9 . la * . d IL wtm5wsm Fig. Measured and calculated analyzing powers for the ~He(p,p)~He (left) and T(P,P)T (right) reactions at proton energies near 5 MeV .

triplet transitions in 4He are completely determined by the T = 1 parameters,

which are fixed in our model by analyzing p + 3He data. The resulting differ- ences predicted for the p and T analyzing powers for p -1-T elastic scattering are seen in the right side of the figure to agree well with the measurements. The major progress of this analysis in the past quarter has been a signifi- cant improvement in the fit to data for the d + D reactions at deuteron energies

2 D(d, p)T D(d,n)3He

*.

.

iT1l fT1

CIWC*m -%s mu

’20 ’20

.-z.7c0 s IuSs .Ici,

Fig, 2. Differential cross section and analyzing power T20 = $ Azz for the reaction D(d,p)T at Ed = 4 MeV (left), Differential cross section and analyzing power A~z for the reaction D(d,n)3He at Ed = 4 MeV,

up to 5 MeV. Some of these data are shown in Fig. 2 for the D(d,p) and D(d,nj reactions. The fits illustrate a point that has been characteristic of the charge- independent analysis from the beginning: the calculation does not reproduce meas- ured differences in the cross sections for the two branches of the D + d reac- kions nearly as well as it does for the analyzing powers.

3

— — B, EDA Code Development lK, W~tte (C-3), D, C. Dodder, and G. M. Hale] The EDA program and its auxiliary codes have now been converted for use on LTSS (time-sharing) system using the FTN compiler. The programs have been de- bugged and checked for a wide range of operating circumstances. Because of the large number of options and features of EDA, it is not possible to test it under all possible configurations. However, it is now reliable under almost all pos- sfble arrangements. The program under the batch configuration of LTSS is now running about 10% slower than under the CROS system. The conversion to LTSS-FTN has meant three important improvements. First, the code is now available as an interactive tool, including graphics display. While it is much slower under the conditions usually present in this mode, it is now suitable for short calculations. Second, the change to a dynamic storage allocation incorporated at the same time as the conversion has allowed problems of larger size in certain respects to be run. And third, it should be possible in the future to make a portable version of the program, suitable for use at other installations where the FTN compiler is available. This was not previously feas- ible because the structure of its code, particularly its storage arrangements, were very closely matched both to the CROS operating system and to the exact hardware configuration at LASL. c. R-Matrix Analysis of T-N Scattering (D. C. Dodder) An R-matrix analysis of the ‘m-nucleonprocesses up to 300 MeV pion energy o has been enlarged to include the n-(p,y)n, T (n,y)n, and T (p,~ )p channels. The last channel is to represent the large absorption in the T = 1/2, J = 1/2 state. The use of a definite mass for the 0- is an approximation suggested by the observed experimental width of the CJ-particle. The gamma-ray data require El, Ml, and E2 multiples in both T = 1/2 and T = 3/2 states. The Ml multiples occur in both J = 1/2 and J = 3/2 states. The multipole strengths are entirely determined by the data; there are no theoretical inputs. The R-matrix approach makes this feasible despite the limited amount of photoproduction and gamma- . emission data for this system. The analysis is essentially completed and now allows reliable predictions of . m-nucleon scattering cross sections over the 0-300 MeV range, which, for the most part, are more accurate than the individual experimental results. The phase shifts are in reasonable agreement with the most reliable single energy phase shifts. 4 39 38 D. Calculation of the K(n,2n) K Cross Section from Threshold to 100 MeV (E. D. Arthur) ‘1’he39K(n,2n)38K cross section is used in pion radiotherapy to determine the neutron dose arising from negative pion absorption. Because no experimental data exist for this reaction above 23 MeV, we were asked by the biomedical group at LAMPF to calculate this cross section up to neutron energies of 100 MeV. For the calculations, the statistical model code GNASH1 was used, which included 2 new preequilibrium routines based on recent exciton model efforts of Kalbach. The (n,2n) cross section”represents only a few per cent of the total reaction cross section; therefore, competition by proton, deuteron, and alpha emission was included for each compound neucleus in the decay chain. Since charged-particle emission dominates, care was taken in the choice of the global optical parameter 3 sets used. Also, in the case of neutrons, slight adjustments were made to better reproduce the low-energy resonance data. The calculated results are compared to representative experimental data in Fig. 3.

0“0001 ! I I I I i ! i I 1 0 10 20 30 40 50 60 70 80 9k 100

NeutronEnergy(MeV)

Fig. 3. 39 Calculation of the K(n,2n) cross section from threshold to 100 MeV made using GNASH is shown. 88,89X ~eaction~ E. Calculation of Proton Production From n + . D. Arthur) As part of a comprehensive effort to calculate neutron-induced reactions 86-92Y and 89-90 on Zr from 0.001-20 MeV, we have investigated neutron and proton optical-model parameters needed to calculate proton production induced 88Y and 89Y by neutrons on . Recently, experimental data4 pertaining to these reactions have become available through charged-particle simulation experiments 90,91 89,90Y employing the Zr(t,a) reactions. These reactions produce excited systems, and the subsequent measurements of the proton decay can be used to de- 88,89Y reactions. termine the relative proton production cross section for n + Previous calculations made using Perey proton parameters produce results for n+89 Y, which are factors of 2-3 above the data for neutrons between 10 and 15 MeV. For the present calculation, we have used as a starting point a new de- termination of the low-energy proton optical parameters in this mass region per- formed by Johnson’ using sub-Coulomb barrier (p,n) reaction data. We have re- 89 analyzed his Y(p,n) data8 making some adjustments to the proton parameters and using a more realistic potential to describe the outgoing neutron channel. Pro- 88,89Y ton production calculations made with these adjusted parameters for n + are compared with the charged-particle simulation results in Figs. 4 and 5. The general features and magnitude of the experimental data are reproduced by the calculations.

o

.

6 1 I I I I I 0.0 2.0 4.0 6.0 8;0 10.0 12.0 liO li.O 18.0 2[ .0 . Neu~ron Energy (kVI

Fig. 4. Comparison of calculated and experimental proton production cross section resulting from charged particle simulation of n + 88Y. o o“ 1 lx

o G. o

0 o“ - 02

a o“ - a

o c5- V

0 d- N

0 G h 1 1 I I I 1 0.0 2.s 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 2!.0 Neutron Gtergy [MeVl

m.?- c A-J-g, 2, 89Y The total calculated proton production cross section for n + is compared to charged particle simulation results.

Fe Evaluation of the Tungsten T.sotopes [C. Philis (Bruy&es-le-Ch~tel) and E. D. Arthur] As part of a cooperative effort between Los Alamos Scientific Laboratory, Argonne National Laboratory, and Bruy&es-le-Ch~tel, we have begun a reevaluation of neutron cross sections and gamma-ray production data for neutrons between %3 and 20 MeV. As a first step, we have begun an extensive effort to determine sets of sphertcal optical model parameters for neutrons in the range from 0.2 to 20 MeV suitable for use in statistical model calculations. Since the tungsten isotopes are deformed, direct effects are important, and these must be accounted for in the derivation of neutron optical parameters. Our approach has been the following. Coupled-channel calculations with the JUPITOR code using the Delaroche10 optical parameters for tungsten were made to determine the total dtrect inelastic cross section from 0.2 to 20 MeV. This direct inelastic cross section was then subtracted from the experimental total cross section, and the results were used in the determination of spherical optical parameter sets. By doing this, it was hoped that direct effects not accounted for in the spheri- cal optical model could be separated, and the resulting data could be described using realistic spherical parameters. In addition, other data such as the shape 7 elastic cross section, s- and p-wave strengths, and the potential scattering radius were used in the optical parameter determinations. The above procedure results in preliminary optical sets that fit the avail- able total and elastic cross sections over the energy range 0.2-20 MeV.. These > parameters, when used in Hauser-Feshbach calculations, produce compound inelas- tic cross sections which, after being added to calculated direct contributions, 11 for 182,184,186W . give good fits to inelastic level excitation data . Prelimi- nary GNASH (n,2n) cross-section calculations from threshold to 15 MeV also agree 12 well with the data of Frehaut for these nuclei.

G. n + 233U Evaluation (L. Stewart, D. G. Madland, and P. G. Young) The preliminary ENDF/B-V evaluation that we provided to the National Nuclear Data Center at Brookhaven National Laboratory used the Version IV evaluation of the unresolved energy region, which included several discrepancies. During this quarter we have reevaluated the data in the keV range, and matching unresolved resonance parameters were obtained by F. Mann of Hanford Engineering Development Laboratory. The tasks remaining are to merge the new data into the preliminary file and to derive an energy-dependent fission spectrum representation up to an incident-neutron energy of 20 MeV.

H. n + 242Pu Evaluation (D. G. Madland and P. G. Young) 242 A new evaluation of n + Pu cross sections has been completed for the neutron energy range 10 keV to 20 MeV. The evaluation is available on the photostore file FS=LASL407 (MAT 107, 0AC=T02PGY) and has been processed for use in TD Division. 242 The only Pu reactions for which experimental data exist above 10 keV are fission and radiative capture, and the capture data only extend to 100 keV. It was therefore necessary to rely heavily upon nuclear model calculations for the present evaluation. In particular, model calculations were used to derive and/or evaluate elastic; inelastic; (n,2n); (n,3n); (n,Y); and first> second, and third chance fission cross-section components, as well as the elastic and ● inelastic angular distributions. The model calculations were performed using LASL versions of the Hauser-Feshbach statistical reaction code COMNUC13 (3/29/78 . 14 version) and the direct reaction coupled-channel code JUKARL. All calculations 15 utilized the LASL preliminary global actinide optical potential. Pertinent de- tails of evaluated and calculated quantities are summarized below.

8 242 1. Pu(n,f) Reaction. The evaluated fission cross section is based upon 16 averages of the measurements by Auchampaugh below 100 keV and upon the data of 17 235 Behrens et al. from 100 keV to 20 MeV. The ENDF/B-V evaluation of U fis- 242PU sion18 was used to convert the Behrens’ ratio measurements to absolute cross sections. In Figs. 6 and 7, the evaluated results are compared to the ex- 16,17,19-22 perimental data. The (n,f), (n,nf), and (n,2nf) cross sections were 17 calculated subject to the constraint that their sum equals the measured total fission cross section. Discrete fission channels (up to 12 each for first, sec- ond, and third chance fission) and deformed level continuum fission channels were employed. The calculated and measured total fission cross sections agreed to within ~ 5%.

+

#Yi? -.

n >; x xx xx x ‘- x -x t- @x x X x RUCHFrMPFrUGtio 1971 m xx xx x + BERGEN. 1970 x : XxXx%x e BEHRENS. 1976 x o BUTLER, 1960 r? A FOMUSHKIN, 196S xx xx x 1 104 e Y 4 S6 7 6 9 10-’ t? 9 4 5 NCUTRON ENERGY, MEV

Fig. 6. 242 - Experimental and evaluated Pu(n,f) cross sections between 10 and 500 keV. The solid curve is the present evaluation (LASL-78). PU-Z42 FISSION CROSS SECTION b-f t

. s

+ BERGEN. 1970 x aucwinmum. 1971 ● BEtiRENSo 1976 Q BUTLER. 1960 ● fOIWSliKIN. 1969 x auctifltlPFluoll. 1971 * FOIIUSHKIN. 1967

NEUTRON ENERGY, MEV Fig. 7, 242 Experimental and evaluated Pu(n,f) cross sections between 0.1 and 20MeV. The solid curve is the LASL-78 evaluation,

The evaluated fission spectrum is represented by a Maxwellian using tempera- tures approximated by23

T = 0.50 + 0.43 F ● (1)

With this representation, the average energy of fission neutrons induced by l-MeV incident neutrons is 2.031 MeV. . The different evaluations of the fission cross sections are compared in Figs. 24 8 and 9. The LASL-78, HEDL-78, and ENDL-7625 evaluations are quite similar. . 26 The most significant difference occurs for the ENDF/B-IV evaluation, which is substantially higher than the other data sets below 200 keV and between 2 and 8 MeV.

10 in I .

- PU-242 FISSION CROSS SECTION

N

7 0 m m r -4 t- -.. 40 --- ‘-. . wl ------. u ‘- ./” l-- m ENoF/B-4 -- - -—-- u w + U3 Ill 0 . 1’ Q

-i- ● J ,

NEUTRON ENERGY. MEV

Fig, 80 242 Evaluated Pu(n,f) cross sections from 0,1 to 20 M&,

b

2. Average Number of Neutrons Emitted Per Fission (~). There were no 242 Pu experimental data available for the determination of ~p, the average number of prompt neutrons emitted per fission. To determine ~ , the substantial exper- P 240 imental data available for the case of neutrons incident on Pu were analyzed, 242 and the resulting data were corrected to Pu by adjusting for the systematic variation of U with mass number. P A comparison of the different evaluations of Vp(En) is given in Fig. 10. Below 6 MeV, the LASL-78, ENDL-76, and ENDF/B-IV evaluations are in good agree- ment, whereas the HEDL-78 values, which are based upon a phenomenological 27 model given in the Manero and Konshin review article, are 3-4% higher than the other data.

11 NEUTRON ENERGY. MEV Fig. 9, Evaluated 3P F42Pu) for neutron energies between 0,1 to 20 MeV,

I I I 1

6 ‘2PuPROMPTV

5

ENDL-76 1:

4

J

3 /

4 8 12 16 20 En(Mel/)

Fig. 10,

Evaluated 1P (242Pu) for neutron energies between O and 20 MeV.

12 242 242 3. Pu (n,Y) Reaction. The Pu radiative capture cross section was calculated using the COMNUC model code and a gamma-ray strength function adjusted 28 to agree with the measurements of Hockenbury. For energies above 4 MeV, the capture cross section was calculated using a preequilibrium cascade process with gamma-ray emission probabilities calculated at each stage. The evaluated cross section is compared to the Hockenbury data and to other evaluations in Fig. 11. Large differences exist, particularly above 3 MeV. A 238 value of 0 , ~ 1 mb near 14 MeV, is supported by recent U measurements at the n, 29 Los Alamos Scientific Laboratory.

- I I [ I CROSS SECTION

‘t ‘.. \ ENDF/B-4 Z; ‘=s m z cc \ cc # m L . Q

u U-3

? 1 o I I u z 4 S678910° 29 4 S676S10’ 104 ~ y c S678910-’ NEU;RCi ENERGY. MEV Fig. 11. 242 Evaluated Pu(n,y) cross section from 10 keV to 20 MeV. 13 242 4. Pu(n,n’) Reaction. Hauser-Feshbach calculations were carried out for the discrete compound inelastic scattering for 19 levels up to an excitation energy of 1.152 MeV. Above this excitation, continuum compound inelastic scat- tering was calculated using a deformed nucleus level density. Direct coupled- channel inelastic scattering was calculated for the first five members of the * ground state rotational band assuming an axially symmetric rotor model. Quadru- . ple and hexadecapole deformations were taken from Ref. 30. Figure 12 compares the total inelastic cross section from the various eval- uations. Numerous differences exist among the data sets; one of the more signif- icant is the fact that the maximum in the ENDL-76 cross section is broader and occurs some 1-3 MeV lower in energy than for the other data sets. The average emitted neutron energy from inelastic scattering is given in Fig. 13 for each of the evaluations. The ENDL-76 (n,n’) spectrum is significantly softer below 1 MeV than the other evaluations, and large differences exist among all the evaluations above 1 MeV.

o . I I I

PU-Z42 INELfKTIC CROSS SECTION

. W#,-e, ● In ● ENOL-76 c)/ . w . o HEOL-7E / c)” ✏ m % :

0 . J, \ B- 4 4? “. u) . --- 0 @ \ ●

0 y@ ● . m c1 0-’ 1 S67S91O”’ c y 4 S678S10° 23 4s676910 2 NEUTRON ENERGY. MEV Fig. 12. 242 Evaluated Pu inelastic cross sections from threshold to 20 MeV. 14 I 1 I I I ENDF/B-4 #/ 0 _.. - -- 2.0 - 1 / /

—-- Lo -

0.5 - : z w

1 0. 1- x-ENDF/B-42%

:1 0.05 I ‘1

I I I 1 0.02 1 0 2 4 En(MeV) Fig. 13, ,..,. The average emitted neutron energy from ‘4ZPU inelastic scattering calculated from several evaluations for inci- dent neutron energies between O and 5 MeV.

242 5. Pu Elastic Cross Section. The elastic cross section was determined by subtracting the sum of the evaluated nonelastic cross sections from the eval- uated total cross section. The evaluated elastic cross sections from 10 keV to 20 MeV are compared in Fig. 14. The present (LASL-78) evaluation differs from the calculation by at most ~ 100 mb. The LASL-78 elastic and inelastic angular distributions include both compound and direct contributions. 242 242PU n Sn ~eaction~o 6. Pu(n,2n) and 9 Hauser-Feshbach calculations of the (n,2n) and (n,3n) reactions were carried out with discrete (10 levels) and continuum (deformed level density) contributions included in each case. The cal- culations are compared to other evaluations in Figs. 15 and 16. . co I 1 ● ‘\* r I \ \ \a PU-242 ELflSTIC CROSS SECTION w. \ 4) ●

p . . , & \ a m

jti + \ (J \ LLl” . mm ‘\ ‘\ K’

!9 -

. w ● EuOL-76

. I t 1 J -l@ ~ 3 4 Stasal(y”’ f s 4s 670810” c S 4 S679810’ 2 NEUTRON ENERGY. PIEV Fig, 14, 242 Evaluated Pu elastic cross section from 1.0keV to 20 MeV,

lo PU-242 (N.2N) CRO$S SECTION q

‘2 ofg Q a o HEDL-78 m~ ● e ● ENDL-76 . e e o z~ ● t tap u ‘1. . . * /

w — ENoF/B-4 “\ K. ● \ . 0 - 2\ * \ L- t ------I 8 . 1 I I I IW ‘4. 6. 6. 10. 12. 14. 16. 18. 20. NEUTRON ENERGY. tlEV Fig, 15. Evaluated 242pu(n,2n) cross sections f~om~threshold to 20 Mev .

16 PU-242 (N,3NI CROSS SECTION

0 0 . ENDF/B-4

o

.

● ENDL-76 m Q HEOL-78 @l . 0

0 0 . ! I I J/ I 1 1 ‘4. 6. 8. 10. 12. 14. 16. 18. 20. NEUTRON ENERGY. MEV

Fig. 16. 242 Evaluated Pu(n,3n) cross sections from threshold to 20 MeV.

