Topics in Galois Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Subgroups of Division Rings in Characteristic Zero Are Characterized
Subgroups of Division Rings Mark Lewis Murray Schacher June 27, 2018 Abstract We investigate the finite subgroups that occur in the Hamiltonian quaternion algebra over the real subfield of cyclotomic fields. When possible, we investigate their distribution among the maximal orders. MSC(2010): Primary: 16A39, 12E15; Secondary: 16U60 1 Introduction Let F be a field, and fix a and b to be non-0 elements of F . The symbol algebra A =(a, b) is the 4-dimensional algebra over F generated by elements i and j that satisfy the relations: i2 = a, j2 = b, ij = ji. (1) − One usually sets k = ij, which leads to the additional circular relations ij = k = ji, jk = i = kj, ki = j = ki. (2) − − − arXiv:1806.09654v1 [math.RA] 25 Jun 2018 The set 1, i, j, k forms a basis for A over F . It is not difficult to see that A is a central{ simple} algebra over F , and using Wedderburn’s theorem, we see that A is either a 4-dimensional division ring or the ring M2(F ) of2 2 matrices over F . It is known that A is split (i.e. is the ring of 2 2 matrices× over F ) if and only if b is a norm from the field F (√a). Note that×b is a norm over F (√a) if and only if there exist elements x, y F so that b = x2 y2a. This condition is symmetric in a and b. ∈ − More generally, we have the following isomorphism of algebras: (a, b) ∼= (a, ub) (3) 1 where u = x2 y2a is a norm from F (√a); see [4] or [6]. -
Infinite Galois Theory
Infinite Galois Theory Haoran Liu May 1, 2016 1 Introduction For an finite Galois extension E/F, the fundamental theorem of Galois Theory establishes an one-to-one correspondence between the intermediate fields of E/F and the subgroups of Gal(E/F), the Galois group of the extension. With this correspondence, we can examine the the finite field extension by using the well-established group theory. Naturally, we wonder if this correspondence still holds if the Galois extension E/F is infinite. It is very tempting to assume the one-to-one correspondence still exists. Unfortu- nately, there is not necessary a correspondence between the intermediate fields of E/F and the subgroups of Gal(E/F)whenE/F is a infinite Galois extension. It will be illustrated in the following example. Example 1.1. Let F be Q,andE be the splitting field of a set of polynomials in the form of x2 p, where p is a prime number in Z+. Since each automorphism of E that fixes F − is determined by the square root of a prime, thusAut(E/F)isainfinitedimensionalvector space over F2. Since the number of homomorphisms from Aut(E/F)toF2 is uncountable, which means that there are uncountably many subgroups of Aut(E/F)withindex2.while the number of subfields of E that have degree 2 over F is countable, thus there is no bijection between the set of all subfields of E containing F and the set of all subgroups of Gal(E/F). Since a infinite Galois group Gal(E/F)normally have ”too much” subgroups, there is no subfield of E containing F can correspond to most of its subgroups. -
Generalized Quaternions
GENERALIZED QUATERNIONS KEITH CONRAD 1. introduction The quaternion group Q8 is one of the two non-abelian groups of size 8 (up to isomor- phism). The other one, D4, can be constructed as a semi-direct product: ∼ ∼ × ∼ D4 = Aff(Z=(4)) = Z=(4) o (Z=(4)) = Z=(4) o Z=(2); where the elements of Z=(2) act on Z=(4) as the identity and negation. While Q8 is not a semi-direct product, it can be constructed as the quotient group of a semi-direct product. We will see how this is done in Section2 and then jazz up the construction in Section3 to make an infinite family of similar groups with Q8 as the simplest member. In Section4 we will compare this family with the dihedral groups and see how it fits into a bigger picture. 