Hardware and Software Support for High Performance Computing TIN2007-67537-C03

Total Page:16

File Type:pdf, Size:1020Kb

Hardware and Software Support for High Performance Computing TIN2007-67537-C03 Jornada de Seguimiento de Proyectos, 2010 Programa Nacional de Tecnolog´ıasInform´aticas Hardware and Software Support for High Performance Computing TIN2007-67537-C03 Javier D´ıazBruguera ∗ Ram´onDoallo Biempica y Universidad de Santiago de Compostela Universidad de A Coru~na Abstract The objectives of this project are a continuation of the results obtained during the de- velopment of the project TIN2004-07797-C02. Taking these results as our starting point, we have dealt with new objectives, some of them oriented to solve the new challenges that arise with the installation of the Finisterrae supercomputer at CESGA (Galician Supercomputing Center) in 2007. The objectives are organized into three main areas: (1) Performance and programmability improvement of HPC systems, improving the function- ality of HPC systems, with special focus on irregular codes, exploring two approaches, analytical modelling, and runtime solutions. (2) Software tools for HPC and Grid facili- ties, developing middleware for system management of the Finisterrae supercomputer and Grid environments. (3) Performance improvement for multimedia applications and general purpose processors, where we tackle the design of algorithms and architectures for video compression, real time visualization and functional units of general purpose processors. Keywords: High performance computing, Grid computing, Constellation architecture, multicore and multithreaded processors, efficient software. 1 Objectives of the project It has to be pointed out that the project proposal comprised three subprojects and research groups: USC, UDC and CESGA; however, the project was finally approved with only of the three subprojects, USC and UDC. This have affected to some of the objectives Then, two groups have been involved in this proposal, the Computer Architecture Group at the University of Santiago de Compostela (USC Group) and the Computer Architecture Group at the University of A Coru~na(UDC Group). As global background, the project we propose is a continuation of the research lines being developed by the USC and UDC groups in the last years about High performance computing, both at the hardware side and at the software side. The objectives are organized into three main areas: 1. Improvement of the performance and programmability of HPC systems. The main concern of this part of the project is to improve the functionality of HPC systems, with ∗Email: [email protected] yEmail: [email protected] TIN2007-67537-C03 special focus on irregular codes. We organized the proposal into two main topics: the char- acterization of irregular codes, combining compiler and run-time techniques, and the study of the functionalities of PGAS languages as an efficient alternative for constellation architectures (like Finisterrae). (a) Compiler and Run-time support for performance analysis and optimization of irregular codes. We explore two approaches to deal with their complexity: analytical modeling, and runtime solutions such as inspector/executor. Both approaches require compiler support for an- alyzing these complex codes. This support will be provided by XARK (http://xark.des.udc.es), a compiler framework developed by the UDC Group [4]. (b) Analysis and improvement of performance and programmability in HPC systems using PGAS approaches. The objectives of this line are: (1) to compare the programmability and performance using traditional approaches versus PGAS languages, (2) to propose performance optimizations and programmability enhancements by means of PGAS language extensions and/or libraries, and (3) to extend the usability and performance features of the HTA for the programming of hybrid systems such as constellation architectures. 