242 7. Pu Total Cross Section. The 242Pu total cross section was obtained in an ad hoc fashion. The deformation effects (inelastic scattering in the coupled-channels formalism) were combined with the total cross section calculated 15 with the preliminary LASL (spherical) global actinide potential in the follow- ing manner. Calculations with this potential for actinides ( isotopes) of measured total cross sections showed that the differences between calculation and experiment were approximately equal to the calculated total direct inelastic scattering using the coupled-channels method without modification of the absorp- tive potential. Since no inelastic scattering data exist by which the change in the absorptive potential could be determined, the total direct inelastic scatter- ing was simply added to the calculated (spherical) total cross section to obtain the final total cross section. [The LASL preliminary (spherical) global optical 15 potential for the actinides is presently being used as the starting parameter set to obtain a global (deformed) potential in coupled-channel calculations that include inelastic scattering data.]

17 ‘ I v-r— %-—-—’-\ \ PU-24Z TOTRL CROSS SECTION . to ● 2,* .-+- \\* [ ~- .

, . s I ENDF/13-4--& -y

0 IICOL-78

● ENCIL-76

.&-..=l, I .u.~ I z Y 4 5670910-’ t Y 4 5678910” ? Y 4s6?0910” z NEUTRON ENERGY. MEV Fig. 17. 242 Evaluated Pu total cross section from 10 keV to 20 MeV.

The total cross sections from 10 keV to 20 MeV for four evaluations are com- pared in Fig. 17. The peak in the ENDL-76 total near 1 MsV results from the peak in the (n,nf) cross section shown in Fig. 12,

I. Addition of the Fission Channel to the GNASH Code (E. D. Arthurj As part of a program to upgrade the preequilibriuwstatistical model code GNASH1 we have incorporated a fission channel so that multistep particle emis- sion cross sections and spectra can be calculated for nuclei in which fission occurs. The fission barrier is represented by a harmonic oscillator hetght EB and curvature liu. The fission transmission coefficients are then given in the 31 Hill-Wheeler formulation as . 1 . ‘F(E) - 1+ exp [21T(E-EB)/liU] .

For each fissioning system, up to 50 discrete fission channels can be in- eluded. These can be supplied by the user or, as a default, the levels of the

18 compound system compressed by a given input factor can be used. Above the last discrete fission channel, a continuum level density based on constant tempera- ture and Fermi-gas forms is used. Barrier heights and curvatures are generally supplied as input, although the option exists for default values based on syste- matic to be used. Comparisons have been made between GNASH and the statistical code COMNUC 242 with identical parameter sets for n + Pu, and good agreement was obtained for the (njf) cross section. We are presently using GNASH to calculate (n,xn) reac- 235U and 238 tions on U, to provide spectral efficiency correction data for recent measurements of Lynn Veeser of LASL Group P-3, and to compare with other available (n,xn) data. Usi~g neutron transmission coefficients based on a recent actinide 32 optical-model parameter set of Madland, the fission-barrier parameters of Back 34 235U et al.,33 and the preequilibrium model of Kalbach, we have calculated the and 238U fission cross section from 4 to 21 MeV. The calculated curve is compared 235 in Fig. 18 to recent measurements of the U and 238U fission cross sections by Leugers et al.35 in the energy range from 1 to 20 MeV.

, 1 , , I , , I , I 1 1 r 1 1 I # i I ‘ t

235U(n,f) b...* ● e ● 2.0 - ●* .* ●9● . n ● . ●-%. “! 1.0 - 0 238U(n,f) rQ $ ma r~ m m P4 o

G I.o -

:. ● 0’ ‘:’ ! 1 , I I o 5 10 15 20 En(MeV) Fig, 18: The GNASH calculated fission cross sections are compared with the experimental data of Leugers for 235u and 238U0

19 J. Gas Production and Activation Cross Sections (L. Stewart and E. D. Arthur) Many of the cross sections required for ENDF/B-V have not been measured, and a few are virtually impossible to determine experimentally. For example, and production cross sections for structural materials such as stainless steel have not been measured above a few MeV except at 14 MeV. 36 A paper discussing the problems associated with providing gas production , and activation data for ENDF/B was presented at the June San Diego American Nu- clear Society Meeting. Examples of calculations of hydrogen and helium produc- tion cross sections with the GNASH nuclear model code were presented.

II. NUCLEAR CROSS-SECTION. PROCESSING A. Integral Testing of Methods and Data (R. B. Kidman) 37 38 The 50-group library LIB-IV, generated with the MINX processing code using ENDF/B-IV39 data, has been extensively tested on all 17 of the Cross Sec- 40 tion Evaluation Working Group fast reactor benchmarks. Results from this test- 41 ing have been compiled in a LASL report. Every experimental measurement is compared to 1-D and 2-D diffusion theory and S P transport theory results. 16 1/2 Several comparisons with other laboratories are also presented. In general, the results do not show any outstanding improvements or discrepancies over previous calculations. The main benefits of the study are the introduction of the pack- aged bench mark concept, which provides a convenient tool for rather complete testing of data and methods, and the establishment of a reference set of calcu- lations that can be used to assess MINX and measure future data and code improvements.

B. Phase 11 Testing of Preliminary ENDF/B-V Data (R. B. Kidman) Phase II testing of preliminary ENDF/B-V data consists of having several laboratories process the data into multigroup cross sections and then to test the processed data in the calculation of several assigned benchmark problems. LASL has just recently received the preliminary ENDF/B-V data tapes. We have decided to process the data with the new code NJOY. Also, in order to make . the processed cross sections applicable to fast and thermal reactors, fusion, weapons, and shield calculations, new 185-group neutron and 48-group photon . structures and a new weighting function were programmed into NJOY. This proces- sing is currently under way with high priority. It will require setting up, debugging, and “pushing” through the computer approximately 100 runs.

20 When Phase 11 testing of ENDF/B-IV was carried out, LASL provided 50-group cross sections to several laboratories. We intend to collapse the 180-group data to 50-groups to minimize-any changes required to repeat the bench mark calculations. co Power Reactor Cross-Section Processing Methods (R. E. MacFarlane) The new generation of thermal reactor codes sponsored by the Electic Power Reseach Institute (EPRI-CELL, EPRI-CPM) use the same background cross-section approach to self-shielding as is used in fast-reactor codes. A detailed investi- gation of the effects of the approximations used in this method on thermal reac- tor problems is npw under way with the goal of improving both the libraries and 42 the analysis codes. Some early results were reported in a paper entitled “Data Processing for Power Reactor Fuel Cycle Codes,” presented at a symposium on Nuclear Data for Thermal Reactors held at Brookhaven National Laboratory. Some effects of non-1/E flux, intermediate resonance parameters, elastic scattering self-shielding, transport correction, and heterogeneity were discussed.

D. The MATXS/TRANSX Cross-Section System (R. E. MacFarlane, R. J. Barrett, and R. B. Kidman) The MATXS cross-section interface file is under development as a comprehen- sive file for use in the CCCC system. Recently, capabilities to store and re- trieve thermal cross sections and self-shielding information have been added to the format, to the MATSXR formatting module of NJOY, and to the TRANSX retrieval code. Thermal data are stored in a special “data type” that allows for free-gas and bound-scatterer incoherent and coherent group-to-group matrices of arbitrary Legendre order. For each nuclide, several different binding states can be in- cluded in the same library. This would allow, for example, the construction of cross sections for both water and polyethylene without having to duplicate the high-energy cross sections of hydrogen, whtch are not altered by the binding. In practice, the TRANSX user specifies the number of thermal groups desired (e.g., 40) and the names of the thermal coherent and incoherent scattering reac- 1 tions desired (e.g., “H20”). The code then replaces the static H elastic scat- tering group-to-group cross sections for the lowest 40 groups with the cross sections for lH in H20 and adjusts the total cross section accordingly. This requires setting “NUP” greater than zero; TRANSX will consistently truncate both up and down scattering if necessary in forming the transport tables. 21 The traditional method of representing resonance self-shielding effects has been to use “f-factors,” defined as the ratio of the cross section for one par- ticular temperature T and background cross section 0 to a reference case (often .0 T=Oanda .m ). MATXS departs from this tradition by storing AU = C(T,CO) - o . a(ref). This representation requires less storage in the retrieval code since only the accumulating cross section and AU are in memory at once, whereas the ?. traditional method requires the accumulating cross section, the f-factor, and the reference cross section. The Aa method allows TRANSX to shield each element of the scattering matrix without excessive use of memory. Provisions are in- cluded to shield the heat production cross section and the photon production matrix. . TRANSX allows for group and nuclide dependent 00 values for each mixture. The values can be determined by iterating the total cross section of a mixture

to convergence (the 0o-iteration), by using a simple buckling, or by specifying a single escape cross section. Once T and 00 have been determined for each nuclide, the code interpolates using multipoint Lagrangian interpolation with special branches for very large and very small ~. values. This approach requires only one material to be in memory at any time and is therefore well suited to reading through a material- order file like MATXS. These new schemes have been investigated with the use of an auxiliary plotting program that has graphically caught several errors. The latest iteration is still under investigation. To make use of the new thermal and shielding capabilities, the TRANSX user must supply some additional information. An example for a simple three-region pin cell follows. YRANSX MATXS TO TRAN$PORT 3Q,QAISS

OPTIONS ..W.O.9 IPRINT 0 (8/lxL’oNG/snoRT) IOUT 0 (k311/s/3/u=~ONEILASL/TD/FIDO/ANISN) 1PR08 0 [Otl=DII?ECT/AOJOINT) ISET t (1/?/3zNN/GG/COUPl.ED) :FOQU 1 C1/2=MAT~ISE/G20UPdISE) . ITIME 1 (1/~=sTEAOY-STATE/2QOM2T) IFPART B (fl/tSNO/yEs) lTRC 0 (0/1/2/3/u=NO TQANspoRT COaR/CONS,~/DIAG/B_HWS/INFLOUl ICOLL =1 (=1/0/NFINE=LIR FLux/NO COLLAPSE/QEAD FLUX) . IFLLJX e (0~1/2xN0 FLUX cALCULATIfJN/Ba/Bl)

PARAMETERS ,W.,w-e.mq NGN z t4EUTRON GROUPS NGG 0 GAMMA GRouPS

22 NL TABLEs NTABL d! POSITIONS IN TABLE NUP UP SCATTER GRoups NMIX : MIXE$ OR t447kR1ALs NMIXS 5 MIXTURE SPECIFICATIONS NED AA EXTRA EDIT POSITIOVS NCDS 3 EDIT SPECIFICATIONS

MIX NAHES HETEROCENIETY ,W-wava.v 99.99w.-089-- (1) 1 FUEL l,0173E+0Ei 0, 2 w;5 1! 0, 0, 3 0 2), 0,

NIX SPEcS DENSITY TEMP (K) SIGZERO REG THERMAL W*9?OW9V8 99----- 9.9-9-.. we-.,-m w-w ..m.w-, (2) 1 Llz35 6,253E;a/1 3,000E+Fj? 0, i aa FREE U23B 4,721E-02 3,809E+a~ 0, 40 FREE ; ALz1 6,025E.k3i? 3,E’H0E+a2 l*kli30E+10 ; 48 FREE (?)3 Ml 6,676Eo02 3000L3E+a2 l,nO@Et!n 3 40 H20 3 016 3,336E=B2 3,~@~L40~ loOi)@E+lB J 40 FREE . EDIT NAMES 9*m-*-mv-w CHI : F238 3 F235 4 C236 EOIT SPECIFIC~710NS WUa----.woa.-.w-.99 2 NFTO1 l,a@OE+aB u231J 3 NFTOT l,L3B9E@fin UZ35 a NG i,000E+Dk3 U232J

COLLAPSE SPECIFICATIONS ..wqa-=.w.---.w . ..-”... 45 24

FILE ID MATXS T2LASL NJOY VERs 1

THERMAL TEST ● ● ●

CDMPUTEO SIGMA ZERO ?ALOES BY FINE GQOUP -*--*-=----- ...... --=.m-m.-- -v-- GROUP 1 UI?35 ~ J238 .“-99 89-...9-. . ..9.---= 2,13E+03 2.16E+M1 ; 2,21E+93 .s,i7E+@l

POSITION GROUp 1 GROUP z g9*0w.*. ● *-..9”-. .9.8 . . . . . 1 CHI l,a?aE+no 0, 2 F238 U,317E.n3 0, S F235 5,669E.M~ l,8A3E-01 4 C231) 3,33ZE.g2 7,170E.az 5 AOS ~,975E-o12 7,228E.31 6 NuSIGF 2,577E-mz u,u99E.al 7 TOTAL 5,Z09E.nl l,15uE+0a 8 V.363E.~0 J. Q INGRP AJ,609E=@l u,3B7E.Or to o, 2,536EoI?u . : . Line (1) indicates that mix 1 is to have an escape cross section correspond- ing to a mean chord of 4.915 mm. The other two regions are infinite and homo- 235 geneous. Line (2) specifies that in mix 1, U is to have a given density and temperature, that 00 is to be calculated, that mix 1 is in region 1, and that 40 . groups of free thermal scattering are to be used. In mix 2 and mix 3, U. = ~ is adequate. Note on line (3) that the thermal scattering appropriate to water is . used for the hydrogen in the moderator region. The results are collapsed to two 235U fis groups (0.625-eV break), and special activity edit cross sections for 238 sion and capture and U capture are provided for calculating the standard spec- 28 28 tral indices p , 825, and 6 . The resulting cross sections for the three mixes are directly avai~able for use in a standard transport code.

E. Thermal Reactor Cross Sections (R. E. MacFarlane and R. M. Boicourt) A library of multigroup cross sections for thermal reactor applications has been prepared from ENDF/B-IV evaluated nuclear data using the NJOY processing 43 system. The library uses the 69-group structure of EPRI-CPM, which has 27 fast groups (above 4.0 eV) and 43 thermal groups. The nuclides included are listed in Table I. Note that temperature and background-dependent self-shielding fac- tors are included for the heavy isotopes. Most nuclides include complete sets of cross sections and P3 group-to-group matrices versus temperature (usually 300 to 2100 K), although only transmutation cross sections are given for the indicated isotopes. All nuclides have had prompt heat production cross sections (KERMA factors) and free gas thermal scattering matrices constructed for them. In addi- 1 tion, bound thermal scattering matrices are included for lH in water, H in Dolv- 2 9 12 ethylene, H in heavy water, Be in metal, and C in graphite. Coher- ent scattering is given for beryllium metal and graphite. Although this library was originally produced to be converted into a job library for the CPM code (a reactor cell code using the collision probability method), it can also be used in standard diffusion and transport codes after appropriate reformatting.

111. FISSION PRODUCTS AND ACTINIDES: YIELDS, YIELD THEORY, DECAY DATA, DEPLETION, . AND BUILD-UP A. Fission-Yield Theory [R. Pepping (University of Wisconsin), C. W. Maynard University of Wisconsin), D. G. Madland, T. R. England. and P. G. Youngl ● Fission-product yields have been computed,based on the assumption of oblate fragments at the scission point. This is done by constraining either the center- to-center or end-to-end separation. Such a constraint is consistent with the

24 TABLE I

ISOTOPES IN THERMAL POWER REACTOR CROSS-SECTION LIBRARY

Nuclide Nuclide (with Nuclide (with (complete) (transmutationonly) resonance only)

H-1 Ru-103 Th-232 H-2 Ru-105 Pa-233 He-4 Rh-103 u-233 B-10 Rh-105 u-234 C-12 A$3--1O9 U=235

N-14 1-135 U-236 0-16 Xe-131 U-238 Na-23 Xe-133 NPF237 Mg - Xe-135 Pu-238 Al-27 CS-133 Pu-239 Si CS-134 Pu-240

K Pr-143 Pu-241 Ca Nd-143 Pu-241 Cr Nd-145 Pu-242 Mn-55 Nd-147 Am-241 Fe Pm-147 Am-243 Ni Pm-148 Cm-244

Zircalloy-2 Pm-148m Mo Pm.149 Pm.151 Sm-149 Sm-150

Sm-151 Sm-152 Sm-153 Sm-154 Sm-155

44 nmdel proposed by Jensen and Dossing. The general features of the yield do not 45 differ greatly from those previously reported. In some cases the space of al- lowed shapes appears to be too restricted, the minimum potential energy occurring tor shapes of maximum allowed oblateness. A persistent feature of the yields computed,assuming both oblate and prolate configurations,is an enhancement of the yield of fragments with odd Z. Recent 46,47 measurements show an enhancement of about 25% of fragments with even Z. There are two possible sources of this effect: the level density and the ener- 48 getic. The level density, with the parameters reported previously, shows an

25 odd-Z enhancement, while the energetic (G-function) favor even-Z. The effect of energetic is then not sufficiently strong to overcome the level-density effect. As an independent check, level densities have been computed with a code devel- 49 oped by Moretto for a few test cases, confirming the odd-particle number en- hancement. A reevaluation of the shell and pairing terms is under way. .

B. ENDF/B-V YIELDS [T. R. England, J. Liaw (University of Oklahoma), W. B, ● Wilson, D. G. Madland, and N. L. Whittemorel Subject to data testing results, Version VE yields will be supplied to re- place those values currently being used in ENDF/B-V. The target date for com- pletion of this effort is August 15, 1978. The new yiel~s correct several known, but minor, errors in Version VD, and include more delayed neutron branching fractions (92 vs. 57) and measured data. Currently,the isobaric chains are being extended to include all nuclides in the decay data files, and the yields and their uncertainties put into the new ENDF/B-V format structure. Data testing will begin about August 1, and the re- sults will determine whether or not the new values will be used.

c. Decay Heat Standard [T. R. England, R. E. Schenter (Hanford Engineering Development Lab), and F. Schmittroth (Hanford Engineering Development Lab) 50 An extensive report on integral decay-heat comparisons with ENDF/B and generation of the nominal values for use in the ANS 5 Decay-Heat Standard has been prepared. The results were presented in an invited talk at the seminar on Nuclear Data Problems for Thermal Reactor Applications held at Brookhaven Nation- al Laboratory on May 22-24, 1978. In this report, results from recent integral decay-power experiments are presented and compared with summation calculations. The experiments include 233U 235U and 239PU the decay power following thermal fission of 9 1 . The sum- mation calculations use ENDF/B-IV decay data and yields from Versions IV and V. Limited comparisons of experimental beta and gamma spectra with summation cal- culations using ENDF/B-IV are included. Generalized least-squares methods are 235 239 applied to the recent U and Pu decay-power experiments and summation 235U calculations to arrive at evaluated values and uncertainties. Results for

imply uncertainties less than 2% (1 0) for the “infinite” exposure case for all ✎ 239 cooling times greater than 10 s. The uncertainties for Pu are larger. Ac- 235U 238U curate analytical representations of the decay power are presented for s s and 23’Pu for use in light-water reactors and as the nominal values in the new 26 ANS 5.1 Standard, accepted by the ANS on June 21, 1978. Comparisons of the nom- inal values with ENDF/B-IV and the 1973 ANS Draft Standard in current use are in- eluded. Gas content, important to decay-heat experiments, and absorption effects on decay power are reviewed. The importance of this report is that it documents all comparisons and con- tains a detailed summary of the nominal values and uncertainties used in the 239 standard. Most of the effort toward understanding the Pu decay-heat discrep- ancy between IASL and ORNL and calculations made during this quarter are dis- cussed in the report.