2. The quaternion group from a semi-direct product The group Q8 is built out of its subgroups hii and hji with the overlapping condition i2 = j2 = −1 and the conjugacy relation jij−1 = −i = i−1. More generally, for odd a we have jaij−a = −i = i−1, while for even a we have jaij−a = i. We can combine these into the single formula a (2.1) jaij−a = i(−1) for all a 2 Z. These relations suggest the following way to construct the group Q8. Theorem 2.1. Let H = Z=(4) o Z=(4), where (a; b)(c; d) = (a + (−1)bc; b + d); ∼ The element (2; 2) in H has order 2, lies in the center, and H=h(2; 2)i = Q8. -
A Second Course in Algebraic Number Theory
A second course in Algebraic Number Theory Vlad Dockchitser Prerequisites: • Galois Theory • Representation Theory Overview: ∗ 1. Number Fields (Review, K; OK ; O ; ClK ; etc) 2. Decomposition of primes (how primes behave in eld extensions and what does Galois's do) 3. L-series (Dirichlet's Theorem on primes in arithmetic progression, Artin L-functions, Cheboterev's density theorem) 1 Number Fields 1.1 Rings of integers Denition 1.1. A number eld is a nite extension of Q Denition 1.2. An algebraic integer α is an algebraic number that satises a monic polynomial with integer coecients Denition 1.3. Let K be a number eld. It's ring of integer OK consists of the elements of K which are algebraic integers Proposition 1.4. 1. OK is a (Noetherian) Ring 2. , i.e., ∼ [K:Q] as an abelian group rkZ OK = [K : Q] OK = Z 3. Each can be written as with and α 2 K α = β=n β 2 OK n 2 Z Example. K OK Q Z ( p p [ a] a ≡ 2; 3 mod 4 ( , square free) Z p Q( a) a 2 Z n f0; 1g a 1+ a Z[ 2 ] a ≡ 1 mod 4 where is a primitive th root of unity Q(ζn) ζn n Z[ζn] Proposition 1.5. 1. OK is the maximal subring of K which is nitely generated as an abelian group 2. O`K is integrally closed - if f 2 OK [x] is monic and f(α) = 0 for some α 2 K, then α 2 OK . Example (Of Factorisation). -
GALOIS THEORY for ARBITRARY FIELD EXTENSIONS Contents 1
GALOIS THEORY FOR ARBITRARY FIELD EXTENSIONS PETE L. CLARK Contents 1. Introduction 1 1.1. Kaplansky's Galois Connection and Correspondence 1 1.2. Three flavors of Galois extensions 2 1.3. Galois theory for algebraic extensions 3 1.4. Transcendental Extensions 3 2. Galois Connections 4 2.1. The basic formalism 4 2.2. Lattice Properties 5 2.3. Examples 6 2.4. Galois Connections Decorticated (Relations) 8 2.5. Indexed Galois Connections 9 3. Galois Theory of Group Actions 11 3.1. Basic Setup 11 3.2. Normality and Stability 11 3.3. The J -topology and the K-topology 12 4. Return to the Galois Correspondence for Field Extensions 15 4.1. The Artinian Perspective 15 4.2. The Index Calculus 17 4.3. Normality and Stability:::and Normality 18 4.4. Finite Galois Extensions 18 4.5. Algebraic Galois Extensions 19 4.6. The J -topology 22 4.7. The K-topology 22 4.8. When K is algebraically closed 22 5. Three Flavors Revisited 24 5.1. Galois Extensions 24 5.2. Dedekind Extensions 26 5.3. Perfectly Galois Extensions 27 6. Notes 28 References 29 Abstract. 1. Introduction 1.1. Kaplansky's Galois Connection and Correspondence. For an arbitrary field extension K=F , define L = L(K=F ) to be the lattice of 1 2 PETE L. CLARK subextensions L of K=F and H = H(K=F ) to be the lattice of all subgroups H of G = Aut(K=F ). Then we have Φ: L!H;L 7! Aut(K=L) and Ψ: H!F;H 7! KH : For L 2 L, we write c(L) := Ψ(Φ(L)) = KAut(K=L): One immediately verifies: L ⊂ L0 =) c(L) ⊂ c(L0);L ⊂ c(L); c(c(L)) = c(L); these properties assert that L 7! c(L) is a closure operator on the lattice L in the sense of order theory. -
Pseudo Real Closed Field, Pseudo P-Adically Closed Fields and NTP2
