Ios 10 Programming Fundamentals with Swift

Total Page:16

File Type:pdf, Size:1020Kb

Ios 10 Programming Fundamentals with Swift XcodeCovers 8, and Swift 3 iOS 10, iOS 10 Programming Fundamentals with Swift SWIFT, XCODE, AND COCOA BASICS Matt Neuburg THIRD EDITION iOS 10 Programming Fundamentals with Swift Swift, Xcode, and Cocoa Basics Matt Neuburg Boston iOS 10 Programming Fundamentals with Swift, Third Edition by Matt Neuburg Copyright © 2017 Matt Neuburg. All rights reserved. Printed in the United States of America. Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472. O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/ institutional sales department: 800-998-9938 or [email protected]. Editor: Rachel Roumeliotis Cover Designer: Karen Montgomery Production Editor: Kristen Brown Interior Designer: David Futato Proofreader: O’Reilly Production Services Illustrator: Matt Neuburg Indexer: Matt Neuburg April 2015: First Edition October 2015: Second Edition October 2016: Third Edition Revision History for the Third Edition 2016-09-23: First release See http://oreilly.com/catalog/errata.csp?isbn=9781491970072 for release details. The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. iOS 10 Programming Fundamentals with Swift, the image of a harp seal, and related trade dress are trademarks of O’Reilly Media, Inc. While the publisher and the author have used good faith efforts to ensure that the information and instructions contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or rights. ISBN: 978-1-491-97007-2 [LSI] Table of Contents Preface. xi Part I. Language 1. The Architecture of Swift. 3 Ground of Being 3 Everything Is an Object? 5 Three Flavors of Object Type 6 Variables 6 Functions 8 The Structure of a Swift File 9 Scope and Lifetime 11 Object Members 12 Namespaces 13 Modules 14 Instances 15 Why Instances? 17 self 19 Privacy 20 Design 22 Object Types and APIs 23 Instance Creation, Scope, and Lifetime 25 Summary and Conclusion 26 2. Functions. 27 Function Parameters and Return Value 27 Void Return Type and Parameters 31 Function Signature 32 iii External Parameter Names 32 Overloading 34 Default Parameter Values 35 Variadic Parameters 36 Ignored Parameters 36 Modifiable Parameters 37 Function In Function 41 Recursion 43 Function As Value 43 Anonymous Functions 46 Define-and-Call 52 Closures 53 How Closures Improve Code 54 Function Returning Function 56 Closure Setting a Captured Variable 58 Closure Preserving Its Captured Environment 59 Escaping Closures 60 Curried Functions 61 Function References and Selectors 62 Function Reference Scope 65 Selectors 66 3. Variables and Simple Types. 69 Variable Scope and Lifetime 69 Variable Declaration 71 Computed Initializer 74 Computed Variables 75 Setter Observers 78 Lazy Initialization 80 Built-In Simple Types 82 Bool 82 Numbers 84 String 90 Character 95 Range 98 Tuple 100 Optional 103 4. Object Types. 117 Object Type Declarations and Features 117 Initializers 119 Properties 125 iv | Table of Contents Methods 128 Subscripts 130 Nested Object Types 132 Instance References 133 Enums 135 Raw Values 137 Associated Values 138 Enum Initializers 139 Enum Properties 140 Enum Methods 141 Why Enums? 142 Structs 143 Struct Initializers, Properties, and Methods 144 Struct As Namespace 145 Classes 146 Value Types and Reference Types 146 Subclass and Superclass 151 Class Initializers 156 Class Deinitializer 164 Class Properties and Methods 164 Polymorphism 166 Casting 169 Type Reference 174 Protocols 179 Why Protocols? 