D Spectral Comparisons (T. R. England, R. J. LaBauve, and N. L. Whittemore) , 239 233 During this quarter, we have compared Pu and U gamma spectra recently measured at LASL by E. Jumey and P. Bendt with calculations using ENDF/B-IV 235 51 data. The results are generally as good as the earlier U comparisons.

E. Status of Fission-Product Data for Absorption Calculations (W. B. Wilson and T. R. England) The status of fission-product data for absorption calculations was described in a paper presented at the seminar on Nuclear Data Problems in Thermal Reactor Applications held at the Brookhaven National Laboratory on May 22-24, 1978. In addition to the summary of the development of methods and data, a study of the fission-product nuclides and parameters most significant to parasitic absorption 52 calculations was described. The sensitivity of the fission-product absorption rate to each of the nearly 300 nuclide parameters was examined at a number of irradiation periods of 33 GW days/MT light-water reactor fuel.

F. Library for Processed ENDF/B Aggregate Fission-Product Spectra (R. J. LaBauve, T. R. England, and D. C. George) The library of processed ENDF/B aggregate fission product multigroup pulse spectra (PEFPYD), the code for collapsing to a broad-energy group structure and fitting the resulting broad-group pulse spectra with analytic functions (the code FITPULS), and the application of these fitted functions in the calculation of decay-energy spectra for finite irradiation times were described at the June 53 American Nuclear Society Meeting. To date, we have obtained parameters for pulse fits in 11 broad-energy groups for 5 ENDF/B-IV fission-yield sets.

27 The parameters for the fits, shown in Table II, are in an ENDF-like format 233 235U ~herml 238U fast 239PU themal and 232~ fast and are for U thermal, 9 s s neutron incident energy for both beta- and gamma-decay energy spectra. In the ENDF-like format, columns 66-70 contain the “MAT-No.” that is used

to identify the target nucleus. The MAT-Nos. used in the listing are the same as those used in ENDF/B-IV and are as follows.

MAT No. Target Nucleus 233U 1260 235U 1261 238U . 1262 239PU 1264 232m 1296

A zero in column 70 signifies the end of the data for that MAT. The next two columns, 71 and 72, are used for the MF-No., which identifies the energy of the incident neutron. Here only two numbers are used; MF=80 denotes “thermal” neutrons, and MF=81 denotes “fast” neutrons. A zero in column 72 signifies the end of the data for that MF.

. Columns 73-75 contain the MT-No. that is used here to identify whether the

parameters are for a fit for the beta decay energy spectrum (MT=802) or a fit for the~amma decay energy spectrum (MT=803). A zero in column 75 signifies the end of the data for that MT. The data for a particular MAT, MF, MT combination are given in field widths of 11 and are organized as follows.

1. The sixth field on the first data card (number 11 in this case) gives the number of broad-energy groups for which the pulse fits are given.

2. On the next card, the first two fields give the energy bounds for the group in MeV; 0.1 to 0.9 MeV for group 1, for example. The sixth field gives the group number; 1, 2, 3, 4, etc.

3. The first two fields on the third data card give the cooling-time range in s over which the fit was made; 0.1 to 1 x 109 s for group 1, for ex- ample. The sixth field gives the number of pairs of parameters used in the fit; 16 for group 1, for example.

4. Next follows a number of cards containing the ai and Ai used for the pulse fit.

28 For example, for group 1, six cards are needed to contain the sixteen 16 parameters needed for the pulse fit fc(t) = aie-Ait . z . i=l

TABLE 11 . . USEFUL FITS IN 11 GROUPS

11 GROU? FITS FROM EpT/TIHE DECADE PEFPYD D474tJUN78tRJL/DCGoLASL -0-0 ●0 0, 0 0 u ll126u8@8ez I,naaot?- 1 hnwul- 1 B e B l12bBB08@i? 1,921?(3R- 1 l.dndk!u+ 9 0 161?bti8~80Z I,17887w 3 1.31789*0 7,3@fJZ3W; 1,23996-1 3,3S156=i l,b?269= Z12b~8~802 4,191!917- 5 3oi(154@- 3 ~,9s31?8* 5 1,fj9729- 3 8,50174- b 4, 1fG?89-, U12b~8@602 3,93218- b 1.U3197- Q“Y.872U~- 7 4.15921- 5 4,88582- 7 1,537949 5126B8080~ 6,2S912- 8 qo5z95H- 6 3c25ai6- o 1,~7531- 6 7,57565- 9 U,985913- 7126080802 U,ZZ?OID 9 ~m2flu67- 7 6,7995U-10 7m57b4cjw 8 3,61435-11 l,b148ti- 81~6i~8@8@2 1,8i2686011 8.87199-!0 0oO’dk3@0+ i! 0.’d’?iUa0+ O 0p00aL4@+ a @otii$U@d+ U1260808a2 am~aeaa- 1 9.afiaf10- i a c1 a Z12b08ti8f12 lo~dd?n- 1 loil@dUti* 9 c1 u 171?6U8t?8tiZ 7,89~lb- S lmU8bf45+ 8 1,695599 z 2,99261- 1 ~,95b7Z- 3 l,i?286b- ll~ba838k12 1,79883- 3 1,85960- I? ZmIJZ225W u 3,97993- 3 1,03123= 4 l,3t3779w 3i2bldB0802 3,45265- 5 4.54434- 0 1.23831- 5 l,b741S- U i?,la957= 6 4,42Zli3- 5126ti8@6@2 l,U7@U5- b 1.7flu84- 5 2.f1228b- ~ 5,76BU3W 6 s,8594d- 8 l,Q41?b- b12bfi6ti8~2 9,13u35R- 9 IJ.62132- 7 6,85P99w 9 2.031U7- 7 1,23372- 9 8,a9713= 81~b~8~802 l,0@fl~3wli3 2.11370- 6 l,5z75u*ll 8,b2735-lfl O,@fdOWO+ : ti#OaWM+ ai26aS@Bu2 9,fld3iJ!?- 1 1,35ABO+ 0 a n 31260B@8fif2 l,aa3uL3- 1 j.00auO+ 9 17126flfJB13Bz 1,571B6w 2 l,606ab+ a 4,61113= ! 3,54381= ; 7,bla68* f l~27003=ll~b~0~S~2 2,9g6b?J- 3 Z.51209- 2 3,61966- U 4,49169- s l,22~b6- 4 10U@394- 3126be0802 3.73b73- 5 a.73914- 4 l,3uS4b- 5 1,78L353v (l ?,b193b- b 5.48139- 5126UBtf8ib2 1;48189- 6 2.31377= 5 1.27872- 7 7.abi6L4- b 1,19771- 0 l,336bl- 612b08ti802 3,33251= 9 2,98222- 7 2,1zU19- 9 104093KP 7 bOU3U93-ia 5,93584- 8126i?80@k32 1.8S62a-10 2.19179- 8 1.89017-11 8.S4770-19 8,ma@@@+ a kl.aOOCiO+ 0120WB08’d2 1.35330+ a 108t+a14a+ 0 0 0 IA 412bd81?8f12 1,nan314w I 1.an300+ 9 1712bfi8ti802 2,515u1- z l,6933b* a.8.l?767- : 3,24759- : 1,05374= : l,3619iI- l12b~808@2 3,9287?- 3 2.17891- 2 3.68696- 4 4,51fl!u- 3 1,UQ071= 4 l,U44f16W 312b~8~ti~2 3,bi36~l- 5 0,7S951=Q 1,031136=5 I,715U59~ l,73b\T- b 5,D49uU= 512b~8fi0~2 l,b1758- 6 Z.7R9~5- 5 8,5s165- B 9.20376- 6 u,f?b210- 9 l,U53f39* b12bW8a8ai? U,3u?690J~ 209UQt0- 7 4,au202-11 5Q85841- 8 U,19332-13 2,B3529m 81?bd90602 4,22!)93=11 2a~U31b- 8 1,483ZU-11 7,82~OW*lti “0,0301)0+ d klotl@ak3L?l+ 312b~8@8U2 l,~a2aa+ R 2.2va3u+ n 0 B u 51Zbd9d802 l,aat4tifl= i I.OaafiO+ 9 0 ii 161?6’@8~8’d2 2.679~7- 2 1,758?5+ 0 9.79129- : 3.97575w 1 l,2B35vi- i? I,U1739- ilZbUOOBO~ 3,65?4?- 3 Z.381’J3- 2 3,81235- u 6,1!2!3- 3 1,152514- 4 1,s3819- 312b88~JJ@2 3,2bb4b. 5 S.2U298- 4 4,77b7~- b 1.748(I8w 4 1,29386- 6 4,76461- 512b~80b~2 l.l~nl(l- 6 30135131~ 5 600~!!b9- 8 l,lJb94- 5 5,21521-10 1,’d059bo b12b#80802 2.33656-12 1.8?bbZ- 7 3.66U27-10 2,77694- 8 ?.h3892-14 7,73643- 9126f19f1802 a,la29n-la 7,832’afl*10 m,flaliltin+ a 0,k3vlakl@+ fi .a,OaOLi(.#+ a k1,000aa+012b#8f180z 2.ZZY339+ 0 ~.bP3~0+ 8 a 0 V h12b~80602 l,aanw- i 1.8t7au0+ 9 1612698B802 2,68043- ~ 1.85815+ 0 lo20Q39- : 5.25591w : 1,3798U= ! l,4i9ba~ l12b~80802 . is,l~~llfl. ~ 2oU2660- 2 4.~2520- u 5.91974- ~ 1,P4156m 4 l,5089b- 3126@8a8t12 ,2,61@6~- S S.657~0- a 3,24b67- 6 1.84159- # 5,2U379= 7 4,99604- 51Zbi!8~892 ‘l,26~R0- 6 3.63bfJb- 5 2,71195- 8 l,408n0- 5 ~]08737-11 6s8730a= @l~b~8q8a2 ‘ i,3fi35d.10 2.6R711- 8 3.7a320-11 2.85321- 8 ?,035dL3-11 2,u5991- 812bU8080i? ● 2,7a43e91u 7m8u394=la fl.aaflan+ o 0.aOHtaH+ n O,naOtiO+ a a.wtimu+ 012b@8d682 2oba@an+ o 3.3k7aati+ 0 0 @ a 712b@8@802 1,0?009- ; l,aaxon+ 9 1512bti8BMti2 2,i17528* 2 2,q9u93+ 0 1,319719 ; 5.bRZ21= ~ l,3109flJI j l,5z802w l12b~Sfi8Q2 ~,8??81-3 2.b~U91- 2 306B876- 4 5,9S494Q 3 5,54516= 5 1.67914= 312bdBtitJ@2