Pseudo real closed fields, pseudo p-adically closed fields and NTP2 Samaria Montenegro∗ Université Paris Diderot-Paris 7† Abstract The main result of this paper is a positive answer to the Conjecture 5.1 of [15] by A. Chernikov, I. Kaplan and P. Simon: If M is a PRC field, then T h(M) is NTP2 if and only if M is bounded. In the case of PpC fields, we prove that if M is a bounded PpC field, then T h(M) is NTP2. We also generalize this result to obtain that, if M is a bounded PRC or PpC field with exactly n orders or p-adic valuations respectively, then T h(M) is strong of burden n. This also allows us to explicitly compute the burden of types, and to describe forking. Keywords: Model theory, ordered fields, p-adic valuation, real closed fields, p-adically closed fields, PRC, PpC, NIP, NTP2. Mathematics Subject Classification: Primary 03C45, 03C60; Secondary 03C64, 12L12. Contents 1 Introduction 2 2 Preliminaries on pseudo real closed fields 4 2.1 Orderedfields .................................... 5 2.2 Pseudorealclosedfields . .. .. .... 5 2.3 The theory of PRC fields with n orderings ..................... 6 arXiv:1411.7654v2 [math.LO] 27 Sep 2016 3 Bounded pseudo real closed fields 7 3.1 Density theorem for PRC bounded fields . ...... 8 3.1.1 Density theorem for one variable definable sets . ......... 9 3.1.2 Density theorem for several variable definable sets. ........... 12 3.2 Amalgamation theorems for PRC bounded fields . ........ 14 ∗[email protected]; present address: Universidad de los Andes †Partially supported by ValCoMo (ANR-13-BS01-0006) and the Universidad de Costa Rica. -
Galois Theory on the Line in Nonzero Characteristic
BULLETIN (New Series) OF THE AMERICANMATHEMATICAL SOCIETY Volume 27, Number I, July 1992 GALOIS THEORY ON THE LINE IN NONZERO CHARACTERISTIC SHREERAM S. ABHYANKAR Dedicated to Walter Feit, J-P. Serre, and e-mail 1. What is Galois theory? Originally, the equation Y2 + 1 = 0 had no solution. Then the two solutions i and —i were created. But there is absolutely no way to tell who is / and who is —i.' That is Galois Theory. Thus, Galois Theory tells you how far we cannot distinguish between the roots of an equation. This is codified in the Galois Group. 2. Galois groups More precisely, consider an equation Yn + axY"-x +... + an=0 and let ai , ... , a„ be its roots, which are assumed to be distinct. By definition, the Galois Group G of this equation consists of those permutations of the roots which preserve all relations between them. Equivalently, G is the set of all those permutations a of the symbols {1,2,...,«} such that (t>(aa^, ... , a.a(n)) = 0 for every «-variable polynomial (j>for which (j>(a\, ... , an) — 0. The co- efficients of <f>are supposed to be in a field K which contains the coefficients a\, ... ,an of the given polynomial f = f(Y) = Y" + alY"-l+--- + an. We call G the Galois Group of / over K and denote it by Galy(/, K) or Gal(/, K). This is Galois' original concrete definition. According to the modern abstract definition, the Galois Group of a normal extension L of a field K is defined to be the group of all AT-automorphisms of L and is denoted by Gal(L, K). -
Math.AG] 17 Mar 2001 Ebro Uhafml Mle H Og Ojcuefrinfin field 5-Dimensional for Such with Identify Type Conjecture to Weil Hope Hodge We of the Algebra