181 Protocol Type Testing and Casting 183 Declaring a Protocol 183 Optional Protocol Members 185 Class Protocol 186 Implicitly Required Initializers 187 Literal Convertibles 189 Generics 190 Generic Declarations 192 Type Constraints 194 Explicit Specialization 196 Associated Type Chains 197 Additional Constraints 200 Extensions 203 Extending Object Types 203 Extending Protocols 206 Extending Generics 209 Umbrella Types 210 Table of Contents | v Any 211 AnyObject 212 AnyClass 215 Collection Types 216 Array 216 Dictionary 230 Set 235 5. Flow Control and More. 241 Flow Control 241 Branching 242 Loops 254 Jumping 259 Operators 274 Privacy 277 Private and Fileprivate 278 Public and Open 280 Privacy Rules 280 Introspection 281 Memory Management 282 Weak References 284 Unowned References 285 Weak and Unowned References in Anonymous Functions 287 Memory Management of Protocol-Typed References 290 Part II. IDE 6. Anatomy of an Xcode Project. 293 New Project 294 The Project Window 296 The Navigator Pane 297 The Utilities Pane 303 The Editor 304 The Project File and Its Dependents 306 The Target 309 Build Phases 310 Build Settings 312 Configurations 313 Schemes and Destinations 314 From Project to Running App 316 Build Settings 319 vi | Table of Contents Property List Settings 319 Nib Files 320 Additional Resources 321 Code Files and the App Launch Process 324 Frameworks and SDKs 329 Renaming Parts of a Project 331 7. Nib Management. 333 The Nib Editor Interface 335 Document Outline 336 Canvas 339 Inspectors and Libraries 341 Nib Loading 342 When Nibs Are Loaded 343 Manual Nib Loading 344 Connections 346 Outlets 346 The Nib Owner 348 Automatically Configured Nibs 351 Misconfigured Outlets 352 Deleting an Outlet 353 More Ways to Create Outlets 354 Outlet Collections 357 Action Connections 357 More Ways to Create Actions 360 Misconfigured Actions 361 Connections Between Nibs — Not! 361 Additional Configuration of Nib-Based Instances 362 8. Documentation. 367 The Documentation Window 367 Class Documentation Pages 369 Quick Help 372 Symbols 374 Header Files 375 Sample Code 376 Internet Resources 376 9. Life Cycle of a Project. 379 Device Architecture and Conditional Code 379 Backward Compatibility 380 Device Type 381 Table of Contents | vii Version Control 383 Editing and Navigating Your Code 385 Autocompletion 386 Snippets 388 Fix-it and Live Syntax Checking 389 Navigation 390 Finding 391 Running in the Simulator 393 Debugging 394 Caveman Debugging 394 The Xcode Debugger 396 Testing 403 Clean 409 Running on a Device 410 Obtaining a Developer Program Membership 410 Signing an App 411 Automatic Development Signing 412 Obtaining a Development Certificate Manually 415 Obtaining a Development Provisioning Profile Manually 416 Running the App 418 Managing Certificates, Profiles, and Devices 418 Profiling 419 Gauges 420 Memory Debugging 421 Instruments 422 Localization 425 Localizing the Info.plist 426 Localizing a Nib File 427 Localizing Code Strings 429 Localizing With XML Files 431 Distribution 433 Making an Archive 433 Obtaining a Distribution Certificate Manually 434 Obtaining a Distribution Profile Manually 435 Ad Hoc Distribution 436 Final App Preparations 437 Icons in the App 437 Other Icons 439 Launch Images 439 Screenshots and Video Previews 440 Property List Settings 442 viii | Table of Contents Submission to the App Store 443 Part III. Cocoa 10. Cocoa Classes. 447 Subclassing 447 Categories and Extensions 450 How Swift Uses Extensions 451 How You Use Extensions 451 How Cocoa Uses Categories 452 Protocols 453 Informal Protocols 455 Optional Methods 456 Some Foundation Classes 458 Useful Structs and Constants 459 NSString and Friends 461 NSDate and Friends 464 NSNumber 465 NSValue 467 NSData 468 NSMeasurement and Friends 469 Equality and Comparison 469 NSArray and NSMutableArray 471 NSDictionary and NSMutableDictionary 473 NSSet and Friends 473 NSIndexSet 474 NSNull 475 Immutable and Mutable 475 Property Lists 477 Accessors, Properties, and Key–Value Coding 478 Swift Accessors 479 Key–Value Coding 481 Uses of Key–Value Coding 482 KVC and Outlets 483 Key Paths 484 Array Accessors 485 The Secret Life of NSObject 486 11. Cocoa Events. 