29 2,111?!8- 5 5.09142- @ 1.30756- 1$ i,66biQ_ 4 2,12659= 7 6,67863= 5126060602 54 1.U3713- 6 U.~6290- 5 3,82?8(4- 9 l;Ll15t5w S l,23U30-11 9,33799- 712bH001302 55 2P5150Z-11 3.0138@w 8 2,1b852-11 2,3bi58= 8 b,07421-17 l,klt30flkl- 91?b08W802 3;i3aaao9 0 IIe8nBn0+ 0 0 0 0’ 812b380802 % l.maane~ 1 l.afJankI+ 9 ;511?b143080? 58 3.8a283. 2 2.b362i3+ 1? 3,3z298w ! 6.19487- y i!,l162Sm ~ 1,35191- l126c49080? 59 304U896- 3 ~03817f?- 2 b,2~859m u ~e133902- 3 1,31045- 4 1,77137- 31261~f3@b~z bO 2,!~UV- 9 S.87194- U l,3i31331- 6 1,51939- U 1,~58Yh 6 6,57357- 51?bklR@8@z bi 1,9!29S. b 5.tlf126kl- 5 3,579b3- 9 l,bW)57_ 5 1,9b7931Bll l,2ud7id- b12bd9@5(!2 bi? 4,@5ub(7~!(J’ ”f,?23nl- ~ 2.63993-12 2,21b77= 8 U,61356-17 b, B8u15=lU126USt!8@2 63 a,ai?;lila+ a 5.tin213ti+ a a n 91Z6ti8B8f12 64 l,naaoo- I 1.00i3k4tf+ 9 ; 14126ti8@8D2 65 .l.7b58Z~ 2 ~;4q386+ 0 ~.362bu- ; 5,217311~ ; 1,2’S863- 2 1,UU344- i12bti8L38k12 66 1,165999 3 ~.93475- ~ 2.9uF459- u 8,48785- S 2,771?22m 5 2,bbS\9m 312bl!B0@@2 67 7,1bS39= 7.3.92118- 4 U,7S888= B b,2L1396- 5 9,85050- 7 (>,92667= 512608i?80~ 68 ●203162Z=lFj 3,45321- 5 2,8S7B6=12 1,0376?- b b,UT814wlJ i,llb37aw 71t6vfRf10Ei2 69 “Z,b6dij5w18 2.81795-11 2,U7742=1B 2,81298D11? 3ofli1000+ 0 il,0B@k3il+ 01ZbflilI18k42 78 5,3if!)tif!+ ~ t30L3n20b+ 0 0 101?b@80602 71 l,eaoaO- 1 l.doauo+ 9 ; ‘! 1312bti80802 72 8,21597- 3 z.59379+ 0 4,51384= 3 3,8bPi88- : 6,33458- 3 lc3i95i3= ll~b08@fi@2 73 s,las~fl.U 3,%3b7- 2 9,5cW9!W S 1,0956?- Z 1,22660= 5 4@3!ti53w 3126080802 9,49810- 8 1.lub66= 3 1,93264= 8 b,85bl)9_ 5 1,01233=1U 5.19931- b12b8B08’d2 ;: 2,93196-!3 1.d3353- b 3eFIn223~19 1,29786- 7 2,11902-20 2,70455wl ll~bi3Ll@@3z 5,87326.ZU 2,4247u-12 f3,fl~13Lltl+ a lj,z144gFID+ 0 E,kiiifltifit i3 O,B@OI?kI+ tilli?bA8n8@z ;! b,Bafieut @ 705BOCIO+ ii u a a ll12bti8k1802’ l,OaaOfI- 1 l.tifld~l~+ 7 ll12b@83802 ;: 3,5?551J- J 2.463U8+ 0 l,u070b= ; Q,7F175uv : 2,809ul- : i,478U3W l12bUbf18@2 1,Q236?- U b.5X921- 2 l,7B010Q 5 1,573959J2 4,878(]5-7 U,9765V=31~b@L!ti802 :; 3,2218s- 9 1.7UB15W 3 3.!u936-lB 8,253t36- 4 i,91U98-14 i!,2972U- 412b28f16t?z 82 boU83bSmls lo@~76b- 6 b,25361@Zl 1,B3u13- 7 ‘d,O’dOOO+ 0 0,D000i3+ 01~b0Y0ijf12 83 126aB0 o 64 0, 0 0 lllZb~808fi3 85 l.eatifdo- I i:00i5PR- 1 : o l12b@808i33 86 l,OaOkicI- I l.tdpanfl+ 9 B 0 : 1712bti5ti835 87 1,89325- 2 1.UI17B3+ 0 7,R53Un- 3 1,52217= 1 1,3Rf15aw 3 20U3368- 212b148F10@3 88 l,625Rk3= 4 S.76486-0 3 4,3723k3- s 1.04591- 3 1,87778- 5 S,la3Ci5- 412bfi8@8f13 89 6,98570- & Z.47235- U 305b388= 7 3,74z53w 5 t2,3371@. 7.l,05b7U- 5i?bd8i31J03 9a b,U7575v o a.Ul’767- b 2,95853- B 1,88254* b 9,,7bh73= 9 7,2388UW 71?b08klet?J 91 i.al137_ V 3.23R56Q 7 t.31n78=10 7,97996- 8 2,BSZM9-13 2,66028= 81Zbti8P803 92 5.bd42z-12 1.U5227- 8 2.9b!fi8=~6 l,Dk30L30- 9 @,0i3klW@+ Id kf,Okld@@+ til?bd8P8iJJ 93 u,0aa!3fi. 1 9m@~~@~a 1 0 0 a 212bU601i03 94 1.2aaao- I l.unacst 9 B 161Z&WB08@3 95 8,2zI?3s- 2 2.23831!+ 0 4.77709. : 8,12574- : 3,63U71= 2 1,87581- l126UB@803 9b 3,tiZfJfJl~3 2.31596*i?5,83374-0 4,43976-3 1,81455*U l,398@b~ 312bd8Brn@3 97 U,37b08m 5 4,~9u59- 4 3,9479u- 5 107b089- 4 F!,73Z26n b 5,18154- 512ei3tlilB133 98 l,@3bbU_ b 1.26902- 5 1,u14U2- 7 fJ,88981- b 2,ti2228- 7 1,91329- fi12b08f18f13 1,u5733= 6 l.~?fa~~- 7 1,1FIU23-lB 3,31blw 8=lo38ub8-15 13,74UUa= 9126~8ti803 1;; 3,11532-11 7.47294-10 0.PBBflfl+ a L4,3EibFir4+ n 00FIi10ti6)t 0 @,O$?@Ra+ 012bV8@8@3 lkll 9.@20@R- 1 I;35aflU+ 8 e y 0 312b~lJti8@3 iul? 1.F18Pl?P- 1 l.u~ailldt 9 a 0 6 lb12bB80803 1H3 1,93236- 2 1.b8138+ @ 7.17798- 3 3.04052- 1 8,73bti7- 3 l,llb13w l12b@8Q8ti3 184 3,ta9ti9- 3 1.9P921- 2 2efi3b18- 4 U,fJ69Rb- 3 t,89blfl- 4 l,0U53B- 31?b08ti6tiS 1@s 6,8217!- ~ Ij.U3310- 4 2,23397- 5 2,2918Lj~ U 2,1U063- b 5,0f1771m 512bd908f13 itifl 1,01770- 4 Z.3rn5~l-5 8,4u203-O 6,76027- 6 3,178b9w 9 2,ti7u99-b12b30fi803 ld7 l,llbili-lo i.2~775- b 2,98279w 9 S.2U921- 7 1,5L34u6-12 2,2iti89- 812bti8k!8flj 108 106!2i?3~lb U.532th~-l@ 0,t3gflk!W+ E ld,ao\40n+ fl 8,L!BL{PGI+ ‘d b,afiBfld+ 0\26@8R803 189 l,353a’d+ @ l,8fl,!ti[lt O ‘d B 8 41i?f,IU8@8ti3 110 !,otik~~la- 1 \*.433kJG+ 9 U 141i?Di49178~3 ili 9073U8u- 3 l,3~52ut R 7,1131fj3- : l,3z~t35- 1 3,917B2w : 1,85826- 21?6P8B8U3 112 6,03135- 4 505i~99zm 3 U,9UQblW s 1v~9L147- 3 4,9321J7=5 3,37293=41c?6tiHV6213113 ~.’il3Rbb- 6 !09fi:123- 11 7,728?6- b f).57317- 5 7,38599- 7 S,dqbld- 51261dti@ljti3 ilu ●1.d86u5- N 5.41RQ0- h 7,?b5bU- 9 b,33U~14- 7-8,71$\56-15 6,33373- 712b14Hk41303 i15 b017t~JP-1~ 2,7f’Ifllkl- ~ ?,3~~63-lb 3,S74?3~Ii! ti,~ilOli[J+ a O,O\~OOd+ 13126*89U133 116 ltiantia+ 0 2.Z~aUB+ @ a 0 0 512bali_5803 117 l,m7@ifW” t l.vneoo+ Q o 0 1512bn0f1003 118 2.4?866- 3 1.35b92+ fl 1.9;617- : 1.Z70U2- 1 1,25692- 3 1.73512- 212609$603 119 9,P193P- s a.63927- 3 b.67399. S 9,53a98- 4 8.93792= b U.Q5U3i?- u12bkJ9Q8@3 i?o 8,2$995- b 1.5fIi!n0- u 3,1ui?l.3- b 7,92VU5- 5 6,9UUU3= 7 3,8~M97= 512b~BW$3 121 502u338- 9 5.d$1527- 6 9.0b8B9- 9 2.58819- 6 3,35679-10 98515a8- 712eti!iP8dS 122 •b.79C?9f-1~ Ua~U252- R 2.7765!9-11 2.9328s- 8 b,C973b=17 3m315z9wldi2bflB0t31d3 i23 3Q ~,I?2i~iYiJt”-’J ~.6Pd0k3+ n B n d b12hkJ8ff8k13 124 1.z29ila- 1 l.aklil:~k.1+ 9 131i?b~J908d3 li?s U.233~5- 3; f,3?!J19112+. 0 3.29337- ; 1,3!706- : 1,80627- ! l,7743b- 21~bd8(~d~3 120 2,23u5~~115.959flf393 2,43730-5 ~,c~Uab=& 1,17665-S ~,elhbg-lll~6k4!lfl~03127 8,71145-~ 8068~31w5 5,2g131~7 s,gss~b=5 3,C;4~~Wl@1,251~2-&j12btiljk!L!ld3 li!b u.tb8,2b- 9 b.315?ba~ l,2~792D1319,111B57*8 7,fl?21j8_lllZ,313Z1.612btii3@ti@s129 . 5,79528-177.072~3-1~$l,Oa~ti~tfl@,e@@ti@+H tl,ti?lu4~0+3 0,09i5n@+ld12b88~l18S13L3 ~.h~~~fi+d 3.a92~o+0 a 0 0 712bfi9ti803 131 l,,na~ap=1 1.3F)vu+9 l/Jli?bk4f3fl13@3 132 3,5923?- ~ l,$r~ltl+ fi ?08b95b- ~ 1,31731- : 1,k157397 ~ 2,07u29- 2j2bd8fi!l@3 133 . 1,6a55i- Q $.b9d92~ 3 2,9uU12W 5 l,B@819~ 3 U,8739Q. b 3,9bQb7- fk126ti5k381ilj 15a 3,9a425- b 1.95825- 4 4,80228- 7 1,11253- 4 a,81360w 7 7eZ!015a- 512bU8n8~3 135 -6,797~~-11 5,92597- 6 9,69!56-11 .6,41079= 7 l,slib3b.lQ 8,f1627a. 8~26Uf3:a3ti3 136 8,3769W-15 1.95U12- 8 107~686*17 2,969;6-12 0,@2r4GJLl+ a !d,ak!kl@lti.+ 01c?6d8148U3 137 3,Llatian+ a a.mfli!okl+ a a 0 n 131.2bi48(48k33 138 l,k?a2J:l- 1 1.3nan6+ 9 0 0 151L?ba8J8i13 139 2.6!4737- 3 1.26668+ ‘d 2.1s189= ; 1.1S420- 1 1,52309- 5 1,66084- 212bti8d8u3 Iuti ~,925!18- 4 ~.37b6ti- 3 1.35UZ3W U 2.5~77Z= 3 5,62011.b 5,4177d- u126ti8ti903 141 3.@9U9fl- 6 1.078f14° 4 b07ba27- 7 1,14637- 4 2,89359- 7 7,69293- !il.?ba80603 142 w1,’?7323-11 1.45?a5- 5 5,~47011-11 7,07436- 7 l,8af187-13 2,28~2a- 712&i19k18@3 143 ~,543R2- 19.IJ.91284= ~ 7,82941=19 5,15$333-lt 1,~2158-17 1,3953’2-l Jl?6dfJf18~3 iau 4.aaafik3+ d 5,4iIa13k3+ 0 ‘a n B 912bfi8U803 145 !,@3?3k?m 1 1.2k12ak’+ 9 0 m 13126UtlP603 146 1,537u7- 3 1.Rt716i3+ D 1,sz8B3- ; 2,25B9@- 1 9m83U04- & 3t7772J- 2!2b:40~8@3 147 0,49936- u bO~b22ti- 3 102s74U- 4 4,027’ZO* 3 6,99651- b l.lb~u~- 312b~ai~tlU3 148 3,1?$73b- 0 2.863bti- 4 2,47969- R 8,2il14@- 5 9,73688- 9 6,18353- 512kf130f3@3 1U9 1,!9193-11 1.lb12k!- 6 5,46.651=12 7,b92z0- 7 1,5?u15-13 4,36754- 712bd8i1803 150 2,3a12t-19 3.?Rilk3u-11 B,Fin?4aa+ ~ a,aoamo+ 0 n,OklOk!iJ+ a 0,80000+ ~12b~8f18@3 151 5,i?L17JC!+ @ ho116?QU+ id 0 0 a ~012bdYi’6a3 !52 l,mamhn- 1 I.kjvzau+ 7 1212bti848k33 1s3 1.274S0- $ 2.91UU5+ a 8.78971- ~ 8,01UU2- y l,fJ4b23. ! 1,78353. l12bk18~8k13 154 1.9?PQ3- U 5.69186- 2 6,u1882v 5 101L3U2C3- 2 1,74379- 5 5,97bblm 31~bf18P83’3 155 2,31@6@- 5 q.12b12- 3 5,b9813- 7 1,58143- 3 4,1aU3fJ- B 7,857?6- 412bf10k18ti3 156 1.23318-13 1.36278- 7 U,11718=12 7,511a78- 7=s,f!89b2-lU 5,73bkllw 812bU80803 157 b.OJad$I* 8 7.5tiafiu+ B a @ v lili!bog@t)i\3 158 !.fi83anm 1 l.noiltiti+ 7 a u ll12b380803 159 2.65368- Q 2.23u5u+ @ 1.11320- u S.30125- 1 2,3787g- : 1,53795. 11260B98B5 16ti 9z6u5b9- 6 108R{J1U- 2 b,16U53- b 1,1~~* 2 1,16051- b l,015b7. 21~b#90803 lbl 5,n3227-19 1P55U58- 3 7,03R80-14 13,19fllfP 5-2,17311-;3 80U3794W 71260008@3 162 6,41982-13 bO@Q32b- 7 101U132F15 l,Bk48UUm T ~,13300@+ U O,@OU@ti+ k312bti8~8@3 lb3 !2bf18@ 3 lba l?btl P a 1b5 LlOB 166 0, e o 0 lli~blB08@2 l.onnoob ; ~IOOa@fl- 1 0 m B l12btB08k42 : l,od~tirn- 1 l.tt~atifd+ 9 0 e lbl~blB@802 3 ~.7687Qw 3 1.45381+ 0 1.28097- ; 1,38592- 1 U,76t13- U l,7@69b. 2126J9illj@2 4 5,01187- 5 ZafJ075f!= 3 2,37695= 5 9a233bB* U 9,3b897m’b 3,70@9U- ll12b19f18U~ 5 3,8~7%1- b 1,U7U29- U 6,97162- 7 U,227db- 5 5,25675- 7 1,47919- 512b13013142 b b,a217?- 8 U.56536- 6 3.?7577- E lm29i454- b 7.271%7- 9 5.a8353- 7126180802 7 U,13!k63u- 9 Z03M415- 7 7,2D339=la 7.b6225- 8 U,66Q55-11 1,58689- 812bl!lk!8#2 8 l,5d32b-11 uea1828-10 0.8af?d0+ B 0.000’20+ 0 0,08@0Pl+ a @,OaOkIO+ 0126190802 9 u,aa?~g- 1 q.anzno- 1 0 0 u 212b1998@2 10 l,nabl;~m- I l.daavti+ 9 0 0 1712bleneu2 11 1,8zb~6- 2 ~,hb124+ ~ S,818zh- f 3,21188- 1 5,i4~635. 3 1.0?291. l12blf10&~2 12 2,416j5~ J l,H45Jul~ 2 ?,4~?92=u J,8t)9t47_3 f,ld7~f4-u Iod’tytj-\l?o16’15~2 i: S,7S035-S 0,3SS86-0 1.282SS-S 1.66976- 4 l,8bU68w b 4,67802= 512b16ZJf302 Ill . 1,59383- b 1.7~337- 5 2.339k57- 7 5.93531- 6 5,132395- 0 1.u8776- 6126180802 15 l,a?bflfl= 8 ~.?225b- 7 bak15b22- 9 2,26!085wJ 7 !,3215b- Q 8,12784= 81Zb18@130Z lb 1,24375-14 2.09389- 8 l,25P5b-!l 7e917U8-lV 0,Vai40kl+ kl B,ti$?d@ti+ 012b19Q802 17 9,0a.4R0- 1 l,358btib 0 0 k! o 31Zb18~fJf42 18

● l.~a:~dfl- 1 l.flPdtiti+ 9 B a 171?b19a8@2 19 3.83659- 2 1.64979+ 0 1,20318w ~ S.21283- 1 9,ba8Z9n 3 l,k458a3- \126190tl@2 Zkl 3,91M77- 3 1.99A22- 2 3.8924a- 4 4,5t?b~@- 3 1,32117- Q 1c39~!59- 31?618fi802 21 4,38136- 5 U,bUi125= U !,3RU31- 5 i.778f19- d 2.a1778- b 5,8b555- 51~b13fi8@2 22 ~,51@d9= 6 2,31593- 5 1,3z817- 7 7,225f4ZD b 1,22656- 6 l,U~6Udo 61261N@8?12 23 2.75929- 9 3.b6U0ti- 7 2.16993- 9 l,S@b68- 7 7,13751wid 5,92765- 812b18$!B@2 2a 2.2b@\6-lb 2.i6B17- 8 1.55507=11 7.1303u3-10 @,Iddk?tiO+ 8 0,k7flu03+ 012bi028@2 25 1,{5?3M+ z 1.!3?.4?19+ @ n P o dl~blbfltlk~z 26