QUATERNIONIC PRYMS AND HODGE CLASSES B. VAN GEEMEN AND A. VERRA Abstract. Abelian varieties of dimension 2n on which a definite quaternion algebra acts are parametrized by symmetrical domains of dimension n(n 1)/2. Such abelian varieties have primitive Hodge classes in the middle dimensional cohomolo−gy group. In general, it is not clear that these are cycle classes. In this paper we show that a particular 6-dimensional family of such 8-folds are Prym varieties and we use the method of C. Schoen to show that all Hodge classes on the general abelian variety in this family are algebraic. We also consider Hodge classes on certain 5-dimensional subfamilies and relate these to the Hodge conjecture for abelian 4-folds. In this paper we study abelian varieties of dimension 8 whose endomorphism ring is a definite quaternion algebra over Q, we refer to these as abelian 8-folds of quaternion type. Such abelian varieties are interesting since their Hodge rings are not generated by divisor classes [M] and the Hodge conjecture is still open for most of them. The moduli space of 8-folds of quaternion type, with fixed discrete data, is 6-dimensional. One such moduli space was investigated recently by Freitag and Hermann [FrHe]. In [KSTT] a 6-dimensional family of K3 surfaces is studied whose Kuga-Satake varieties have simple factors of dimension 8 which are of quaternion type. Our first result, in section 3, is that one of these moduli spaces parametrizes Prym varieties of unramified 2:1 covers C˜ Cˆ, actually the genus 17 curves C˜ are 8:1 unramified covers of genus 3 curves with Galois→ group Q generated by the quaternions i and j. -
A Note on the Quaternion Group As Galois Group
proceedings of the american mathematical society Volume 108, Number 3, March 1990 A NOTE ON THE QUATERNION GROUP AS GALOIS GROUP ROGER WARE (Communicated by Louis J. Ratliff, Jr.) Abstract. The occurrence of the quaternion group as a Galois group over cer- tain fields is investigated. A theorem of Witt on quaternionic Galois extensions plays a key role. In [9, §6] Witt proved a theorem characterizing quaternionic Galois exten- sions. Namely, he showed that if F is a field of characteristic not 2 then an extension L = F(y/ä,y/b), a,b e F, of degree 4 over F can be embedded in a Galois extension A" of 7 with Gal(K/F) = 77g (the quaternion group 7 7 7 of order 8) if and only if the quadratic form ax + by + abz is isomorphic to x 2 + y 2 + z 2 .In addition he showed how to explicitly construct the Galois extension from the isometry. An immediate and interesting consequence of this is the fact that 77g cannot be a Galois group over any Pythagorean field. In this note Witt's theorem is used to obtain additional results about the existence of 77g as a Galois group over certain fields. If 7 is a field (of char- acteristic not 2) with at most one (total) ordering such that 77g does not oc- cur as a Galois group over F then the structure of the pro-2-Galois groups GF(2) = Gal(7(2)/7), Gpy = Gal(7py/7) (where 7(2) and Fpy are the quadratic and Pythagorean closures of F) are completely determined. -
A Classification of Clifford Algebras As Images of Group Algebras of Salingaros Vee Groups
DEPARTMENT OF MATHEMATICS TECHNICAL REPORT A CLASSIFICATION OF CLIFFORD ALGEBRAS AS IMAGES OF GROUP ALGEBRAS OF SALINGAROS VEE GROUPS R. Ablamowicz,M.Varahagiri,A.M.Walley November 2017 No. 2017-3 TENNESSEE TECHNOLOGICAL UNIVERSITY Cookeville, TN 38505 A Classification of Clifford Algebras as Images of Group Algebras of Salingaros Vee Groups Rafa lAb lamowicz, Manisha Varahagiri and Anne Marie Walley Abstract. The main objective of this work is to prove that every Clifford algebra C`p;q is R-isomorphic to a quotient of a group algebra R[Gp;q] modulo an ideal J = (1 + τ) where τ is a central element of order 2. p+q+1 Here, Gp;q is a 2-group of order 2 belonging to one of Salingaros isomorphism classes N2k−1;N2k; Ω2k−1; Ω2k or Sk. Thus, Clifford al- gebras C`p;q can be classified by Salingaros classes. Since the group algebras R[Gp;q] are Z2-graded and the ideal J is homogeneous, the quotient algebras R[G]=J are Z2-graded. In some instances, the isomor- ∼ phism R[G]=J = C`p;q is also Z2-graded. By Salingaros Theorem, the groups Gp;q in the classes N2k−1 and N2k are iterative central products of the dihedral group D8 and the quaternion group Q8, and so they are extra-special. The groups in the classes Ω2k−1 and Ω2k are central products of N2k−1 and N2k with C2 × C2, respectively. The groups in the class Sk are central products of N2k or N2k with C4. Two algorithms to factor any Gp;q into an internal central product, depending on the class, are given. -