2. Software tools for HPC and GRID facilities. The understanding and characterization of the performance of Grid applications and the accurate simulation of Grid systems is one of the focus of this research line. (a) Management of large-scale HPC facilities. The research lines proposed in this new project take advantage of the results achieved in the previous MEC project. Specifically, the first goal is to use AdCIM [27] to develop customized and integrated system administration applications for the Finisterrae constellation architecture and for Grid. Objectives related to the application of AdCIM and one of them "Application of the AdCIM framework for the systematic development of customized tools for selected administration domains of CESGA supercomputers", cannot not be carried out since CESGA subproject was not funded, and the staff and infrastructure of CESGA was essential for the achievement of this objective. (b) Fault tolerance of high-performance applications. In the frame of the previous MEC project a tool named CPPC (Controller/Precompiler for Portable Checkpointing) has been developed [23]. In this project we continue the development of the CPPC tool to achieve the complete automation of the process, so that the tool makes a source-to-source transformation of a MPI code in a fault-tolerant one by inserting the necessary functions of the library in safe points. (c) Software support for performance characterization and optimization of Grid applications. We propose to study the optimization of Grid resources to execute massively computational applications efficiently. Therefore, we consider the Grid as a huge computing system to execute very time-consuming applications. To deal with this topic, some objectives will be considered: the understanding and characterization of the performance of these applications in Grids, the accurate simulation of Grid systems to reproduce real executions, and the improvement of the performance of the execution of these HPC applications. 3. Hardware for multimedia and general purpose processors. We tackle the im- plementation of video compression algorithms on programmables processors, exploiting the parallelism provided by the organization of the processors. On the other hand, we focus on the TIN2007-67537-C03 design of improved algorithms and architectures for the computation of essential operations for multimedia and other applications. (a) Algorithms and architectures for multimedia. We focus on processor with EPIC and VLIW architectures. These processors provide instruction level parallelism and require efficient pro- gramming methodologies to exploit the SIMD programming paradigm, multithreading, the software pipelining and memory hierarchy. We will implement the video compression algo- rithms in those architectures. An special effort is done on the development of new algorithms for motion estimation. Moreover, we have addressed the design of units for real time visual- ization for various applications. (b) Design of functional units for general-purpose processors. Our goal in this project is to improve even more the implementation of essential operations, as square root and inverse square root, developing multiplicative algorithms with reduced latency. Computations related with multimedia are error sensitive. That means, that small errors can propagate and result in large final errors; then we propose the use of error estimates that could help to obtain more reliable results. Another topic addressed in the project is the design of decimal floating-point hardware 2 Level of success achieved in the project It has to be pointed out that the project proposal comprised three subprojects and research groups: USC, UDC and CESGA; however, the project was finally approved with only of the three subprojects, USC and UDC. This might have affected to the level of success of some of the objectives, but most of the objectives has been addressed. The two groups finally participating in the project have a strong research collaboration for many years. In fact there several topics that are being developed by teams composed of members of both groups. In any case, it is clear that the research interest of both groups are complementary. In order to understand how the objectives of the project are being deal with, we indicate for every objective in the previous section the level of success and the group involved in its development. Note that in the technical memory of the project the objectives were decomposed in a set of more detailed subobjectives or tasks, that for space reasons are not listed here. We strongly recommend to see these tasks in the technical memory. For every topic a few representative publications are included, although there are other publications not referenced here. Most outstanding results are: 1. Improvement of the performance and programmability of HPC systems (a) Compiler and Run-time support for performance analysis and optimization of