31 l,oauno~ I 1.i3aa?d+ 9 a 17126180802 27 5,65U1AW 2 1.f19b68+ n 2,389139 j 4,1fJ76u- : 1,53936- 2 1,03639= l1261fJfi802 28 0,59877- ] P,31U8Z- ? U,f479b9= 11 4,4zb58- 3 i,QU@31m 4 l,42549w” 312418?802 29 3,9373?- s 4eb7963- 4 l,0112u2= 5 I,777u13- 4 l,565flS- b 5t77599- 51~bls0802 30 1,6$683= 6 Z,7Q.23S- 5 7,9z657* 0 9,61t5350 6 a,39155w 9 1,505729 bli?618n802 31 3,14?12~c10 z,38752w 7 @,5f3378-11 3,4cb81- 8 a,47Z96.lkl 2,76327= 812b10~&lB2 32 3,6s979=11 z.22888° 6 l,3dlbfl-11 7,927fJ8=lfl O,Di?@fltit U kl,aU@fld+ 012b10080? 33 , l,8ati3P+ 0 z.3n,42cl+ 0 d 0 n 51~bi8B802 34 . I.fiafl,lfdw 1 l.a$!ztiti+ 9 0 161~618f1602 35 bai8952- 2 1.85587+ 0 2.63810- : 40fJ4567- : 1,70417- 2 l,13851?~ fi2b~BU8a2 36 a,146878= 3 ~.19bi?8- 2 4.2blbl= 4 S;16312- 5 1,195k!8a 4 1,53$9s- 31c?b18~8~2 37 * 3.70577- 5 5.Z3311-4 a031d25-6 1.90b9~=4 ~,08707=b 5,1886d0 512616~6@z 38 l,17a4T~ f 3.2u598w 5 7,87866- 8 1,22247- 5 5,38u24wld 1,15384cc 6126188802 39 3,25310-lt 3.g8b~~g 7 4.33761-ld 2,76a19w 8 3,70592-13 2,9baa8- 81Z618f18~2 aa 3.56942-12 7.9zb91-10 0,c400130+ 3 0,3(3ilId0+ O lJ,k3i10Uti+ 3 0,U~08t)+ 0iZ619@8B2 41 2.23000+ 0 Z.bflaoo+ B a 8 e blZ61B0tl132 42 l,flc3f1061= 1 I.dt?aotib 9 1612b16@802 43 5.68253- a 2.6023ti+ B a.28a95= ! 5,53390- f ioea235- ~ 101743a~ ll~618uB02 4U u,037b3- 3 2029ba0= ~ 4.68438= a 5,7601f4wI 3 1,09553-4 105946B-312616tlEl12us 2.,91333-5 5.722.20=4 3,fl1798=b 1,97920=4 2,3Z26R-7 4,a353a_51t?b18ti002a6 1,15Q5A-6 S.5t9fJ0m5 1.1094?-8 1.166bO=5 ~,667ti5-11l,7b4~s-7i2blB@8~2 47 10?b4a5-lLi 2.6R3~R- 8 3.7n529-11 2.75715* 8 2,9b361Qll 207~522- 812618~8~2 48 2,al157-14 8.J792U-10 0,?13G0@+ a O,dO”hl+ 0 0,0di3Bfl+ 0 f3,’dUO@O+ 0126180882 49 2,6a@au* @ 3.OkldPa+ a a 0 0 71261888i32 50 l,i!amaOw 1 l.o~ilokl+ v. R u 1512blMn802 51 6,t1313&- ~ lo93ilbb+ 0 2,b5232w : S,46a3U- 1 1,99957- 2 1038453e 11261808~2 52 3,5S7U1O 3 ~,U343Zv ~ fl,71QU5- 4 b,lU342- 3 6.61565- 5 ;,bbb4z- 31Zb18@L!B2 53 2,fiau29- S b.$ddll- 4 fJ,2521b= 7 2,571U8- 4 U,1383U- 8 7,12u53m 512618C48U2 54 l,4S412~. b 5.05745- 5 lo35~Su- 5 l,6628b- 5 3,93246-11 l,ti6953* bli?b18P8w2 55 2,b3822mll 3.1719b- 8 3.17’723-11 2,34170- 8 1,836S2=17 l,1853a- 9126180802 56 3,8aaa\\+ t 4.a070M+ 0 a e 0 812b19@8a2 51 l,aalJn70 I 1.3n2aE3+ 9 a’ 0 0 1512618fi002 58 1,23767- 1 1.813b7+ ~ u,3u20kl- 2 U,5988W 1 2,94350- 2 10241?b= l12b15W8fi2 59 U,83717W 3 2.3352u0 2 7,!8957- u b,b985tW 3 1,3S34(4- a 1.76473- 312b18U802 60 2,33i?>b- 5 6.43176- 4 1,55786= b P,3847f!- ~ ~,54762w 7 7,b493U- 5126189802 61 i,by~68mA6’&O$~J12- s 6.39867- 9 1,78196--5 5,flT757*”ll l,t47271- b12618a&302 bz ‘ .3,62214-13 9of12b5?- 7 3,9u?38=t2 2,185143- 8 l,a3b63-17 b~i!a427-l~12b18f18~2 bs a,3anm0+ 0 5.dO,~ufl+ 0 0 0 0 9it?b180f3L~2 64 lg~a~an- I 1.-dI43cI44+ 9 0 U lU12b18k18L32 65 5,211u1- 2 l,77biB6 $3 1,40632- ; 4,a9978- 1 1,72253- 2 1,33420- li2blLiti8klZ 66 l,au23d- 3 2.7R3U8- 2 3.b8~88~ u 8,67964- 3 2,81370- ~ 2,699ab- 312b180802 b7 7,55437- 7 U076S99= fJ 4,bw218= B 1.95245- 4 7,226s3- 7 60Q198fJ= 512b180802 68 -2,3a797- 8 8.191fib- 5 6,/45730-12 1,33762- 6 l,575b!slb Z,488Ef60 712b18?8@2 69 5,30b9z~!9 3.2ft33b-11 7,58336=19 2,41889-12 O,OaOOti+ 3 U,@@a@d+ 012b18f18’di? S,BaAtikft h 6,d5i3fllJ+ 0 a 0 e 1012b19aL102 H i,Oavw= I 1.00J0o* 9 0 i3i2b1838Bz 72 2,a7958- 2 1.761a9+ P 7,73591- ; 2,83S92- 1 7,31U43- : 1,22365- l12b19f18fd2 73 U,97547= U 1036318- 2 1,179040 4 1,12570- i? 102U710- 5 0,3!’d53- 31?b!B0bf12 70 l,251dom? l,a~at~~-3 1,32243-9 6,f17S31D5 2,9$47~$-lU~,z?f593.61?618@8~2 75 8,93566-131.d3\53*6 4.9b’?3b_191.s345b-7 ~.lblbti=i?l 3,b~92!J-lli2biBti5BZ l,S9~19=2g lm6flbs7-1~ 0,80000+ D O,OUOO@+ 0 6,0a0F10+ 3 0,0000$+ 012b180802 ;; 6,aaaa0+ @ 7.503014+ B a 0 0 ll12b16@8a2 78 lbfia300= t l.saw+ 7 0 0 ll12b18k?U02 79 1.~66ua- ? l,Oub~t+ 0 2,37762- : 3,80208- 1 3,76743- 3 l,4746a- lli?b19~822 60 2.133f187w u 6.t115~l- 2 2.5753Bw 5 l,56k154- 2 4,51912= 7 4.99222- 31?b19@9f12 81 a,97q529 9 lm786U9_ 3 3m33klz8-la ~,29u13= o a,79i2u=i3 8,58480- ai2bi50t302 82 2,Q2Q9a-14 ;.a3b10- b 2.0nbb7-21 Z,0b82b- 7 a,B@13k!l!+ a 0,3@U0ti+ til?b1838~Z 83 126180 a 8a B, 0 @ a llli?t)lo@8t33 85 . l,aa~i~o- 1 ~IidFaOU- 1 a 0 0 l12b18n8U3 86 toaaow- j l.untior+ 9 1912619RMC?3 87 2.81727w 2 2.82757+ n 1.61475- : 8.8Qlb29- ; 1,2473S- : 4,22587- l1261f10803 88 6,9b348~ 3 lof384’d2- t 1,87744- 3 4,33672- 2 9,71714- 4 lo6iiiiCjQ= 212b1868$43 89 l;f19923- 4 a.182@9- ~ /4.luf173= 5 7,22565- U 2,1LIu984- 5 5,4u!43- a1261@38U3 99 5,R3bS8* 6 2.11393- 4 3,46526- 8 1.3753(I- 5 3,7b66Q= 7 1,37567- 512b19G1803 9i 7,Qb6Q2m g 2,97?PU= b 1,31237- 8 0ofJ02138- 7 1,29305- 9 2,59565= 712blB@803 92 &297z2wll Z,8RZ74- 8 1.3!j579~12 Z,8fli!U7- 8 7,b82i69_la 0,09492- Q1Z61838C3 93 r,rn’9bll-17 1.lq;86~10 fl,kTa@b@+ 0 14.OErnPti~ B ‘d,t!WWO+ a R,B0@@8+ 01?b18~8a3 94 a,flaaaa- 1 9.3@fl$K-1 0 a 0 21i?bl$~E03 95 32 l,fda020w I l,2t3ai38+ 9 191~b18a803 96 1,84161- 1 2.93360+ O 1,01402= ; l,fl$92fl+ : 8,91371. ~ lJ,25b80. 1126150803 ~7 2,65U36- 2 1.3671C= 1 6.35638= 5 U,83b@@- 2 ?,052tIk4- 3 1,490109 2126160803 5,130780P o s.8!15VD J 1.37557- u l,3~j60m S 108E4822- 5 2,18253- 4126100803 -;: UC7U5P50 5 1.73u9VW O I,5s297w b 3.49170- S lo70i29- 6 !.19Zk4dW 51Z64808@3 lids i?,!u785w 7 Sm29k43U- b 2.85053- 0 3m3601@- b 6,34009- 8 1,14778- 6126180803 101 . !,0713?- 8 lalU5Ub= 7 1,861UF4D11 1,58230= 8 3,41UUk3r915 1,58230- 812b18rn803 t k42 2,713360-1[ 7.2EIlln-10 (4,DROBL3+ D W,i3tiB0a+ P 0,@nMfic4+ a a,nl?tine+ @l?b\8@803 183 9,aafl$@9 1 l’,3sz0R+ 0 a U 0 31i?61508F45 10u I.natmo- 1 1.0niiL40+ 9 191261838(43 Iils . 3,?~bbflw ~ 2.56a3kj+ 8 ~mQ760B- ; !5,129b~- ; l,38!j@a- ; 1,3MU93. l;~6180803 ltib 5.73730- 3 4.i!824Dw 2 ?,bf)2bB= 3 l,44110w 2 5,889U@- U 4,92423= Sl~b1038L33 1U7 1,53fJ’dO- 4 1.k3u92’d- ~ 9,fJ95tklu 5 5,9t76;0- 4 ~,197L10- 5 1,97383- 41i?b1001Jk!3 108 2.4667!dw tj 3.f)R34@w s 6,5525@= 7 1,68960- 5 4,19126!- fj 2,64928- bl~b1828B3 109 3,25360- 9 b:9!7~0- 7 !,f!712fl- ? S,6943FI- 7 2,9ZC350=11 1,56540- 712b10U8@3 110 1,9?510-la 2,17630- 8 2e4q112ti-1$ 2,1765fi= 0 2,1772n-17 b, 775Z3-ll12blB0b03 111 5,01@80018 s,5546P~,ll OoO~OOn+ B 0oOOB!30+ fl ‘d,000urlt 0 0,0k300ij+ 01?b18148E3 112 l,350Mn+ (j 1.80900+ o a o 0. 412blBti803 113--— l,0a03n* 1 l.aklaoFl+ 9 0 e 14i2ii8080j 114 1,5u?2u* 2 2,63302+ 0 l,5@988m : 5q01187- 1 8,1883EI- 3 l,3640b* ll~b18b8@3 115 5,14Z7S7W 3 a.35751- 2 2,94196= 3 lm5537~-2 7,46Z36.4 6,91bf13q 31~b!8H8t13 116 9,33988- 5 2,91559- 3 6.7775ZD s 3.78648- U 9,799u2= b 1,29181- 41261L10803 117 4,B66U7- 6 u.uS812- 5 7,51U65- 0 b,31631m 7 7.30439-12 2q7@265- 81~61t4@8~3 110 2,3i3393-lb 9,25ijb2- 9 4c3b459-17 b,2T813-11 ld,@i3@ti0+ 8 0,a@3Ri4+ 012bi8a8~3 119 l,8d74ail+ 0 ~~zc!a~o+ 0 0 n o 512618a!3Q3 123 I,rdaono- 1 l.anaotit 9 0 0 1812619ti8Q43 121 ~,a~131aD ~ 2.55 9L!+ t! 3,7756b-. ~ 4,94890- 1 i,8~07?- 3 l,3441aw lli?b!i3C?8E43 122 1,01679- 5 5.9?.ti~-i z l,DaI?8& 34.43t?5kJ- 2 1,63591- U 5.(J988B- 312618@0U3 123 6,12283- 5 9.599Q2- 4 l,fjb6?0- 5 5,98660- 4 6.57733- b ln73~@3* -’41?b18@4303 124 4,@7153w b 6.35768= 5 3,b4b13U- 7 3.8&7$10- 5 2,07467- 8 1.1%070- 512618V1863 125 9,0b6u0- 9 2,45130- b 5,33514-11 S,3111OO 7=4,17S64-12 5,83268- 81261e08~3 126 ~,8221b-11 2.B1lPZ= 8 2,93299-1S l,bObb8- 8 l,?7293-17- l,U802B*] 01?blB06ti3 127 2,2il~E4fi+ a ~.b~ilflld+ 0 a 0 0 b12b18@803 128 i.flaaa~- 1 l.ti~d~tib9 0 0 lbi2b10080i 129 7,22591- ~ P,Ufl#iia+ @ b,79147- ~ 4,5343a- 1 3,U995Um 3 l,03k340w l12b180803 13Q 2,@467fP 3 a,783?P- ? 1,13849- 3 9,861J3U-3 3,94452=5 2,37028-3126180803 131 2,a2358= 5 3.97881d-O 7.9n39b= b i,277ic4- 4 2,393bu- b b,b427!4- S1261B~803 132 “=0,Z2U4Rm 9 8.47111- 6 2,Fj972b-10 5,9R3110- 7 3t16U9U- 9 6.67160- 712b180flf13 133 1,S366S- 9 s.379kiU- 7 j0239Q3-15 2.15969- 8 U,7799U-2B V, 3@i?uti-l ll?b18b8U3 134 l,4b64t.4*17 Ia311?4k4-11 H013BL40Cl+ a 0.flflk46io+ 0 ‘d,@20tiO+ 0 0,@MB$4ti+ fd12b18@8t33 135 2,63Pa3+ o 3,3?d~fl+0 a B B 712hluoLlo3136 I l,oa~anw1 l.fitiaoti+9 B 15i2b19ti8@3137 5,89171=3 2.66.$56+0 5.67017-; 5.134V17W1 3,@48ti4-i 1,38354-l12b18Zbk?3 138 l,68190D J 4.75150-~ 7,27511=U l,b~sti~-~ ?,65719-4 70909~4.312bls08~43139 6,9715u95 3,05388-S 2,06474=b 1,06808-4 9,30650-6 3,79582=#;%%f&a80j 140 4,2733107 7a597f1195 7,2~566-~17.66677-7 U,097116wl~5,02311QQ712bl13@t3@3101 1.5~575-lIJ2.12375-@ l,7836@=2~2.45925-114,33630-18 2,45775-12126180803 142 3af?aR’7@* @ a.@93clt!+ n 0 @ a 812b1808fd3 143 1,03?30= 1 \md?lannt 9 0 8 16126180803 144 3,99571- K 2.63670+ 6 3,9zU39- ; 5,B88U7- 1 2,15233- 3 1,47318- $i2b1808@3 145 2,i35flkj7. 3 3.959199 2 1,32325= 3 1,27392- 2 3,18026- 4 4,17817w 312bt8@f)fd3 1U6 i!.6b7?\m 5 1.46259- 3 5,77121= b 4ob7151- U 1,84319~ b 1,312u5- U12b180d0J i47 3,93P9h- 7 t03119?~ 4 ~056163- 7 7,49333- 5 8,12831011 9,5bb96- 71?b190803 la8 2,05E?3wlI 5097fIflR- 7 7,37638=17 1,01114- 7 1,32823-10 3,429113.1 ll~b183@@3 149 1,468>3.18 3,1b14ti-l? 0,2D130P+ a 0.at?Ij#u+ 0 ti,tlt4klk\Gl$ ‘3 tiok!kliY~O+ 01~b180ti03 158 fl,83@k4w il S,a:)amti+ 0 0 0 0 9126188803 1s1 \,0a3ting 1 I.domv+ 9 0 u lblZb18@RD3 152 3.!8297- 3 z.5685fi+ 0 2.87557= ~ 4.9S990- 1 l,7t15i!- 3 l,3!i71a- ll?b1801303 153 l-,@76Zb- 5 3,9559U- 2 5.6115U- Q 1,35330- 2 1,39928- 4 5,95bla- 312618BH05 154 1,,9d7flYw 4 3.9118L?- 3 1.!9133- b 9,266513- 4 8,t398131- 8 &,~9iI19 4126180003 155 *;98a3uI- 13””’~.4elFBw 5 b.393a0- 9 b;ilQB9L4- 5 4,66038-11 1.03150. 6126180803 156 v 2,478u3-14 5.061809 7 4,987U4W17 1.72a28- 7 1,59311-21 8,82550- 9126180803 157 5.b17flU-2kJ 3.351.25-13 9qa~(3L40+ z f4.i3f?tinP+ P @,ML?nv4f4+ i? 0,0Pk40d+ 012b18@8U3 158 5;Ai?f18c4t Id b,aaduv+ n 0 0 u l&41~bl,8fitlP15 159 t,,”ntivae- 1 1.<9nAofit7 e B a $21~blLi?8’?13 160 ~,3$81?w 3 z.l?!3ti7+ 0 2m7b97a= 3 3,51749- 1 1,29471: 3 l,07u55= lt2b19F1803 lbt l,lb145- @ I.-45795- 2 3.570?22- 5 q,8731s- 3 5,59klL47- 6 3,18480. 312blbOljC43 162 7,51UQb, 8 8.68Ulb- 4 2,9z191- 9 6,78993w lJ 4,09fl10w13 l,b?b65w 412b1800@J 163 5,3?912-!2 1.tifI?71= b 1,15456-13 b01691b- 7 9,99597-24 4,87660- 8126180803 16U

33 . ...- .. 6,i!a@d@+ @ 7.593aE+ 8 0 @ E IllI?bf80Ba3 l;PdOJfl- 1 1.tii?d@2+ ~ l(3i2b18c48L13 8,068ti10 li.1005i117+ B~/J.59189= f 2,69962- f l,28026m t 8,55785w I?1261B@803 l,3b26fk= 5 1.36U26- ? 4.3j4ba- 7 8,1313kw.3 4,50608=10 1,54721- 31i?b18@803 5,41038912 7.882246- q 2,32383-14 l,B6kj9’iiQ 6 1,94953-14 6t1795a- 71261Bf4i3i33 8,3v431-23 ~,Z3540W 9 il,EI(jCIOO+ a k1,00FIOO+ 0 0,f3W?~fl+ a 0,0tia$3a+ 01ZblRP8B3 12618P 0 1261 0 ii Of10 0. 0 B e ll1262818@2 l,oaooo= 1 ~104(~e5= 1 0 B e 1126281802 l,naaai4- i f.iwfaofd+ 9 1612628!802 5.75984- 3 1.372i?5+ @ 2.13S91- ~ 1.5SU52- ~ 6,338b9- ; 1,73561- 212bi?81802 6,01283- 5 Z.Z1289- 3 2,67481- 5 7,88411- 4 8,81B2Zm 6 J,8U4C39- 4126?818W2 3,68856* 6 l,5Ri3u0- 4 6.946U3= 7 9,L1811J5- 5 5,31779- 7 1,51041- 51?6251502 S.79fi17- 8 U.51Q67- 6 3,14393- 8 1,31992- b 7,j?91t42- 9 5,3b79il- 7126281802 3,66713- 9 2,52219- 7 6.96905-107,942~1-8 S.16S69=111,62993- 8126261602 1.139LIR=11 7.992f14-10 !7,@af!3L3Ut a 0,00R0O+ 0 O,k!BOflFi+ @ O,BOOflO+ B12b281802 4,n2?!i3mD 1 9.atiaHkl- 1 ‘a 0 0 2126.2818U2 l,aa~flfl= 1 I.aPwO+ 9 l?l~b2818f12 3.53@Z0- i? 1,673P9+ @ t055ib3m ; ~,497btl= : 6,31286= ! 8,95714-21.?6291802 2,9994a- s 1.7995P-. 2 2,bflE!~7m u 3.8590$- 3 1,23547- 4 l,lblbU- 3126281802 ‘3,96979- 5 4,35063- 4 1.27932- s l,70i~U- ~ i!,r~20b4- b S,067U1- 51~b~8i8@2 1.558U0- b 1.81574- 5 2,711a5= 7 6,00195- b 5,15126- 9 1.4765u_ 61?6?91802 9,179Z7W 9 q.:59RfJ5m 7 3.59384- 9 2,7746s- 7 1,31058- 9 5,27631- 8126281802 1.64!11wl@ 2.0b3f12- 8 7,57229-12 7,93bf17-lB @,c30@0+ 8 Ot~aO@O* ~12b281n~2 9.0i18Bra- 1 1.55aF13+ P f? 0 312b281f10z l,nanklll= 1 1.3ra0u+ 9 : n O 1712bi?81BB2 7,33239- 2 1.71121+ 6 3,?898Qw z 3,76539= 1 1,27824- 2 9,17627- 21.262B18U2 u,5blB?- 3 to92flll- 2 11,333u7P 4 4,b?7U7- 3 1,43~55m q l,351J@50 312b/?fl18P2 lJ,Ub339- 5 u.77893* 4 le3L3731W 5 1.8UQ38- 4 2,23879= 6 6,u9e13- 5126281602 1,3972P- 6 2.Q61til- 5 1,43645- 7 7.43Z5ii- 6 10390w4- 6 l,4776i3- b12b$ti18flZ 2,02911- 9 3.993!15- 7 l,b3~9?m 9 2,01$323- 7 7,1511d9-lL! 5,79491- 812b?fJ18!.i~ 2,967B5-l@ 2.J5S29- 8 0.0s739.12 7,78b98-lB !d,FIaOklId+ U 0,k+a0618+ t?12b2818f12 l,3sLlbn+ @ l.Pndtlti+ n w 0 U12bt?918t?~ 100a~Oa- 1 l.tiOdilkl+ 9 : F1 a 171Z6Z818PZ 1,!36UI?- I 1,7516H+ fi 5,5z199- a S,7(1291W 1 l,71b60w 2 8,93023- 212b?!ll13?2 “5,3051793 [09?{x’~-2 4,1f,nJ9m11u,47yl\9I l,5M159m4 l,J!i2Rla!l?h?tlth~? SC*1660- 3 o.7dtfJ3= u l,rn1017m S l,8!796~ U 8,635S0= 7 5,51538- 51262818S2 1,S7733T 6 3.a04~5- s Q.~?342- b 9,71a58- 6 5,04098- 9 1,53196- 61?6281002 S,1917b=10 2.J76b8- 7 l,93ZSbmlti 2.4~312- 8 U.29b00ul13 2,63340- 812b2B18f12 2,41377-!1 z.4173b- 8 703U?03=l~ 7,8aa2b-lfl ‘d,Gli4~@0+ ‘d 0.OBOaa+ 01i!b2B10@2 l,8i101acl+ k! 2.a@i?an+ 0 (d 8 @ 5126281802 1,’aa?fja- 1 1.td910f10+ 9 j6i262B180~ 1,2182?= 1 1.674aa+ a 6,715??= ! U.4~0661D : 2,1il184m ~ 9,79773- 212b2518a2 5,I)?381o 3 ~,0b433- 2! U,OflSS?D u S0071aD=3 1,24747-u 1,49232-3126201802 3,83982-~ a.4;b37mU 4,88170-6 1,98849-4 S,54439-7 4,244159512b281801! •,33b7@~ 7 3.b174ti- S 7.68902- D l,l~993m S 7,8S048.10 1,37681. 6126?81802 l,a7515=19 u.3@b6b- 7 5.2617b=l@ ?,5S611- 8 ~,78392-12 ltu82~Q~ 512b2818B? 2m@2893-la 7,83408=10 0.?l@OOfl+ a O,a@OflO+ B f1,00V1@fl+ R 0,ag090+ 01?6281802 2,aa8ea6 o 2.60af10+ @ 0 e a b12628180a l,BWW i i.aflaOa+ ~ ~612b28180Z l,lBQb5m 1 1.72670+ @ 1,00788- ; S,UT4111P : 2,4560$- : l,B9i30= l12bZ81002 4.94003= 3 Z.219~mm ~ 5.697939 4 5,78Z313= 5 1,12438- u 1,S587EW 3126281802 3,09993= 9 S,8~090- a 2.66004- b 2.ll130Q 4 s,lS608= O S,010600 5126?81802 9,fj~86~0 ~ 3,82860- s 2,4s419- S 1,2B9YIw $ l,lb787-10 3,87879- 7126i?13180a Z,*ltillmlfl 2.4Y37ti= 8 2,37?68-11 8,69907- 8 2,01270-11 2,4S36B- 812b28180Z 1076u10=14 1096B3W Q 0,06000+ u 0.O~eam+ 0 O,GIOOOn+ 0 B,tiOOOO+ 012b2fJ180a 2,600s0+ o 3.00000+ @ e o 0 7126281802 i,OaOOa- 1 l,OwaOO+ Q 1512b28100a I,2B735w 1 1.09558+ ~ 6,5s667- : S.20294= : ~,6b05Sm : $,29667= 112620160~ 4,4795?= ~ ~,37821~ 2 5.67751- 4 b,12419- 3 8,4i1430= 5 1,7039S- 312625180Z 3,129439 g b.48b73- 4 l,31abb= T 3,7t~fJ1- G 2,14065= O U0030919 S1266?81802 1.6B41s- 6 s.3f1285- $ 1.?73aU- 8 l,4f147~ S 1,60230-10 l,a6i27- 6126281002 1,OU823=1O 2.2!1906= 8 2.21337-11 3.32754- 8 2,2731?-17 l,1877flw 9126?1310fda 3,eae0a+o O,soaflo+0 0 n B 812b251e0? i.12000s-1 1.0000a+9 1S12b2UlS0a 2,384130 1 1,8$105+ @ 1,1T61811 ; U,7*8*b- ; 3,70757=; 1,15181-1126281802 6,00884= 3 ~.2T0$00 2 6.07918- u 6.6$S2b~ 3 :,3866$- U 1,78724- 3126281802