Some Properties of Representation of Quaternion Group
ICBSA 2018 International Conference on Basic Sciences and Its Applications Volume 2019 Conference Paper Some Properties of Representation of Quaternion Group Sri Rahayu, Maria Soviana, Yanita, and Admi Nazra Department of Mathematics, Andalas University, Limau Manis, Padang, 25163, Indonesia Abstract The quaternions are a number system in the form 푎 + 푏푖 + 푐푗 + 푑푘. The quaternions ±1, ±푖, ±푗, ±푘 form a non-abelian group of order eight called quaternion group. Quaternion group can be represented as a subgroup of the general linear group 퐺퐿2(C). In this paper, we discuss some group properties of representation of quaternion group related to Hamiltonian group, solvable group, nilpotent group, and metacyclic group. Keywords: representation of quaternion group, hamiltonian group, solvable group, nilpotent group, metacyclic group Corresponding Author: Sri Rahayu [email protected] Received: 19 February 2019 1. Introduction Accepted: 5 March 2019 Published: 16 April 2019 First we review that quaternion group, denoted by 푄8, was obtained based on the Publishing services provided by calculation of quaternions 푎 + 푏푖 + 푐푗 + 푑푘. Quaternions were first described by William Knowledge E Rowan Hamilton on October 1843 [1]. The quaternion group is a non-abelian group of Sri Rahayu et al. This article is order eight. distributed under the terms of the Creative Commons Attribution License, which 2. Materials and Methods permits unrestricted use and redistribution provided that the original author and source are Here we provide Definitions of quaternion group dan matrix representation. credited. Selection and Peer-review under Definition 1.1. [2] The quaternion group, 푄8, is defined by the responsibility of the ICBSA Conference Committee. -
Kronecker Classes of Algebraic Number Fields WOLFRAM
JOURNAL OF NUMBER THFDRY 9, 279-320 (1977) Kronecker Classes of Algebraic Number Fields WOLFRAM JEHNE Mathematisches Institut Universitiit Kiiln, 5 K&I 41, Weyertal 86-90, Germany Communicated by P. Roquette Received December 15, 1974 DEDICATED TO HELMUT HASSE INTRODUCTION In a rather programmatic paper of 1880 Kronecker gave the impetus to a long and fruitful development in algebraic number theory, although no explicit program is formulated in his paper [17]. As mentioned in Hasse’s Zahlbericht [8], he was the first who tried to characterize finite algebraic number fields by the decomposition behavior of the prime divisors of the ground field. Besides a fundamental density relation, Kronecker’s main result states that two finite extensions (of prime degree) have the same Galois hull if every prime divisor of the ground field possesses in both extensions the same number of prime divisors of first relative degree (see, for instance, [8, Part II, Sects. 24, 251). In 1916, Bauer [3] showed in particular that, among Galois extensions, a Galois extension K 1 k is already characterized by the set of all prime divisors of k which decompose completely in K. More generally, following Kronecker, Bauer, and Hasse, for an arbitrary finite extension K I k we consider the set D(K 1 k) of all prime divisors of k having a prime divisor of first relative degree in K; we call this set the Kronecker set of K 1 k. Obviously, in the case of a Galois extension, the Kronecker set coincides with the set just mentioned. In a counterexample Gassmann [4] showed in 1926 that finite extensions.