489 Reasons for Events 490 Subclassing 490 Table of Contents | ix Notifications 492 Receiving a Notification 493 Unregistering 495 Posting a Notification 496 Timer 497 Delegation 498 Cocoa Delegation 499 Implementing Delegation 500 Data Sources 502 Actions 503 The Responder Chain 506 Deferring Responsibility 507 Nil-Targeted Actions 508 Key–Value Observing 509 Swamped by Events 513 Delayed Performance 516 12. Memory Management. 519 Principles of Cocoa Memory Management 519 Rules of Cocoa Memory Management 521 What ARC Is and What It Does 522 How Cocoa Objects Manage Memory 522 Autorelease Pool 523 Memory Management of Instance Properties 525 Retain Cycles and Weak References 526 Unusual Memory Management Situations 529 Nib Loading and Memory Management 532 Memory Management of CFTypeRefs 533 Property Memory Management Policies 535 Debugging Memory Management Mistakes 537 13. Communication Between Objects. 539 Visibility by Instantiation 540 Visibility by Relationship 542 Global Visibility 543 Notifications and Key–Value Observing 544 Model–View–Controller 545 A. C, Objective-C, and Swift. 549 Index. 579 x | Table of Contents Preface On June 2, 2014, Apple’s WWDC keynote address ended with a shocking announce‐ ment: “We have a new programming language.” This came as a huge surprise to the developer community, which was accustomed to Objective-C, warts and all, and doubted that Apple could ever possibly relieve them from the weight of its venerable legacy. The developer community, it appeared, had been wrong. Having picked themselves up off the floor, developers immediately began to examine this new language — Swift — studying it, critiquing it, and deciding whether to use it. My own first move was to translate all my existing iOS apps into Swift; this was enough to convince me that, for all its faults, Swift deserved to be adopted by new students of iOS programming, and that my books, therefore, should henceforth assume that readers are using Swift.
Recommended publications
  • ML Module Mania: a Type-Safe, Separately Compiled, Extensible Interpreter
    ML Module Mania: A Type-Safe, Separately Compiled, Extensible Interpreter The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Ramsey, Norman. 2005. ML Module Mania: A Type-Safe, Separately Compiled, Extensible Interpreter. Harvard Computer Science Group Technical Report TR-11-05. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:25104737 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA ¡¢ £¥¤§¦©¨ © ¥ ! " $# %& !'( *)+ %¨,.-/£102©¨ 3¤4#576¥)+ %&8+9©¨ :1)+ 3';&'( )< %' =?>A@CBEDAFHG7DABJILKM GPORQQSOUT3V N W >BYXZ*[CK\@7]_^\`aKbF!^\K/c@C>ZdX eDf@hgiDf@kjmlnF!`ogpKb@CIh`q[UM W DABsr!@k`ajdtKAu!vwDAIhIkDi^Rx_Z!ILK[h[SI ML Module Mania: A Type-Safe, Separately Compiled, Extensible Interpreter Norman Ramsey Division of Engineering and Applied Sciences Harvard University Abstract An application that uses an embedded interpreter is writ- ten in two languages: Most code is written in the original, The new embedded interpreter Lua-ML combines extensi- host language (e.g., C, C++, or ML), but key parts can be bility and separate compilation without compromising type written in the embedded language. This organization has safety. The interpreter’s types are extended by applying a several benefits: sum constructor to built-in types and to extensions, then • Complex command-line arguments aren’t needed; the tying a recursive knot using a two-level type; the sum con- embedded language can be used on the command line.