34 ~.8U8aU- s b.a2b7U= a 4.1891?- 7 4,i339U4* 4 1,35841- 7 6,82657- 5126281802 61 i,Q~uS9- 6 6,51991- s 6,84070- 9 1.45006- S 1,97417-1% 1,05066- 6126281602 62 3,49S36=la 1.04363- 6 2,74842-11 8,17635- 8 l,7b9uu.17 8,z009S.1012b2S180a 63 u,88B8R+ o gmijOOOO+ 8 ‘a @ 0 9126281802 64 l.BaO@m* i 1.00i3mvl+ 9 14126281802 65 i,03f156= 1 1.8j947+ 8 S.02733= ~ Uo538PJ~- ! 2,1a87bm ~ 1,28099w l12bZ81B0Z 66 2,0U337- 3 2,b2339- ~ sa7~239m IJ 9,15149- Z 2,bU2~b. S 2,77299. 312bZ81002 67 6.46653- ? Se~4921- U 70b661J1. O loU802b- U 4,bU498- 7 6,9aSZ8m 51i?bZ5180Z 68 ●u,lOl@bw 8 8.75553= 5 2,598#7-11 l.OsBufl- 6 hoba012wl~ l,861U0w 71~bi?81L102 69 1302003u-iQ 1,6Z273=11 705B267M1? 1,21534-12 O,B@GIOcj+ 0 flO@OO@B+ 012b?81B02 70 ~,aawfaa+ a b,iiFJwao+ 0 0 0 0 10iZb281B0Z 71 l,?JaOOQ- 1 1.013fa0u+ 9 i312bi?e18a2 72 s,a18UsW a ~.72907+ R smblS58- ; Jm981b7- ; ~,4@725- ; 1,12557. llt?b2818@z 73 5,26359- a z.7J3i?8w 2 l,l~993v II i0211U3- Z 1,08389= % 4p3@592w 312b281a@Z 74 70y7?;b- B 1.53S30= 3 a05b!Ui?- 9 6,688g2- S 1,1620?-13 l,lu2b0- 6126281602 3,5!)707=la 1.03413= b 108ulb3-19 l@2SObf4- 7 8,58998=21 l,81964w~l 126281802 K 1.24D471w213 9.0Si?8S-13 0,@DMt3fl+ B k3,BFi0tlB+ FI B,9W3ENZI+ El 0,00000+ Eii2b281802 77 b,eankmn+ 0 7.5ma0B+ 0 0 e e ll1262Q18ni? 78 l,@laOOfl- 1 I.@Ban@+ 7 li12b281802 79 2,11323- 2 1.76891+ B 102L1115= ; 4,78349- ; U,27U13D ; 1,29529- 1126281802 80 2,19Ubb- fJ u-55492= 2 3,65313- s lmt1979b- 2 3,857&b. 7 5,@91b9- 3126261802 81 8,16977- 9 10bz087- 3 3,311321=l@ 8r3313f)~- U U,55698=la 8,55842. 412b2818@Z 82 8,139s2-!4 t,03b32- 6 P,0@bb7w22 ll,llbq~- 7 B,@iM?Bi13+ B 0,Bm01?k3+ k+12bZ0i802 83 126281 9 84 0, 0 0 0 ll12bd81S03 85 l,OanOfi- 1 ~:0130mu- 1 0 0 0 1126281803 86 l.flanafl- 1 I.eRfIEIO+ 9 e 19126281803 87 8,Ub91fl. 2 1.88662+ B 2.99%19. ~ 6,0?957- ~ 2,@5b78m Z 2e85b9S. 1126281803 88 9.>7417- I B.bU7@9- 2 l.blJBbfl. 3 3,Z355U- 2 l,@~lJL)lJ. 3 ~,U8350. z12b28t8@3 89 8,11508- ~ 3.41533- 3 5,$g278- 9 bm74fJQ0- 4 1,8741?- 5 s,30Ub5- 412bZ81803 90 507U489- 6 2.10i4U9- 4 5,59763- 9 9,7cJ8t49- b 3,53688= 7 1,37S07- 512628180S 91 FiQ3UI113- 8 2.96951- 6 10391ti?- 6 80bUb55- 7 l,Zl~3~- 9 zo659~ld. 7126281803 92 l,9ij51um11 2.83662- 8 1,323.?2-12 a.2s852- 8 1,213241=13 8,09548. 912b281Mt43 93 l,U31?2i3-17 1.17289-1? Bafl@9BD+ a ti,0k3aaL4+ EI 0,03000+ O U,i190R0+ L41~b/81Mi13 9U O,nantia- 1 9.0k3anti- 1 d n u t?li?bc?Bi803 95 1.,0a0k30a 1 l.anawt 9 m 0 0 1912tJza18i43 96 5,2b91f3c 1 201!lzb+ O l,qblb?o 1 b,8b3kjS- \ 1,U6M95- 1 3,41199- l12~Z51btiJ 97 3,1ij873= ~ 10d3b51- 1 6,84173- 3 U,189tJ7- Z 2,S7752= 3 1.33669- 21?b~81803 98 !5,46734. 4 3.b491bm 3 1,1J9U133- U 0,Ublkls8’ IA l,bbYTtim 5 2,Ut379. 4126281803 99 U,M8521SI ~ 1.75641- U 2045bd9m b 4,22245Q 5 1,525u1= b l,Z88bi3- 512bL?B18P3 ilea 3,13599- 7 J063B85- b 6,32gk$U- B 4,14714* b S,9dB03- b 8.66236- 71i?bc?tl18L33 lldl 1,37149- 8 1P1361U- 7 6.08! 18=11 1.50B45* 8 3,U1440-12 1,78598- 8126281803 1C32 2,75?~b~ll 7.351f?3-10 0,00000+ a 0,00000+ @ 0,k)dOk3@+ @ O,klUO@O+ tll?b~51tlk33 lti3 9,313LIEIB- 1 l,J5d00+ Ll 2 0 u jl?b~131t!03 la4 l,OaOOO~ 1 l,O~dBkt+ 9 1912bc?8i8k33 llds 1005106~ 1 1,70053+ ~ 5,98281- : s,9TbTz- ! Z,2398L3- ! l,llb99- l12b2Ll1803 1 d6 5,8b919w ~ 3,37i199w Z 3,@2blU- 3 1,25987- 2 7,371d95m 4 4,54105. 31Zbi?01803 1U7 1,1B651= 4 I,135671D 3 9,31884. 5 t,15Bdl~ 4 1,9j336- 5 2,v8397- 4126Z816k13 11J8 2,5091fl= b 3,92186- s 7,a507B= 7 1,70362- 5 4,78548= 8 Z,6~335W bl?b281803 189 5,77342- 9 7,52215= 7 ;,027859 9 5,L19137B- ? 2,28855-11 1,71S46- 712628!803 110 1,4U932-11 2016b3b- 8 U,33bld8014 2,23759w 8 20B2uti5-17 5036277.1112bZBlB03 111 5,@4U85=1@ ~@7773t4=11 floilOaOO+ 0 O,BOOOBt O 0,0i300fdt 13 0,’d@OOB+ 6flZbi!818@i3 112 i,~92JB9? 0 l,8k3da0+ U e 0 w 4126281803 113 I,Baaktew 1 Iqdntila’dt 9 0 n 1412b2B18133 114 3,32479= 2 z.?3515+ 0 QmUb984* ; Um875bIW 1 10532132- 2 l,157b5w liZb2B180J 115 5,4j3b8- J 3.49792- 2 2,930S7W J l,5b2bB= 2 7,5U3b0- 4 7,b72B2- 3126281003 116 1,17996- 4 2.46018= 3 6,79717- S ~,9695b- U i,lb05b- 5 1,53525- 41?6201803 117 2,90589= b 4.07339- 5 6,B7086= 8 6,35152= 7 8,3214b-12 2,5176a- 812b2816B3 118 ?,41599-\b 9,ti51@9= 9 5C27716-\7 U,U36b3-il i~,O~Bk)kl+ 8 B,ifbOOO+ Id12b~818B3 119 l*Maok30t @ z.a0k3t4kl+ 0 0 0 0 5iZb2818a3 lzil 1.OOOOO- 1 loOrnaOB+ 9 18126281803 121 1,J78131- z 1,43343+ 0 5,35?51= ; 2,961v13c ; 3,4ti31d9- : 1,27204- 1126201803 122 1,7s1039 S 2.83300= ~ 9,u44Bb- 4 l,395b9~ 2 l,3b912- 4 50b1941- 31~bi!B1803 123 b,S7btil!n 5 9049B!$2w4 10U709b- 5 5,52576- U 4,9i?fJ91- b 1,9~121- 41i?bc?810@3 124 S,7228i~ b 9.aU5i2W 5 3,3zU71W 7 U,llJb75* 5 i,9alC12)- B 9,9tib2d- 612b2B1803 125 1,1J51?7Q @ 2,3S522- b 2,11403-10 5.27219. 7~9022881=12 3,25351- R12bzBt8@3 126 3,11042-11 2.6@3U3- 8 4,01780-Is 1,A8259= 8 1,81528.17 2,94831-lk41~bZ61b83 127 2,20000+ @ 2.60000+ 0 0 e m 6126281803 128 1,00a(lO~ 1 1.00000+ 9 a n 0 16126281803 129

35 2,y@tJ5i0 2 t.a56?7+ ~ 8,75441= J ll,bS824= t 5,16266= 5 9,75119cI i!l?bi!B1803 130 ?,U416Q- 5 z.5Z449W a 1,2S109= J 9,3t48S- 5 5,71229. 5 2.9U6U5. 3126201803 131 2,1~b4~s s 4mlsu79- 4 7,sbaB9= b 1,46158= 4 1,9UB85= b 6,88077- 5126281803 132 s3,43876. 9 o.0f12b5@ b 4,1s627=10 1,19616= b 2,865UUm Y b,bb13bSw 71~b?8iC!k33 133 1,5$5729 Q 9.*633* 7 8,5z373w13 2,167U7W 8 4,7794.919 4tb91f2d=lllZb2810@3 134 i,7b868=17 5.3bbk18=\z O,O@OOO+ 0 0.00000+ 0 0,001300+ 0 lbrBOOO@+ 012b281812S 135 ?.6aos9+ @ s.R900’a* o 0 9 8 712628100$ 136 t,aaoea= 1 l.of100@+ 9 1512b?8i8133 137 . 1,9b407* Q 1;S9816+ g 8,70956- ! 3,24869- ; s,t187b@w ; 1,29u99w 112!6281003 138 lc663ilU-$ 3.0$664- 2 6.11S45-u 1,U7115W 2 2,64222= U 7,66709- 312b2818@3 139 70937’3fjs 5 3.?7213= 3 2,5Q0S4- b l,b02ti7~ 4 f,e8f130= b 3,082?5Q 4126201803 140 ? 3,24849- Y 7,541B9~ S i,29~70=10 1,10587- 6 i,L3i69b-1’d 6,625Q19 7126261603 141 1,06436=13 ~,$bb8S= 6 3,U0545=22 0,0370RW11 s,38Sb3milj 3,73610-12126281803 142 3,90000+ a (1.@eOOO+ 9 0 R 0 8126281803 143 l.faaeaew 1 l,ralll?nfl+ 9 16126261003 144 1,S2071- a 1,41975+ @ 5085Udl- : 3,29234- ; 4,2JH9B3w ! 1,2?0S6- l12bZ8180S 145 2a5b2ulm J 3,$6u29w 2 1,3Q542- 3 1,31015- 2 2,23585- u UU451U3- 312b28t803 146 2,919S3= 5 l,$B87um S 6,11476- b 5,16U67- u 1,4U95?= b l,486f14- 4126?81003 147 6,2741s- 7 1.31276. 4 1,SS711- 7 7,b63~b= 5 3,1f12b7mld 1.0230i3= 6126281003 148 l,9i3393911 S,?86b2~ 7 1,29404-16 1.91114- 7 l,9j@b2-lU lc7~fB63-ll 12b?S18@3 149 1,460a4wIc 1.?1301-1? u.e6000+ a 13.unekw+ O fl,O@OLW+ ~ doO@OOO+ @l~62818@3 150 U,ma(aldm+ Q 5mee000+0 4 0 9126281003 151 l,llelnaam1 1,00900+9 lbli?b2131B03 152 1,~987S-2 1.30003+~ 3,76431=; a,bi?9~9* ; Z,9S2U0w i l,24~55w 1126281803 1s3 1,31773- S ambZ3Z7- i? 4,32764- U A,3@Sb8* 2 7,58W11D 5 8,7553aw 312b281803 154 l,7uSq9m u u,~517fd~3 1,s7’?62= b 1,0172S- 3 7,89368=-8 3s47493- 4A2b~L$1803 155 1i5a3E9-”39.733flji5 6,23427-9 6,2a248*5 1,87093=101,M4411-6126281803 156 I?,~33110-13b.77zQ2m7 2.2S972ml~1,72’d2~-7 l,3129@w22Z,%T~i_ 8126251803 157 h,R7Z17-2a z.39375-13 FI,~fik300t 9 @,OtltiflU+ 0 k3,0B1313F4+ d 0,k3dk300+ 01Z6Z818U3 158 5.f126fi@+ @ b.a3a~fl* fl 0 0 8 lQ12b2B1603 159 l,fla?flfln 1 1.0?7FIP+ 7 1212b281~f13lbti 1.@0S&?9.2 ~.7f19~9~6 b.5u(J61?-! 3,u583@*: 1,5277bw ! 8,70199- 2126~818@3 161 1,5235?- u 1.b77nb- 2 2.@u631- 5 5,11i?45- 3 b,42U99- $ 3,Z91fIBW 31ZbZ81@03 162 7,615u5w !) 8,60636- Q 2,1J7P9V- 9 l,17UfJ8- 3 U,44115-13 2,4R87@- U12bi?9i833 163 2,1673?-11 l,bu218- 6 1,89161-14 5,9f1263- 7 9,99597-23 2,Q383a. 13126?818U3 164 b,~aaiipt U’7e5Fi3@P+ ~ a n 0 lll?6?81Bd3 165 l,~a~afd- j 1.7JPao13+ 7 lti12bZ!J1803 166 1,7517Q- 3 1.78J?6+ 0 1,15398- ; 3.b3083- ~ 2,5i!9b7w i 5,U52bb- i?i?bd810i33 lb7 1,3BQL13w S 1.56583- ? 6,48457- 7 8,4Qb~l- 3 1,91878- 9 1,53165- 31E!bZ911303 168 8,6fiaB7wla 9.~472b- 4 8.92896*1U 1,03916- b 2,63164=15 6,U52QU- 712b23!8f13 169 6,52UU1-21 1.558R5- 9 @OPOO?O+ a O,BL?BOi!+ 0 O,fdW[lO+ a t3,@000ti+ 01262!Jll!Id3 170 1262B1 a 171 126/ a 0 172 nO a 173 0, ‘ 8 II 0 11126460802 i.0a90p- i i:ananw 1 0 0 0 l12bu8a8’ai? : l,natn(l- 1 1*71300V+ 9 0 0 lb12bdB0802 3 l,515Zfl- 3 1.3??16+ a 8,20608= ! 1,27219- 1 3,818UO= U 1,58019- 2i?6u5UB02 U,0Z9Z3- ~ 2.31347- 3 i?,72bU3- 5 7,b85U9-.lJ 7,01046- 6 3,96417- U1?6U8Q8142 : 3,3U7b6- b 1.62355- 0 6.65!77- 7 4,U3@33-. 5 5,33139- 7 l,U59f19~ 51~6u02832 b 1,$13116- 7 U.I?6015- b 2a8651i- B 1.83135* 6 U,67937- 9 U,b~l@6= 712butli1802 7 3,F591?- 9 2,U8bu9- 7 508~98U-lB 7,86038- 8 U,756Z3-11 l,7@574- 512648?Sti2 8 1,051?6-11 8.52187-tfl BaOO~klTI+ 3 0,#@Ok7U+ % fl,fl@@ti@+ 0 ti,0@08B+ 012buR$3tJ02 U,fl~t4a(t- 1 900Pilkli!- j a U Zl?6UBilB3z 1: t,~a?a~~ i l.antivkl+ 9 a 0 ; 17126U9?I!R2 11 1,tiUl?9- 2 1.42215+ @ 2,2u530- 3 2,51511- 1 ~,lt135= 3 l,2f310& 112640?502 1.Qa538- 3 1.81233w 2 2.5557b- O ~.Z2CflL?- 3 1,13091- 4 l,1951bw 31~bQ8@8@2 H U0138bQ- 5 U.SA191- U 1,29300- 5 1,80159- a 1.87301- 6 5.28654= 512buBn8~? 14 loasb83- 6 1.83792- s 306b317- 7 6od6]z6- 6 3,51889- B 8,99Q89. 7126UU38L+Z 15 7.uaa3t- Q IJ.0875u- 7 6.78442-10 3.23u6@- 7 l,fAb3a@- 9 8mdnb’?8- 012bU6~a@2 16 1,69868-10 1.98178- 8 5.19700-12 7,639U2-l@ a,0aUb40+ ‘d 0,00000+ @i26~Bf18ti2 17 9,0afann- I 1.353Rfi+ 0 0 P 0 3t26fJ9fltlm2 18 l.nai~ti(!- 1 l.ac!,latl+ 9 3 n @ 17126U986(42 2.!6755- a 1.U(J88U+ 0 5.125U8- 3 2,7976S- 1 7,883S9- 3 l,22u@l. l~26U8?b@2 !: 3,22f189- 3 1.9S19L!- 2 3.69223- 4 0.68?57- 3 1,39072- U 1,32926- 312bU6fld0Z 21 3.S376?- 5 U:W8969- a 1.2233U- 5 t.87s2b~ U 1,2?662- b 7k31d6U- 51261Jll@t!@i? 22 1,U9S73- 6 2.49349- g l,flP012- 7 b,llUf15- b 1,J314@kl- 8 I,IC327- 612b4P3802 23 1,76S39- 9 5.32517- 7 8.53121-10 @,60217- 7 5,98391-lti fJ,9sb92* 812h40atl@2 aa ~,-736iJ6-jB 1.9ob5& B 5,673ab-4Z 7.86607-19 @,@a@O@+ @ B.D@@aiM 0b2bu.838,~,2 2s” , 36 26 27 28 ?9 30 31 32 33 34 35 36 37 38 39 4U 41 42 l:fidak?i?- 1 i:il’!aLlu+”9 lb12bfJb.’L)~? U3 ?;7?069- i! ig57b36+ D 2e5167Q- ; 5,95191- ; 1P44ZU2- : l,i?bi?02- ll~bqsab~~ 44 3,3d466!!3 2.?417ti92 5,17911- u 5.49068- 3 9,7B4739 5 1016297= 31zb4~~1~~~ 45 9,8b@07~6 6.56324”4 4.s1617= b 3,@6~40- U 2,08155- 7 3,05789- 512ba8@802 46 ~.b733fl_7 4.26260=S 10b5890- 0 l,!la47- 5 8,52570-11 2,S5424- 71~bu8f1882 U7 3,2903U91B~,36994m8 7,55774wlz l,bS72U- 8 3,39814-11 2,36443- 812b4flk?t)f12 U8 7,6;533-156.736S2°% 0.@BaE~+ B B,@PtiqQ+ 0 0,0d0b9+ O G,BO@ZO+ @i~b~S@Bfi2 U9 Z,hdaoe+0 3.zc?aPo+ 0 a n m 71i?buBQ602 50 1.3?vfle- I l.anavu+ 9 m e 151264s89k12 51 3,72@14- i? 1.57595+ @ I,13z751w : 5,18554- 1 1,UU3399 z l,377?t3- 1126480!3(32 2,78922--3 2.Z277V- 2 U.3ZU89- U S,blb91~ 3 7,(!3665= S 1,2’378U- 312buY08f12 ;: 1-.3359?- 5 5.??72i- U 1038B28- 6 3,1J37!?3- 4 5,77862- 8 3,9U6U5- 5126489002 5U 6,3943.5- 7 5.11if39- 5 b,~IV83- q 1,175?4- 5 !,155u6-10 1,07719- b12buBk1802 55 l.bfJ?bU-lti Z.3Z279- 8 4,319Zk3-12 l,b5311= 8 5,14126-17 l,a~~na- 912buBtii3B2 5b 3.PaGlldm+ fl u,i4t44Llti+ 0 @ 0 812b48ti8U2 57 l.~bx;~;~- 1 lo331;ik~+ 9 : n d 151204F$FtiffZ 58 4,79771- 2 2.585U7+ a 4;3u899- a b,U17980- 1 ~,087b3- Z i,5klbUd- Ilt?bfJ5k’8@2 59 3.67583- 3 2.14f51- 2 6,aQ773- 4 b,fk~119- 3 1,G19437= 4 l,btib53- s)?bu$b~~~ bfl 1*R9U?1- ~ 4’1156~- U 2,~7~32- 7 b,71112b- 4 4,0abk15m 7 7qa1519- 5\.?bUt3118t12 b; 6,77823- 7 b,51h?9- 5 4,725Ub- 9 10U5291- 5 1,13418-12 7,90S14- 712b48Pkl@? 62 ‘ 2,!!592!0-13 bOUfiPL!5- 7 Ua\7731-11 2,j7J47- 8 2,9db72-17 2,9T98b-jVlt?bU8~5k32 63 U,ili!?ap+ g S,till.n(lll+@ D n (3 9126463802 b4 l.fla?il(?~ 1 t.~ifi!$!ti+ 9 a 0 d 1U12648SB02 65 t?.uu~al- i? i.1377zJ9+ 0 8,Sb555- 3 b,3267b- 1 1,23413- 2 l,588~bw ll?b46@hf12 66 l,ti5bb~- 3 ~oU?b5P.- ~ 205b581J- U 9,U5z11- 3 2,12Q41d- S 2,71694- 312bu8tifJt12 67 9.57515- 7 5obi!f172- Q 1.94hb8- B 1.S3248- 4 2,hb58Q- 7 bs987fi~~ 5t.?b~SA~@2 68 9503%.U35-10 7,535u7- S 1.QoSR!3-11 1.03762- 6 2mR7\lU-lb l,795Uf4. 712bu8J6@2 69 1,9X933-18 7.i95qt-l? ?,ubfi78~!8 7,1832P-13 0*ti{M3k10+ 2 kJ,i3:lu0ti+ @120403d17Z 70 5.~arntiHt 0 b.!d!’13MU* @ @ 8 fd l~12b49g8R2 ?1 l,ti?ti?n- 1 ~.cl~adk!+ 9 0 a lsl~bug~t)~z 72 l,lY5b6- 2 t.87bul+ R 3.3E17t7- ! 5.L43159- 1 6,1aU31- 3 l.5’5~l5-ll?bfi8@8ti2 73 2,6?U?U- & 3.24962- 2 lofda2u6- U 1.2Qkj~3- 2 7,tiu2Y7- b 4,u74flb- 312b48,k832 74 l,bi?ht39- 7 !.34414- 3 4,95P8R- 9 6,85b89- 5 8,753t,9-14 l,i?298d. blr?bU8h13@2 75 2,63581-lz 1.03353- b 1.5381EI-18 1,55652- 7 6,24351-21 7. Ub29ti-1212b482B02 76 6,1?234-20 2.klfJ38?-12 002:.jOklU+ a 0,C91@00+ O O,OtiOklk!t U ‘iI,k~~k’aOt 012buBfi602 77 6.,ilail137+ g 7,533ve+ 0 0 63 0 l!l.2b~~~8ti2 78 1,02U20- 1 l.klkld~t+ 7 a 0 a ll12b~6080? 79 5obS718- 3 IOOU372* D 9.73995- u U,12U(C?5- 1 2.1132(!- 3 l,b51U4- lt?hu8~8~i? tlti i?,b7929~ 4 b.854U4- 2 1,52465- 5 1,41366- 2 3,71382- 7 5,14886- 312b4Bti802 01 5,26799- 9 1.495ti7- 3 2ef!z328-la 8,31972- 4 2,~5ULIt-14 9,1709UW U12b480kkflZ 8i? 5.9912b-i4 l,037bb- b, 2.R5@7fl-2a 5.86991- 8 @,fli300k4+ 8 003{~klfld+ k$i2bu8~8gi? 83 12bu8fl 0 84 P 0 n D lll?buJ3aMu3