irregular codes (UDC, USC). This objective had several tasks: (1) extension of XARK, (2) analysis and optimization of complex memory hierarchies, and (3) run-time characterization and perfor- mance improvement of parallel irregular codes. The XARK compiler framework (http://xark.des.udc.es) developed by the Computer Ar- chitecture Group of the UDC has been extended. In this part of the project two main research lines have been conducted. The main contribution of the first research line is the formaliza- tion of a recognition algorithm that enables to build a hierarchical representation of a pro- gram using the concept of computational kernel. This hierarchical representation provides an TIN2007-67537-C03 optimizing compiler with relevant information for improving the performance of a program on general-purpose parallel architectures (e.g., multi-core processors) and on specific-purpose parallel architectures
Recommended publications
  • Soluciones Para Entornos HPC
    Soluciones para entornos HPC Dr. Abel Francisco Paz Gallardo. IT Manager / Project Leader @ CETA-Ciemat [email protected] V Jornadas de Supercomputación y Avances en Tecnología CETA-Ciemat/ Noviembre 2012 Soluciones para entornos HPC Abel Francisco Paz Gallardo EXTREMADURA RESEARCH CENTER FOR ADVANCED TECHNOLOGIES INDICE 1 HPC… ¿Qué? ¿Cómo? . 2 Computación. (GPGPU,. UMA/NUMA,. etc.) 3 Almacenamiento en HPC . 4 Gestión de recursos . Soluciones para entornos HPC CETA-Ciemat/ Noviembre 2012 Soluciones para entornos HPC Abel Francisco Paz Gallardo 2 EXTREMADURA RESEARCH CENTER FOR ADVANCED TECHNOLOGIES 1 HPC… ¿Qué? ¿Cómo? ¿Qué? o HPC – High Performance Computing (Computación de alto rendimiento) o Objetivo principal: Resolución de problemas complejos ¿Cómo? Tres pilares fundamentales: o Procesamiento = Cómputo o Almacenamiento o Gestión de recursos HPC = + + CETA-Ciemat/ Noviembre 2012 Soluciones para entornos HPC Abel Francisco Paz Gallardo EXTREMADURA RESEARCH CENTER FOR ADVANCED TECHNOLOGIES 2 Computación (GPGPU, NUMA, etc.) ¿Qué es una GPU? Primera búsqueda en 2006: - Gas Particulate Unit Unidad de partículas de gas ¿? GPU = Graphics Processing Unit (Unidad de procesamiento gráfico). CETA-Ciemat/ Noviembre 2012 Soluciones para entornos HPC Abel Francisco Paz Gallardo EXTREMADURA RESEARCH CENTER FOR ADVANCED TECHNOLOGIES 2 Computación (GPGPU, NUMA, etc.) La cuestión es… Si una GPU en un videojuego procesa miles de polígonos, texturas y sombras en tiempo real… ¿Por qué no utilizar esta tecnología para procesamiento de datos? CETA-Ciemat/
    [Show full text]
  • Application-Level Fault Tolerance and Resilience in HPC Applications
    Doctoral Thesis Application-level Fault Tolerance and Resilience in HPC Applications Nuria Losada 2018 Application-level Fault Tolerance and Resilience in HPC Applications Nuria Losada Doctoral Thesis July 2018 PhD Advisors: Mar´ıaJ. Mart´ın Patricia Gonz´alez PhD Program in Information Technology Research Dra. Mar´ıaJos´eMart´ınSantamar´ıa Dra. Patricia Gonz´alezG´omez Profesora Titular de Universidad Profesora Titular de Universidad Dpto. de Ingenier´ıade Computadores Dpto. de Ingenier´ıade Computadores Universidade da Coru~na Universidade da Coru~na CERTIFICAN Que la memoria titulada \Application-level Fault Tolerance and Resilience in HPC Applications" ha sido realizada por D~na.Nuria Losada L´opez-Valc´arcelbajo nuestra direcci´onen el Departamento de Ingenier´ıade Computadores de la Universidade da Coru~na,y concluye la Tesis Doctoral que presenta para optar al grado de Doctora en Ingenier´ıaInform´aticacon la Menci´onde Doctor Internacional. En A Coru~na,a 26 de Julio de 2018 Fdo.: Mar´ıaJos´eMart´ınSantamar´ıa Fdo.: Patricia Gonz´alezG´omez Directora de la Tesis Doctoral Directora de la Tesis Doctoral Fdo.: Nuria Losada L´opez-Valc´arcel Autora de la Tesis Doctoral A todos los que lo hab´eishecho posible. Acknowledgments I would especially like to thank my advisors, Mar´ıaand Patricia, for all their support, hard work, and all the opportunities they've handed me. I consider my- self very lucky to have worked with them during these years. I would also like to thank Gabriel and Basilio for their collaboration and valuable contributions to the development of this work. I would like to say thanks to all my past and present colleagues in the Computer Architecture Group and in the Faculty of Informatics for their fellowship, support, and all the coffee breaks and dinners we held together.