    [Show full text]
  • Tierless Web Programming in ML Gabriel Radanne
    Tierless Web programming in ML Gabriel Radanne To cite this version: Gabriel Radanne. Tierless Web programming in ML. Programming Languages [cs.PL]. Université Paris Diderot (Paris 7), 2017. English. tel-01788885 HAL Id: tel-01788885 https://hal.archives-ouvertes.fr/tel-01788885 Submitted on 9 May 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike| 4.0 International License Thèse de doctorat de l’Université Sorbonne Paris Cité Préparée à l’Université Paris Diderot au Laboratoire IRIF Ecole Doctorale 386 — Science Mathématiques De Paris Centre Tierless Web programming in ML par Gabriel Radanne Thèse de Doctorat d’informatique Dirigée par Roberto Di Cosmo et Jérôme Vouillon Thèse soutenue publiquement le 14 Novembre 2017 devant le jury constitué de Manuel Serrano Président du Jury Roberto Di Cosmo Directeur de thèse Jérôme Vouillon Co-Directeur de thèse Koen Claessen Rapporteur Jacques Garrigue Rapporteur Coen De Roover Examinateur Xavier Leroy Examinateur Jeremy Yallop Examinateur This work is licensed under a Creative Commons “Attribution- NonCommercial-ShareAlike 4.0 International” license. Abstract Eliom is a dialect of OCaml for Web programming in which server and client pieces of code can be mixed in the same file using syntactic annotations.
    [Show full text]
  • Seaflow Language Reference Manual Rohan Arora, Junyang Jin, Ho Sanlok Lee, Sarah Seidman Ra3091, Jj3132, Hl3436, Ss5311
    Seaflow Language Reference Manual Rohan Arora, Junyang Jin, Ho Sanlok Lee, Sarah Seidman ra3091, jj3132, hl3436, ss5311 1 Introduction 3 2 Lexical Conventions 3 2.1 Comments 3 2.2 Identifiers 3 2.3 Keywords 3 2.4 Literals 3 3 Expressions and Statements 3 3.1 Expressions 4 3.1.1 Primary Expressions 4 3.1.1 Operators 4 3.1.2 Conditional expression 4 3.4 Statements 5 3.4.1 Declaration 5 3.4.2 Immutability 5 3.4.3 Observable re-assignment 5 4 Functions Junyang 6 4.1 Declaration 6 4.2 Scope rules 6 4.3 Higher Order Functions 6 5 Observables 7 5.1 Declaration 7 5.2 Subscription 7 5.3 Methods 7 6 Conversions 9 1 Introduction Seaflow is an imperative language designed to address the asynchronous event conundrum by supporting some of the core principles of ReactiveX and reactive programming natively. Modern applications handle many asynchronous events, but it is difficult to model such applications using programming languages such as Java and JavaScript. One popular solution among the developers is to use ReactiveX implementations in their respective languages to architect event-driven reactive models. However, since Java and JavaScript are not designed for reactive programming, it leads to complex implementations where multiple programming styles are mixed-used. Our goals include: 1. All data types are immutable, with the exception being observables, no pointers 2. The creation of an observable should be simple 3. Natively support core principles in the ReactiveX specification 2 Lexical Conventions 2.1 Comments We use the characters /* to introduce a comment, which terminates with the characters */.