37 lJ,0aF41?lcl- 1 9*F!f13iaP- 1 n Zli?b48~803 95 Iotianoo= 1 l.OrIti~d+ 9 :“0 : 1912648J8G33 96 1,133631= I Z078269+ 0 200~964P ~ 8.96753- 1 7,~3595w 2 5.41161- ll?6Uf!tiBn3 97 2,5d5U7- z I,6u70u- 1 5,60799- 3 S.89620- 2 2,08150- 3 1,636?0- i?12bu13f1803 98 5,5Q560- u U,4R761- 3 1,631413~ u 9.07396- U 2,E!3364- 5 3,3596u- ul?648@80.\ 4,QzfldI- 5 10i31557- 4 ?m05059w 6 3,8539z- 5 1,50735- 6 1,?2766- 51ZbU8a383 J: 2,8763R- ~ 3.118UiI- 6 5,6u695- 8 4,13(?511u- 6 5,14641- 8 7,B8z15- 71264Bf18V3 lU1 1.263u1- R 1.27U59- 7 6,3333?-11 i,092Qb- 8 4,bi3S2t?-15 b,22488- 812bU83803 IH2 2,9?U57-11 70~924-10 D,FIRt4Jfl+ B \100F4dOti+ B B,14dOt4H+ B lb,tivklni!~ al~eQbtit)ti5 103 9,ailti&4P- 1 lo35dvi3+ d B 0 U 312648M8V3 jti4 I,lld?oo- 1 1.2H,?F40+ 9 0 0 8 19126463883 li)s ~,lZ176- 2 ~,9783k4+ 0 7,771U4- $ 6,2fllk41J~ 1 ;.16178. 2 2oa297/- l126U&Vtj133 lk46 6,1aZ48- 3 6.218Uf?- 2 2.7z779- 3 1.58014- Z 5,9flV55. # 5,672B4. 3126u8flBL331R7 !,i8777_4 1.S25a7*3 1.01579-4 0.38315-U 2.B2Z91W 5 Z,1OO15, 0i2b4Hflt)03 1U8 2,10042- b 3.97404- s 6,68904- 7 1.78639- S 5,09027- 8 2,79144= 6126450803 1??9 6,1S193- V 7.207?9- 7 9.21518=10 b;17ti23- 7 l,43fi80-11 l,0f4blbw 71?bU8B01?3 lle 1,93310-11 i?.la163= 8 2.81505-12 2.3U5/lS* 8 8,81S28-17 4,32278-11126480803 111 3,3917fi-l@ 1.U225f!CC~1 a,B~@k3tJ+ a BaOklUP@+ 0 0,030f10+ 0 O&OOBOO+ a12648i18L13 112 l,35Qan* 0 l.enzlntl+ 0 ‘a 0 0 U1264&t1803 113 l.nilflan- 1 l.oflat~n+ 9 B 0 14126umP6k+3 114 7,398939 5 ~,62.t32} ~ 7.Iu888- : s,b96b4~ 1 5,3555191 J l,78341ih lJ?64Ht413f13 1;5 4,3a069- 3 6,33813- 2 2,6u5160 3 1,792S3- 2 7,(5780- 4 8,0733b- 512648381A3 ti6 9,21!453- 5 ~.156t23- 3 b,l?27U9w 5 4,i13454- 4 9,899~9- 6 1,57134- U12b4~tlljfiS 117 2,U2923_ b 3.9P2UU- 5 bm88Q@fl- 8 6,35759- 7 8,4”5161-12 2,41681- 812bU50803 118 1,09583-15 6,,33652- 9 10UZ691=16 3,40i3b9*ll 0,03a6Kl+ O a,@QGflLl+ @12bubf18k43 119 l,8a3J3+ 0 2.2a,~Iac\+ 0 0 0 0 5126u83b03 i2e “1.k32f!J0- 1 I.J~klOU+ 9 0 0 ~812b48aB03 121 2,89863- 3 1.5z677+ 0 6.57198- f 3,R9237= 1 1,20121- 3 1.91651. l12bU8k48t13 122 1,R?298- 3 5,55j79- 2 ~oBbbU2- U 1,60QU2- 2 1,39917- 4 6,18555- 3126u14~t403 123 6,579U5- S 9oSbf17t4- 4 f!,B931Jb= 6 4,S67U@D 4 6,15332- b 2,26552- U12b4(!fl$J143 124 “3.22fItU- b 1.U382?- 4 3,1s523- 7 4,31S18- 5 1,99951- 8 8,01178= bJ2bU8U80J 125 1,0U25Fl@ 8 2.356!7- b 3,32~i37-la 5.329k?2- 7w1,@lt3t48-11 2,92972- 811?6UlJHB03 126 ?,9afJ98~l~ ~,7bfi3~- 8 b,U63ibl-ls 1,22794* 8 5,050c17w17 Z,9b275.\k312bUbf18kl~ 127 2.2~f4flP+ 0 ~.bf13tiV+ 0 e 0 If! 612bUti0ilf15 128 l,aaron- 1 l,ona~i~+ 9 1312bu80B03 129 5,61~bb= 3 ~.3S51ti* B $,t33?b?~ : 1,37989- : 107Ub32= ; 2,13414- ?12b’J8~i303 13111 4.92543- 4 7.521$95- 3 2al&155- S 4,17905- 0 1,43048- b 4,~1932. U12b48a8@3 131 5.61941- ~ 9.859f14- 5 8.93048- 8 9,77286- 5 1,V3329- 9 7,70247. 71?6400803 132 2,77722’- 9 6033JR1- 7 8,92693-13 2,3t437u- 8 4,5UI?75D13 Z,a3019w 812b48@t183 133 5.0Z38Cl-17 9.84a5FI-13 3,0a36!0t a t!eOflO@O+ fi O,OIBOOU+ 0 fd,00B@O+ @12b4B@80J 13U i?,bc?UOkI+ Q 3.KjP39ti+ a 0 @ 0 712bu8?803 135 l.n?titin- 1 lmOila@c!+ Q e lsl~ba8~8fi3 136 4,fj~fJdl- 3 lab187:++ 0 lm@5113a ; U,72756W ; 2*it?93bm J IU758U3- li2bu8P9ti3 137 1,?7@79Q 3 S,95966- 2 7,52267= ~ 1,94178- 2 2,21919- U 9.8796S- 3126U80ME3 J38 6e52u7z- 5 3.18742- 3 Z.16U26- ~ 1.72918- 4 6,16318- b 3,15688- 4126430803 139 2.11?32- 7 7.1f792- 5 9,9u987-fl 1.268UO* 6 l,@iLl134-10 b,5bd9b. ?12bU8flfjB3 lun 1,61S18-13 2.1558U- 8 1.7’8360=19 1,22962*11 l,a6873P17 l,2~88?*1212buBP8@3 lU1 3mrta3xfi+ a u.ni133tA+ 0 0 8 0 811?6u8\~803 juz 1.fla30fn- 1 l.anavu+ 9 0 B 161r?b4b0t!8j 143 2,13! 16- 3 ~,UU9f!D+ B 1.940S9- ; d,398,60- 1 9,42593- 4 1,9965?4- l12b4M13!303 14U 1,82295- 3 5.2S980- 2 l,t91U3- 3 l,U?fJ90- 2 l,595f!8~ 4. 4,7255A 31t?buBp80~ 145 2,56339- 5 1.5588U- 3 b,lz9j6= 6 5,3323t4- 4 1,4a13U- b 1,3?743- 412b48@8f43 146 4,310f13~ 7 lo289~iI- fJ 101(1614- 7 50125BL4- 5 ?,31118-19 l@ti36ad- 61%64L!08a3 147 2,5!13~oi-11 6,1559L4- 7 l,5sfl12-15 1,36730= 7 5,95F?L$1-18 4,425Bi3-1212bU8iZfjk!3 148 3,37495-18 5.46950-13 0,0flk10F4+.11 a,avacja+ a t4,0aw30+ a 13*@tiaue+ 0!2bU80803 i49 u,baO~O+”O s.efiflctat u n e 91?b48@6ti3 15M I,maatitx- ; I.afi*fiot 9 : p u lb126uSP8E?3 151 1,U3917- 3 z.7~852+“6l,3z6~SW~ 6,43S99- 1 1,22299- 3 l,8630i. l126U0t3803 152 9,225s9- u 5,26222- a Se69351= Q 1,43259- 2 4,89@11- 5 1,31195- Zl~649tit103 153 1,83980= 4 3,?67121- 3 1,07296= 6 9,50211- 0 3,31RLll?m 0 3,94246. 412bULl@80j 154 1.51179- 8 1.bhZ81- u 5,217k3ty 9 b.928?8~ ~ i,aa5ti2-18 i,03j84- b12b46050~ 155 2.111M7-13 U.07527- 7 la13291-lh 1.b287s- I 1,10450-22 7,7dt4Uti- 812bU60893 15b 1.8?738-19 7.1815B-13 0,021(4~0+ a @.’d00t3B+ 0 0,03flPfi+ 8 8,80000+ @12e4fJ@8@3 157 s,G4ddtIQ4* 3 beafi~~f?+ 9 a 0 0 l@l?b4L!(lL!k13 158 1.n3i9$)D- 1 1.L4f13(4ti+ 7 8 0 12126460EW3 159 2,52938- J 1.61372+ 0 8.95921- ; 3,25133- 1 9,57559- U l,3f14U3- l\ZbUE98f43 i O@ 1.16917- u 1.938bfi- 2 !,07947- 5 5,76564- 3 5,82U31- b 3,32708- 51264808643 161 7,U7b39- 8 8.?V382- 4 2,145g0w 8 1,18B14w 3 6.28kl10-16 9,497Q8- U12b48@180S lb2 1,6?835-11 9.91546- 7 1,12598M12 5,53587* 7 9,99562-22 1,23214- 8126utJQ803 163

38 164 165 1 b6 lb~ 108 lb~ .. 17b9 ill 172 b i 3

z 6 7 8 9 ~tl 11 12 13 lU 15 lb 17 18 19 28 21 22 23 24 $25 26 27 28 29 3a 31 32 33 3U 55 36 57 38 39 qn 41 Ul? 43 Uu 45 Ub 47 48 49 50 51 52 53 54 55 56 57 58 59