    [Show full text]
  • Enabling the Deployment of Virtual Clusters on the VCOC Experiment of the Bonfire Federated Cloud
    CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization Enabling the Deployment of Virtual Clusters on the VCOC Experiment of the BonFIRE Federated Cloud Raul Valin, Luis M. Carril, J. Carlos Mouri˜no, Carmen Cotelo, Andr´es G´omez, and Carlos Fern´andez Supercomputing Centre of Galicia (CESGA) Santiago de Compostela, Spain Email: rvalin,lmcarril,jmourino,carmen,agomez,[email protected] Abstract—The BonFIRE project has developed a federated OpenCirrus. BonFIRE offers an experimenter control of cloud that supports experimentation and testing of innovative available resources. It supports dynamically creating, updat- scenarios from the Internet of Services research community. ing, reading and deleting resources throughout the lifetime Virtual Clusters on federated Cloud sites (VCOC) is one of the supported experiments of the BonFIRE Project whose main of an experiment. Compute resources can be configured with objective is to evaluate the feasibility of using multiple Cloud application-specific contextualisation information that can environments to deploy services which need the allocation provide important configuration information to the virtual of a large pool of CPUs or virtual machines to a single machine (VM); this information is available to software user (as High Throughput Computing or High Performance applications after the machine is started. BonFIRE also Computing). In this work, we describe the experiment agent, a tool developed on the VCOC experiment to facilitate the supports elasticity within an experiment, i.e., dynamically automatic deployment and monitoring of virtual clusters on create, update and destroy resources from a running node of the BonFIRE federated cloud. This tool was employed in the experiment, including cross-testbed elasticity.
    [Show full text]
  • Efficient Multithreaded Untransposed, Transposed Or Symmetric Sparse
    Efficient Multithreaded Untransposed, Transposed or Symmetric Sparse Matrix-Vector Multiplication with the Recursive Sparse Blocks Format Michele Martonea,1,∗ aMax Planck Society Institute for Plasma Physics, Boltzmannstrasse 2, D-85748 Garching bei M¨unchen,Germany Abstract In earlier work we have introduced the \Recursive Sparse Blocks" (RSB) sparse matrix storage scheme oriented towards cache efficient matrix-vector multiplication (SpMV ) and triangular solution (SpSV ) on cache based shared memory parallel computers. Both the transposed (SpMV T ) and symmetric (SymSpMV ) matrix-vector multiply variants are supported. RSB stands for a meta-format: it recursively partitions a rectangular sparse matrix in quadrants; leaf submatrices are stored in an appropriate traditional format | either Compressed Sparse Rows (CSR) or Coordinate (COO). In this work, we compare the performance of our RSB implementation of SpMV, SpMV T, SymSpMV to that of the state-of-the-art Intel Math Kernel Library (MKL) CSR implementation on the recent Intel's Sandy Bridge processor. Our results with a few dozens of real world large matrices suggest the efficiency of the approach: in all of the cases, RSB's SymSpMV (and in most cases, SpMV T as well) took less than half of MKL CSR's time; SpMV 's advantage was smaller. Furthermore, RSB's SpMV T is more scalable than MKL's CSR, in that it performs almost as well as SpMV. Additionally, we include comparisons to the state-of-the art format Compressed Sparse Blocks (CSB) implementation. We observed RSB to be slightly superior to CSB in SpMV T, slightly inferior in SpMV, and better (in most cases by a factor of two or more) in SymSpMV.
    [Show full text]
  • Searching for Genetic Interactions in Complex Disease by Using Distance Correlation
    Searching for genetic interactions in complex disease by using distance correlation Fernando Castro-Prado, University and Health Research Institute of Santiago de Compostela, Spain. E-mail: [email protected] Javier Costas Health Research Institute of Santiago de Compostela, Spain. and Wenceslao González-Manteiga and David R. Penas University of Santiago de Compostela, Spain. Summary. Understanding epistasis (genetic interaction) may shed some light on the ge- nomic basis of common diseases, including disorders of maximum interest due to their high socioeconomic burden, like schizophrenia. Distance correlation is an association measure that characterises general statistical independence between random variables, not only the linear one. Here, we propose distance correlation as a novel tool for the detection of epistasis from case-control data of single nucleotide polymorphisms (SNPs). This approach will be developed both theoretically (mathematical statistics, in a context of high-dimensional statistical inference) and from an applied point of view (simulations and real datasets). Keywords: Association measures; Distance correlation; Epistasis; Genomics; High- dimensional statistical inference; Schizophrenia 1. Introduction The application field that motivates the present article is going to be explained here- inafter. The starting point is a genomic problem, whose importance and interest will be addressed. In addition, the state of the art on this field of knowledge will be sum- marised; underscoring one of the most recent techniques, which has a strong theoretical basis. Upon this, some hypotheses will be made. arXiv:2012.05285v1 [math.ST] 9 Dec 2020 1.1. Epistasis in complex disease The role of heredity in psychiatry has been studied for almost a century, with Pearson (1931) not having “the least hesitation” in asserting its relevance.