    [Show full text]
  • JNI – C++ Integration Made Easy
    JNI – C++ integration made easy Evgeniy Gabrilovich Lev Finkelstein [email protected] [email protected] Abstract The Java Native Interface (JNI) [1] provides interoperation between Java code running on a Java Virtual Machine and code written in other programming languages (e.g., C++ or assembly). The JNI is useful when existing libraries need to be integrated into Java code, or when portions of the code are implemented in other languages for improved performance. The Java Native Interface is extremely flexible, allowing Java methods to invoke native methods and vice versa, as well as allowing native functions to manipulate Java objects. However, this flexibility comes at the expense of extra effort for the native language programmer, who has to explicitly specify how to connect to various Java objects (and later to disconnect from them, to avoid resource leak). We suggest a template-based framework that relieves the C++ programmer from most of this burden. In particular, the proposed technique provides automatic selection of the right functions to access Java objects based on their types, automatic release of previously acquired resources when they are no longer necessary, and overall simpler interface through grouping of auxiliary functions. Introduction The Java Native Interface1 is a powerful framework for seamless integration between Java and other programming languages (called “native languages” in the JNI terminology). A common case of using the JNI is when a system architect wants to benefit from both worlds, implementing communication protocols in Java and computationally expensive algorithmic parts in C++ (the latter are usually compiled into a dynamic library, which is then invoked from the Java code).
    [Show full text]
  • Difference Between Method Declaration and Signature
    Difference Between Method Declaration And Signature Asiatic and relaxed Dillon still terms his tacheometry namely. Is Tom dirt or hierarchal after Zyrian Nelson hasting so variously? Heterozygous Henrique instals terribly. Chapter 15 Functions. How junior you identify a function? There play an important difference between schedule two forms of code block seeing the. Subroutines in C and Java are always expressed as functions methods which may. Only one params keyword is permitted in a method declaration. Complex constant and so, where you declare checked exception parameters which case, it prompts the method declaration group the habit of control passes the positional. Overview of methods method parameters and method return values. A whole object has the cash public attributes and methods. Defining Methods. A constant only be unanimous a type explicitly by doing constant declaration or. As a stop rule using prototypes is the preferred method as it. C endif Class HelloJNI Method sayHello Signature V JNIEXPORT. Method signature It consists of the method name just a parameter list window of. As I breathe in the difference between static and dynamic binding static methods are. Most electronic signature solutions in the United States fall from this broad. DEPRECATED Method declarations with type constraints and per source filter. Methods and Method Declaration in Java dummies. Class Methods Apex Developer Guide Salesforce Developers. Using function signatures to remove a library method Function signatures are known important snapshot of searching for library functions The F libraries. Many different kinds of parameters with rather subtle semantic differences. For addition as real numbers the distinction is somewhat moot because is.
    [Show full text]
  • Data Types Are Values
    Data Types Are Values James Donahue Alan Demers Data Types Are Values James Donahue Xerox Corporation Palo Alto Research Center 3333 Coyote Hill Road Palo Alto, California 94304 Alan Demers Computer Science Department Cornell University Ithaca, New York 14853 CSL -83-5 March 1984 [P83-00005] © Copyright 1984 ACM. All rights reserved. Reprinted with permission. A bst ract: An important goal of programming language research is to isolate the fundamental concepts of languages, those basic ideas that allow us to understand the relationship among various language features. This paper examines one of these underlying notions, data type, with particular attention to the treatment of generic or polymorphic procedures and static type-checking. A version of this paper will appear in the ACM Transact~ons on Programming Languages and Systems. CR Categories and Subject Descriptors: 0.3 (Programming Languages), 0.3.1 (Formal Definitions and Theory), 0.3.3 (Language Constructs), F.3.2 (Semantics of Programming Languages) Additional Keywords and Phrases: data types, polymorphism XEROX Xerox Corporation Palo Alto Research Center 3333 Coyote Hill Road Palo Alto, California 94304 DATA TYPES ARE VALVES 1 1. Introduction An important goal of programming language research is to isolate the fundamental concepts of languages, those basic ideas that allow us to understand the relationship among various language features. This paper examines one of these underlying notions, data type, and presents a meaning for this term that allows us to: describe a simple treatment of generic or polymorphic procedures that preserves full static type-checking and allows unrestricted use of recursion; and give a precise meaning to the phrase strong typing, so that Language X is strongly typed can be interpreted as a critically important theorem about the semantics of the language.