39 ..— 6,16752=3 2.28199=2 8.5s’122-Q 6.46$f12ri3 1,18263-4 l,8b51uQ3 296816R2 6W 5.11603-5 b,d~%l~b-U ?,59684-6 6,99~44-5 2,795?1w7 b,9~~i3bm 5 ,27b81802 61 !,5~ltfJR0 b f,,quf~l= 5 !,?57?9= 8 1,4?418- 5 7,3931?w12 l,2b!194m b ,Z’)hb!t!tiz bz tl,FibUhF1-lU 3.FJ13952- 7 UclIEi932-j3 2.21333- R 8,U939U-lB 3,81i?b5-in 296B18G12 63 U,namlzin+ M 5.t4k4a’ati+ o n n @ 9 29601802 ba l.aanakl- 1 l.tlnaoo+ 9 n 0 a ~u 296818R2 bS bm797b5- z z.71128+ 0 5,LJIf111- 2 5.la8?4- 1 i!.475R9- Z 1,21386- 1 29681802 66 2,35525- 3 2.116?~l- 2 U.3(4295D u 8,11014- 3 3,b10Clbo 5 3,01364- 3 29bfllIji42 67 l,l13u80- b 5.3U153- u 4.lu3ktfl- 7 6,01636- S 1,tiB708- b 7,22842- 5 29b816n2 68 0.78207- 9 7,23151- 5 7,93591-13 1.Ba987- b b,U8a9kl-lb 1.79138- 7 29681802 b9 5,202aU-19 ~.lb883=ll b.5u327-19 7ma3245-j3 Q,flO@nP+ 0 O,kIPk!ak!+ fl 29b81802 70 5,0a00fl+ 0 b.Otlf100+ @ B R B II? 296818f12 71 l,namEv- 1 1.0aaPi3+ 9 a @ B 13 296818~z 72 Q.t?U126- z 1.69877+ 0 iObfJOUQo 2 Z,9811a- 1 l,@a532w 2 1,12123- 1 29b818f12 73 6,75477. a Z.88257- Z 106?Sla- u 1,09155- 2 1.68557. 5 f/.27U3Z- 3 296818$32 7a 2,777bu- 7 ~.3653b- 3 i!,5Q92a- 8 6.86112- S 3,20931-lU 1,22232- b 29681802 75 7.72785-la 9.96913= ? 9.1s821-lB 1,73032- 7 bo8b056-2i 2.u8196-11 29b8!8BZ 76 l,15b999??l b.9a295=13 L4*8W3U8+ 8 O,O@f)am+ 0 O,n$vlOn+ n B,aMeoB+ 0 29b81BD2 77 6,’3i?@0@+ 0 7.50k10W+ 0 e m 0 11 29681602 78 lsOaOOn- 1 l.enofag+ 7 29b0180Z 79 lo83a92- 2 1,70393+ E 60604a8- ; 3,30171- ! 4,4552n= ! 1,20398-1; 29b818P2 80 Z!,i7b7tjW 4 u.$8u57w ~ 3,27137- S 1,40288- 2 7,38277- 7 4,974a7- 3 29681002 81 7,79688* 9 1,8$977= 3 3,26129-10 8.2931u~ a l,bb3U1-13 2,60513- U ,29b81802 82 2’,3Uab2-15 1.03613- b ~mS01Ua=22 1,632FJ6- 7 fl,’ilaRt?04 a @,PJ@0rn04 @ 29b81802 83 29681 3 oa 6!, 0 n a 11 ,2968180s 85 l,flaeOOw 1 ::000009 1 0 0 29681803 86 l,~ilnflfl= 1 l.a#n@O+ 9 0 0 : 1: 29681803 87 b,B9a3u- 2 1,82056+ @ 1,75749- Z a,U2UJb- 1 1,7962U- 2 3015735~ 1 29681803 88 8,;/!862- 3 &,ZlB510 i? l,Sb763- 3 300QbQ3- 2 8,8071am a 1,s2913- 2 ,29b818@3 89 1,0D6i91T U u.0873Bm 3 4,f17a18- S 9,15304- U 2,2b29a- 5 6,63367- a ,29681803 90 b,165b2- b 2,10661- u 100b@a4n 7 2,19246-5 3,196U2= 7 1,41375= 5 29681803 91 5,bb1930 6 3,590ab- b loIn292- g 8,138b2- 7 1,53176- 9 2,S8370= 7 296!!1803 92 5,3489?011 2.82396- 8 1,S988?=12 1,99297- 8 9,3166Q=1U 8,09fl~2- 9 29b81003 93 i.132i8-t7 1.i91bU-lb @,RaORRt 0 ~,O~OOa+ 0 8,@0BflFi+ 3 O,O@OOO+ 0 29681803 9U Umaatlklklm 1 9,0t10fdn- 1 a 0 0 z 29601803 95 l.Oaf100= 1 l.flnakw+ 9 0 F1 k! 19 29681803 96 U,Z282fl- 1 2.1081b+ 0 1,11971. 1 6,58bsl= 1 l,t829b. 1 3,25994- 1 29681803 97 2,6975z- 2 t.0729b- 1 bo59bba- 3 3,b~2UfP 2 t,8020u9 3 1,?9727- 2 29681803 98 7,0Q9111w a 3,7a172m 3 1.23783- u 1,’ilbutla- 3 1,43191J- 5 3,rn8336m U ,29681803 U,*U3711a 5 lm8377ZW U !,9262UW b a,55b93- 5 l,5aa30. 6 1,30698- 5 29681803 1:: 1,13710~ 7 3.6132bO~ b 3,37506= 5 3,1L1679~ 6 b,9577b* 8 1,18609. b 29681803 101 l,t216Q- 8 1.la5U0- 7 l,7i8U3-11 1,9$637- B 8,34489B12 2,27629- 8 ,29b81803 IB2 3,13287*11 7.35785-10 OeflnnBEl+ @ 0.Be10R21+ n 0,000(40+ 0 0,000t40+ a 29681803 1L43 9,03008- 1 1.35k3@0+ @ 0 # B 3 29b818f13 ltia 1,000u@= i l.llnaOO+ 9 0 n 0 19 29681803 105 8,82611= ~ 1.B9B21+ @ a,79a26w z S,2bSb9- 1 1,9Q9u13- Z l,1592bm I ,29b131803 1!46 6.57171- 3 J026515- Z 2.78555- 3 1,16895- 2 5,65112- U U,8@5t31- 3 29681803 107 1.78337- 4 9.85003- u 9,28013- 5 5.85409- a l,79abf3- 5 2,1il!i8Bw U 2’9b81B03 108 2.a37S7* b 3.69557- 5 b09u2n3- 7 l,7b9B3- S 2,7784s= 8 2,5U538- b 29b91803 1 f19 2.9jai?6- 9 h.587ati- 7 1,07938- 9 fJ.llb38- 7 fi,52U14Vl~ 2,2277U. 7 ,29681803 110 u.5d627-13 3.42Zu2- 8 8.85773-IQ 1,98529- 6 1,9378S-17 106938U.11 ,29681803 111 ao!!77U9-10 1.666s8-11 aOOOnB@+ a 0.000flO+ 0 fl,naflfln+ 0 O,BflOBld+ O ,29681801 112 1.35aflUI+ o 1.80E10t3+ 0 0 P 0 a 29681803 113 l,0ak30n- 1 1.000nn+ 9 0 0 0 14 29b818@3 114 2.59581- a 2.72284+ B 3m76al~- 2 4,63823- 1 1,U2129- 2 1,21589- 1 29681803 115 7,!0ak18- 3 3,05U32= 2 3e5B375- s l,UtI187- 2 1,13153U- 3 6,35u00- 3 ,29b81803 llb U,26521- 5 a@Ub698- 3 8,3198R= 5 3,7Fi601- a 7,U1766- b 7867959= 5 29b816B3 117 30aba11- b u,q0359- 5 8,59748- B 6.26207- 7 l,~689Glmll 2,8@ti16ba 8 296818U3 118 i,7bS@2-i7 2.8L?bb7- 8 3,R2367w17 1.36227-11 O,flaO@(?+ 8 O,uO$@B+ 0 ,29681803 119 ● l,8ano0+ 0 2.i2f18F10+ o 0 v u 5 ,29b81803 lza l,OaBun- 1 Imarn.gnfa+ 9 P m 18 29b81833 121 1.F!26u1- 2 1.U3U17+ fl 5,a93U8= ~ 3.12S35- 1 3.27115- 3 1,167U9- 1 29b818k!3 122 A lm96glu- 3 2,0u0q3- 2 1,PJR775= 3 l,323tIJ- 2 !,21183- a Q,B7u1UW 3 29681803 123 7.2238R0 5 7.11Rb2- 4 7,97283- b 5,5b282- U 701426173- 6 l,lb59~. 4 29b81823 12a 3.87177- b 7.Z73?9- 5 U-46273- 7 J08~109- 5 l:7U93ao 8 l,J7~5b- 5 296918n3 11?5 b,32h5b- 9 2,56804- b 5.8u567-11 7.53693- 7-6.29261=12 9,a92b0- 8 29b81i3f13 12h 4,’22356-11 2.8!962- 8 2,19Q57-16 i!.97386~ 8 1,11162-17 9.7f1859-li ,29b818P3 127 2.23~a0+ 0 2.bH2Zn+ ~ a 0 @ 6 ,~9b818P3 lt28

40 129 13U !31 132 1s3 154 135 136 137 138 139 llJ’J 141 142 1U3 144 j 45 1(J6 147 148 149 15P 151 152 153 15U 155 156 157 158 159 lbFI 161 162 163 16/4 i65 106 lb7 168 !6?

172 173 1

41 REFERENCES

1. P. G. Young and E. D. Arthur, “GNASH, A Preequilibrium, Statistical Nuclear- Model Code for Calculation of Cross Sections and Emission Spectra,” Los Alamos Scientific Laboratory report LA-6947 (1977).

2. C. Kalbach “The Griffin Model, Complex Particles, and Direct Nuclear Reac- tions, “Z.’Phys. A283, 401 (1977).

3. C. M. Perey and F. G. Perey, “Compilation of Phenomenological Optical Model Parameters 1954-1975,” Atomic Data and Nucl. Data Tables 17, ~ (1976). [Neutrons: Wilmore-Hodgson (14-40 MeV); Bechetti-Greenlees (40-100 MeV). Protons: Bechetti-Greenlees. Deuterons: Perey. Alphas: results from a +3’ K as listed in the compilation.]

40 J. Wilhelmy, Los AlarnosScientific Laboratory, personal communication.

5. E. D. Arthur and P. G. Young, “Neutron Cross Sections for and Titan- ium Isotopes,” in “’’AppliedNuclear Data Research and Development April 1- June 30, 1977,” compiled by C. I. Baxman and P. G. Young, Los Alamos Scien- tific Laboratory report LA-6971-PR, p. 6 (1977).

6. C. M. Perey and F. G. Perey, “Compilation of Phenomenological Optical Model Parameters 1954-1975,” Atomic Data and Nucl. Data Tables 17, ~ (1976).

7. C. H. Johnson, A. Galonsky, and R. L. Kernell, “Anomalous Optical Model Potential for Sub-Coulomb Protons for 89 < A < 130,” Phys. Rev. Lett. —39 1604 (1977). 89 89 8. C. H. Johnson, R. L. Kernell, and S. Ramavataram, “The Y(p,n) ZR Cross Section Near the First Two Analogue Resonances,” Nucl. Phys. A107, 21 (1968).

9. Ch. Lagrange, “Optical Model Parameterization between 10 keV and 20 MeV-- 89Y and 93 Application to the Nb Spherical Nuclei,” Presented at the National Soviet Conference on Neutron Physics (1975).

10. J. Delaroche, G. Haouat, R. Shamu, J. Lachkar, M. Patin, J. Sigaud, and J. Chardine, “Study of Even-Even Tungsten Isotopes by Neutron Scattering,” Proc. of the National Conf. on Neutron Physics, Kiev (1977).

11. P. T. Guenther, “The Elastic and Inelastic Scattering of Fast Neutrons from the Even Isotopes of Tungsten,” Ph.D. thesis (1977).

12 ● J. Frehaut, Bruy&res-le-Ch~tel, private communication (1978).

13, C. L. Dunford, “A Unified Model for Analysis of Compound Nucleus Reactions,” “ Atomics International report AI-AEC-12931 (July 15, 1970). . 14. H. Rebel and G. W. Schweimer, “Improved Version of Tamura’s Code for Coupled- Channel Calculations: JUPITOR Karlsruhe Version,” Gesellschatt fur Kernfor- schung M.B.H. report K.F.K. 133 (Feb. 1971).

42 15. D. Madland, “Neutron Optical Potential for Uranium Isotopes,” in “Applied Nuclear Data Research and Development July 1 - September 30, 1977,’’compiled by C. I. Baxman and P. G. Young, Los Alamos Scientific Laboratory report LA-7066-PR, p. 12 (Dec. 1977).

16. G. F. Auchampaugh, J. M. Farrell, and D. W. Bergen, “Neutron-Induced Fission 242 244PU Cross Sections of Pu and s“ Nuc1. Phys. A171, 31 (1971).

17. J. W. Behrens, R. S. Newbury, and J. W. Magana, “Measurements of the Neutron- 240PU 242PU and 244PU Relative to 235 Induced Fission Cross Sections for u from 0.1 to 30 MeV,” Nucl. Sci. Eng. 6&,’433 (1678).

18. M. Bhat, Brookhaven National Laboratory, personal communication (1977).

19. D. W. Bergen and R. R. Fullwood, “Neutron Induced Fission Cross Section of 242PU s“ Nuc1. Phys. A163, 577 (1971). 242 20. D. K. Butler, “Neutron Induced Fission Cross Sections of Pu from 0.1 to 1.5 MeV,” Bull. Am. Phys. Sot. ~, 234 (1959).

21. E. F. Formushkin, E. K. Gutnikova, Yu. S. Zamustrin, B. K. Moslennikov, V. N. Belov, V. M. Surin, F. Nasyrov, and N. F. Paskin, “Cross Sections and Fragment Angular Anisotropy in Fast-Neutron Fission of Some Isotopes of , , and Currium,” Yad. Fiz. [Sov. J. Nucl. Phys.] ~, 689 (1967).

22. E. F. Formushkin and E. F. Gutnikova, “Cross-Sections and Angular Distribu- 238PU 242PU and 241 - tions of Fragments in the fission of Am by Neutrons of Energy of 0.45-3.6 MeV,” International Nuc~ear Data Committee report INDC (CCP)-7/u, p. 28 (1970).

23. J. Terrell, “Prompt Neutrons from Fission,” Proc. of the IAEA Symposium on the Physics and Chemistry of Fission, Salzburg (1965).

24. F. Mann and R. E. Schenter, “HEDL Evaluation of Actinide Cross Sections for ENDF/B-V,” Hanford Engineering Development Laboratory report HEDL-TME-77-54 (1977).

25. R. J. Howerton, D. E. Cullen, R. C. Haight, M. H. MacGregor, S. T. Perkins, and E. F. Plechaty, “The LLL Evaluated Nuclear Data Library (ENDL) Evaluation Techniques, Reaction Index and Descriptions of Individual Evaluations,” Lawrence Livermore Laboratory report UCRL-50400, Vol. 15 (1975).

26. H. Alter and C. Dunford, Brookhaven National Laboratory, personal communica- tion (1974).

27. F. Manero and V. A. Konshin, “Status of the Energy Dependent ~-Values for the Heavy Isotopes (Z > 90) from Thermal to 15 MeV and of v-Values for Spontaneous Fission,” Atomic Energy Reviewg, 637 (1972).

43 28. R. W. Hockenbury, A, J. Sanislo, and N. N, Kauehal, “ke’VCapture Cross Sec- 242 tion of Pu,” in Nuclear Cross Sections and Technology Volume II, NBS Special Publication 425, p. 584 (1975).

29. D. Drake, Los Alamos Scientific Laboratory, personal communication (1978).

30. C. E. Bemis, F. K. McGowan, J. L. C. Ford, W. T. Milner, P. H. Stelson, and R. L. Robinson, “E2 and E4 Transition Moments and Equilibrium Deformation in the Actinide Nuclei,” Phys. Rev. ~, 1466 (1973).

31. David L. Hill and J. A. Wheeler, “Nuclear Constitution and the Interpreta- tion of Fission Phenomena,” Phys. Rev. 89, 1102 (1953).

32. D. G. Madland, Los Alamos Scientific Laboratory, personal communication (1978).

33. B. B. Back, H. C. Britt, O. Hansen, B. Leroux, and J. D. Garrett, “Fission of Odd-A and Doubly Odd Actinide Nuclei Induced by Direct Reactions,” Phys. Rev. C1O, 1948 (1974).

34. C. Kalbach, “The Griffin Model, Complex Particles and Direct Nuclear Reac- tions,” Z. Phys. A283, 401 (1977). -

35. B. Leugers, S. Cierjacks, P. Brotz, D. Erbe, D. Groschel, G. Schmalz, and 235 238 F. Voss, “The U and U Neutron-Induced Fission Cross Section Relative to the H(n,p) Cross Section,” Argonne National Laboratory report ANL-76-90, p. 246 (1976).

36. Leona Stewart, “Hydrogen and Helium Production Cross Sections for ENDF/B-V,” Trans. Am. Nucl. Sot. ~, 740 (1978).

37. R. B. Kidman and R. E. MacFarlane, “LIB-IV, A Library of Group Constants for Nuclear Reactor Calculations,” Los Alamos Scientific Laboratory report 1.&6260-MS (1976).

38. C. R. Weisbin, P. D. Soran, R. E. MacFarlane, D. R. Harris, R. J. LaBauve, J. S. Hendricks, J. E. White, and R. B. Kidman, “MINX, A Multigroup Inter- pretation of ~uclear ~-Sections from ENDF/B.” Los Alamos ~cientific ~abora- tory report LA-6486–MS (1976).

39. D. Garber, Ed., “Data Formats and Procedures for the ENDF Neutron Cross Sec- tion Library,” Brookhaven National Laboratory report BNL-50274 (1976).

40. H. Alter, R. B. Kidman, R. LaBauve, R. Protsik, and B. A. Zolatar, “ENDF-202 Cross Section Evaluation Working Group Benchmark Specifications,” Brookhaven National Laboratory report BNL-19302 (1974). *

41. R. B. Kidman, “ENDF/B-IV, LIB-IV, and CSEWG Benchmarks,” Los Alamos Scien- tific Laboratory report LA-7355-MS (July 1978). *

42. R. E. MacFarlane, “Data Processing for Power Reactor Fuel Cycle Codes,” Proc. of the BNL/EPRI Seminar on Nuclear Data for Thermal Reactor Applica- tions at Brookhaven National Laboratory (May 1978).

44 43. EPRI-CPM is part of the proprietary Advanced Recycle Methods Program (ARM?) developed for the Electric Power Research Institute (EPRI) by Nuclear Asso- ciates International and AB Atomenergie, Studsvik. Additional information can be obtained from EPRI.

44. A. S. Jensen and T. J. Dossing, “Statistical Calculation of the Mass Distri- bution in Fission,” in Proc. of the Third International Atomic Energy Sympo- sium on the Physics and Chemistry of Fission, Rochester, 1973, Vol. I, p. 409.

45. R. E. Pepping, D. G. Madland, C. W. Maynard, T. R. England, and P. G. Young, “Fission Yield Theory,” in “Applied Nuclear Data Research and Development January l-March 31, 1978,” compiled by C. I. Baxman and P. G. Young, Los Alamos Scientific Laboratory report LA-7301-PR, p. 12 (June 1978).

46. H. G. Clerc, “The Influence of Pairing and Nuclear Structure on the Thermal 235U ,, Neutron Induced Fission of Institut fur Kernphysik Technische Hochschule Darmstadt report IKD~ 75/10 (June 1975).

47. B. L. Wehring, University of Illinois, personal communication.

48. R. E. Pepping, D. G. Madland, C. W. Maynard, T. R. England, and P. G. Young, “Fission-Yield Theory,” in “Applied Nuclear Data Research and Development July l-September 30, 1978,” compiled by C. 1. Baxman and P. G. Young, Los Alamos Scientific Laboratory report LA-7066-PR, p. 24 (December 1977).

49. L. G. Moretto, “Statistical Description of Deformation in Excited Nuclei and Disappearance of Shell Effects with Excitation Energy,” Nucl. Phys. A182, 641 (1972).

50. T. R. England, R. E. Schenter, and F. Schmittroth, “Integral Decay-Heat Measurements and Comparisons to ENDF/B-IV and V,” Los Alamos Scientific Laboratory report LA-7422-MS (NUREG/CR-0305) (1978).

51. T. R. England and M. G. Stamatelatos, “Comparisons of Calculated and Exper- imental Delayed Fission-Product Beta and Gamma Spectra from 235U,” Los Alamos Scientific Laboratory report LA-NUREG-6846-MS (July 1977).

52. W. B. Wilson and T. R. England, “Status of Fission-Product Data For Absorp- tion Calculations,” Proc. of the Seminar on Nuclear Data Problems for Thermal Reactor Problems, Brookhaven National Laboratory (May 1978).

53. R. J. LaBauve and T. R. England, “Rapid Spectral and Decay-Heat Calculations Using Processed ENDF/B Fission Product Data,” Trans. Am. Nucl. Sot. —28, 749 (1978). .

45