    [Show full text]
  • Enabling Rootless Linux Containers in Multi-User Environments: the Udocker Tool
    DESY 17-096 Enabling rootless Linux Containers in multi-user environments: the udocker tool Jorge Gomes1, Emanuele Bagnaschi2, Isabel Campos3, Mario David1, Lu´ısAlves1, Jo~aoMartins1, Jo~aoPina1, Alvaro L´opez-Garc´ıa3, and Pablo Orviz3 1Laborat´oriode Instrumenta¸c~aoe F´ısicaExperimental de Part´ıculas(LIP), Lisboa, Portugal 2Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg, Germany 3IFCA, Consejo Superior de Investigaciones Cient´ıficas-CSIC,Santander, Spain June 5, 2018 Abstract Containers are increasingly used as means to distribute and run Linux services and applications. In this paper we describe the architectural design and implementation of udocker, a tool which enables the user to execute Linux containers in user mode. We also present a few practical applications, using a range of scientific codes characterized by different requirements: from single core execution to MPI parallel execution and execution on GPGPUs. 1 Introduction Technologies based on Linux containers have become very popular among soft- ware developers and system administrators. The main reason behind this suc- cess is the flexibility and efficiency that containers offer when it comes to pack- ing, deploying and running software. A given software can be containerized together with all its dependencies in arXiv:1711.01758v2 [cs.SE] 1 Jun 2018 such a way that it can be seamlessly executed regardless of the Linux distribution used by the designated host systems. This is achieved by using advanced features of modern Linux kernels [1], namely control groups and namespaces isolation [2, 3]. Using both features, a set of processes can be placed in a fully isolated environment (using namespaces isolation), with a given amount of resources, such as CPU or RAM, allocated to it (using control groups).
    [Show full text]
  • Potential Use of Supercomputing Resources in Europe and in Spain for CMS (Including Some Technical Points)
    Potential use of supercomputing resources in Europe and in Spain for CMS (including some technical points) Presented by Jesus Marco (IFCA, CSIC-UC, Santander, Spain) on behalf of IFCA team, And with tech contribution from Jorge Gomes, LIP, Lisbon, Portugal @ CMS First Open Resources Computing Workshop CERN 21 June 2016 Some background… The supercomputing node at the University of Cantabria, named ALTAMIRA, is hosted and operated by IFCA It is not large (2500 cores) but it is included in the Supercomputing Network in Spain, that has quite significant resources (more than 80K cores) that will be doubled along next year. As these resources are granted on the basis of the scientific interest of the request, CMS teams in Spain could directly benefit of their use "for free". However the request needs to show the need for HPC resources (multicore architecture in CMS case) and the possibility to run in a “existing" framework (OS, username/passw. access, etc.). My presentation aims to cover these points and ask for experience from other teams/experts on exploiting this possibility. The EU PRACE initiative joins many different supercomputers at different levels (Tier-0, Tier-1) and could also be explored. Evolution of the Spanish Supercomputing Network (RES) See https://www.bsc.es/marenostrum-support-services/res Initially (2005) most of the resources were based on IBM-Power +Myrinet Since 2012 many of the centers evolved to use Intel x86 + Infiniband • First one was ALTAMIRA@UC: – 2.500 Xeon E5 cores with FDR IB to 1PB on GPFS • Next: MareNostrum
    [Show full text]
  • Design of Scalable PGAS Collectives for NUMA and Manycore Systems
    Design of Scalable PGAS Collectives for NUMA and Manycore Systems Damian´ Alvarez´ Mallon´ Ph.D. in Information Technology Research University of A Coru~na,Spain Ph.D. in Information Technology Research University of A Coru~na,Spain Doctoral Thesis Design of Scalable PGAS Collectives for NUMA and Manycore Systems Dami´an Alvarez´ Mall´on October 2014 PhD Advisor: Guillermo L´opez Taboada Dr. Guillermo L´opez Taboada Profesor Contratado Doctor Dpto. de Electr´onicay Sistemas Universidade da Coru~na CERTIFICA Que la memoria titulada \Design of Scalable PGAS Collectives for NUMA and Manycore Systems" ha sido realizada por D. Dami´an Alvarez´ Mall´onbajo mi di- recci´onen el Departamento de Electr´onicay Sistemas de la Universidade da Coru~na (UDC) y concluye la Tesis Doctoral que presenta para optar al grado de Doctor por la Universidade da Coru~nacon la Menci´onde Doctor Internacional. En A Coru~na,a Martes 10 de Junio de 2014 Fdo.: Guillermo L´opez Taboada Director de la Tesis Doctoral A todos/as os/as que me ensinaron algo Polo bo e polo malo Acknowledgments Quoting Isaac Newton, but without comparing me with him: \If I have seen further it is by standing on the shoulders of giants". Specifically, one of the giants whose shoulder I have found particularly useful is my Ph.D. advisor, Guillermo L´opez Taboada. His support and dedication are major factors behind this work, and it would not exist without them. I cannot forget Ram´onDoallo and Juan Touri~no, that allowed me become part of the Computer Architecture Group.
    [Show full text]
  • Finisterrae: Memory Hierarchy and Mapping
    galicia supercomputing center Applications & Projects Department FinisTerrae: Memory Hierarchy and Mapping Technical Report CESGA-2010-001 Juan Carlos Pichel Tuesday 12th January, 2010 Contents Contents 1 1 Introduction 2 2 Useful Topics about the FinisTerrae Architecture 2 2.1 Itanium2 Montvale Processors . .2 2.2 CPUs Identification . .3 2.3 Coherency Mechanism of a rx7640 node . .4 2.4 Memory Latency . .5 3 Linux NUMA support 6 3.1 The libnuma API.........................................7 3.2 Using numactl in the FinisTerrae ..............................7 3.3 Effects of using explicit data and thread placement . .8 References 11 Technical Report CESGA-2010-001 January / 2010 1 Figure 1: Block diagram of a Dual-Core Intel Itanium2 (Montvale) processor. 1 Introduction In this technical report some topics about the Finisterrae architecture and its influence in the per- formance are covered. In Section 2 a brief description of the Itanium2 Montvale processors is provided. Additionally to this, a method for identifying the CPUs is explained. At the end of this section the mem- ory coherency mechanism of a FinisTerrae node is detailed. Section 3 deals with the tools provided by the Linux kernel to support NUMA architectures. An example of the benefits of using these tools in the FinisTerrae for the sparse matrix-vector product (SpMV) kernel is shown. 2 Useful Topics about the FinisTerrae Architecture FinisTerrae supercomputer consists of 142 HP Integrity rx7640 nodes [1], with 8 1.6GHz Dual-Core Intel Itanium2 (Montvale) processors and 128 GB of memory per node. Additionally, there is a HP Integrity Superdome with 64 1.6GHz Dual-Core Intel Itanium2 (Montvale) processors and 1 TB of main memory (not considered in this report).
    [Show full text]
  • The Udocker Tool
    Computer Physics Communications 232 (2018) 84–97 Contents lists available at ScienceDirect Computer Physics Communications journal homepage: www.elsevier.com/locate/cpc Enabling rootless Linux Containers in multi-user environments: The udocker tool Jorge Gomes a,*, Emanuele Bagnaschi b, Isabel Campos c, Mario David a, Luís Alves a, João Martins a, João Pina a, Alvaro López-García c, Pablo Orviz c a Laboratório de Instrumentação e Física Experimental de Partículas (LIP), Lisboa, Portugal b Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg, Germany c IFCA, Consejo Superior de Investigaciones Científicas-CSIC, Santander, Spain article info a b s t r a c t Article history: Containers are increasingly used as means to distribute and run Linux services and applications. In this Received 25 January 2018 paper we describe the architectural design and implementation of udocker, a tool which enables the user Received in revised form 28 May 2018 to execute Linux containers in user mode. We also present a few practical applications, using a range Accepted 31 May 2018 of scientific codes characterized by different requirements: from single core execution to MPI parallel Available online 6 June 2018 execution and execution on GPGPUs. ' 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license Keywords: Linux containers (http://creativecommons.org/licenses/by/4.0/). HPC on cloud Virtualization Phenomenology QCD Biophysics 1. Introduction Technologies based on Linux containers have become very popular among software developers and system administrators. The main reason behind this success is the flexibility and efficiency that containers offer when it comes to packing, deploying and running software.
    [Show full text]
  • RES Supercomputers
    La RES: una oportunidad XXVI Jornadas de Investigación de las Universidades Españolas Josep M. Martorell, PhD BSC – CNS Associate Director 11/2018 The evolution of the research paradigm • Numerical Reduce expense • Avoid suffering simulation and • Help to build knowledge where Big Data analysis experiments are impossible or not affordable HPC: An enabler for all scientific fields Materials, Engineering Astro, Chemistry & High Energy Nanoscience & Plasma Physics Advances leading to: Life Sciences • Improved Healthcare Earth & Medicine Sciences • Better Climate Forecasting • Superior Materials • More Competitive Industry ALYA RED Biomechanics: Respiratory system Wind Farms Simulation Barcelona Supercomputing Center Centro Nacional de Supercomputación BSC-CNS objectives Supercomputing services R&D in Computer, PhD program, to Spanish and Life, Earth and Technology Transfer, EU researchers Engineering Sciences public engagement Spanish Government 60% BSC-CNS is a consortium Catalan Government 30% that includes Univ. Politècnica de Catalunya (UPC) 10% People Data as of October 31, 2018 BSC Resources 2017 executed budget Distributed Supercomputing Infrastructure 26 members, including 5 Hosting Members (Switzerland, France, Germany, Italy and Spain) Hazel Hen JUWELS 652 scientific projects enabled SuperMUC 110 PFlops/s of peak performance on Curie 7 world-class systems >11.500 people trained by 6 PRACE Piz Daint Advanced Training Centers and others events Marconi MareNostrum Access prace-ri.eu/hpc-acces RES: HPC Services for Spain RES now made up of thirteen supercomputers Finis Terrae II, Centro de Supercomputación de Galicia (CESGA); Pirineus, Consorcio de Servicios Universitarios de Cataluña (CSUC); Lusitania, Fundación Computación y Tecnologías Avanzadas de Extremadura; Caléndula, Centro de Supercomputación de Castilla y León,y Cibeles, Universidad Autónoma de Madrid Access www.res.es RES: HPC Services for Spain •The RES was created in 2006.
    [Show full text]
  • Design of Scalable PGAS Collectives for NUMA and Manycore Systems
    Design of Scalable PGAS Collectives for NUMA and Manycore Systems Damian´ Alvarez´ Mallon´ Ph.D. in Information Technology Research University of A Coru~na,Spain Ph.D. in Information Technology Research University of A Coru~na,Spain Doctoral Thesis Design of Scalable PGAS Collectives for NUMA and Manycore Systems Dami´an Alvarez´ Mall´on October 2014 PhD Advisor: Guillermo L´opez Taboada Dr. Guillermo L´opez Taboada Profesor Contratado Doctor Dpto. de Electr´onicay Sistemas Universidade da Coru~na CERTIFICA Que la memoria titulada \Design of Scalable PGAS Collectives for NUMA and Manycore Systems" ha sido realizada por D. Dami´an Alvarez´ Mall´onbajo mi di- recci´onen el Departamento de Electr´onicay Sistemas de la Universidade da Coru~na (UDC) y concluye la Tesis Doctoral que presenta para optar al grado de Doctor por la Universidade da Coru~nacon la Menci´onde Doctor Internacional. En A Coru~na,a Martes 10 de Junio de 2014 Fdo.: Guillermo L´opez Taboada Director de la Tesis Doctoral A todos/as os/as que me ensinaron algo Polo bo e polo malo Acknowledgments Quoting Isaac Newton, but without comparing me with him: \If I have seen further it is by standing on the shoulders of giants". Specifically, one of the giants whose shoulder I have found particularly useful is my Ph.D. advisor, Guillermo L´opez Taboada. His support and dedication are major factors behind this work, and it would not exist without them. I cannot forget Ram´onDoallo and Juan Touri~no, that allowed me become part of the Computer Architecture Group.
    [Show full text]