    [Show full text]
  • Exploring Languages with Interpreters and Functional Programming Chapter 22
    Exploring Languages with Interpreters and Functional Programming Chapter 22 H. Conrad Cunningham 5 November 2018 Contents 22 Overloading and Type Classes 2 22.1 Chapter Introduction . .2 22.2 Polymorphism in Haskell . .2 22.3 Why Overloading? . .2 22.4 Defining an Equality Class and Its Instances . .4 22.5 Type Class Laws . .5 22.6 Another Example Class Visible ..................5 22.7 Class Extension (Inheritance) . .6 22.8 Multiple Constraints . .7 22.9 Built-In Haskell Classes . .8 22.10Comparison to Other Languages . .8 22.11What Next? . .9 22.12Exercises . 10 22.13Acknowledgements . 10 22.14References . 11 22.15Terms and Concepts . 11 Copyright (C) 2017, 2018, H. Conrad Cunningham Professor of Computer and Information Science University of Mississippi 211 Weir Hall P.O. Box 1848 University, MS 38677 (662) 915-5358 Browser Advisory: The HTML version of this textbook requires use of a browser that supports the display of MathML. A good choice as of November 2018 is a recent version of Firefox from Mozilla. 1 22 Overloading and Type Classes 22.1 Chapter Introduction Chapter 5 introduced the concept of overloading. Chapters 13 and 21 introduced the related concepts of type classes and instances. The goal of this chapter and the next chapter is to explore these concepts in more detail. The concept of type class was introduced into Haskell to handle the problem of comparisons, but it has had a broader and more profound impact upon the development of the language than its original purpose. This Haskell feature has also had a significant impact upon the design of subsequent languages (e.g.
    [Show full text]
  • Cross-Platform Language Design
    Cross-Platform Language Design THIS IS A TEMPORARY TITLE PAGE It will be replaced for the final print by a version provided by the service academique. Thèse n. 1234 2011 présentée le 11 Juin 2018 à la Faculté Informatique et Communications Laboratoire de Méthodes de Programmation 1 programme doctoral en Informatique et Communications École Polytechnique Fédérale de Lausanne pour l’obtention du grade de Docteur ès Sciences par Sébastien Doeraene acceptée sur proposition du jury: Prof James Larus, président du jury Prof Martin Odersky, directeur de thèse Prof Edouard Bugnion, rapporteur Dr Andreas Rossberg, rapporteur Prof Peter Van Roy, rapporteur Lausanne, EPFL, 2018 It is better to repent a sin than regret the loss of a pleasure. — Oscar Wilde Acknowledgments Although there is only one name written in a large font on the front page, there are many people without which this thesis would never have happened, or would not have been quite the same. Five years is a long time, during which I had the privilege to work, discuss, sing, learn and have fun with many people. I am afraid to make a list, for I am sure I will forget some. Nevertheless, I will try my best. First, I would like to thank my advisor, Martin Odersky, for giving me the opportunity to fulfill a dream, that of being part of the design and development team of my favorite programming language. Many thanks for letting me explore the design of Scala.js in my own way, while at the same time always being there when I needed him.
    [Show full text]
  • Functional C
    Functional C Pieter Hartel Henk Muller January 3, 1999 i Functional C Pieter Hartel Henk Muller University of Southampton University of Bristol Revision: 6.7 ii To Marijke Pieter To my family and other sources of inspiration Henk Revision: 6.7 c 1995,1996 Pieter Hartel & Henk Muller, all rights reserved. Preface The Computer Science Departments of many universities teach a functional lan- guage as the first programming language. Using a functional language with its high level of abstraction helps to emphasize the principles of programming. Func- tional programming is only one of the paradigms with which a student should be acquainted. Imperative, Concurrent, Object-Oriented, and Logic programming are also important. Depending on the problem to be solved, one of the paradigms will be chosen as the most natural paradigm for that problem. This book is the course material to teach a second paradigm: imperative pro- gramming, using C as the programming language. The book has been written so that it builds on the knowledge that the students have acquired during their first course on functional programming, using SML. The prerequisite of this book is that the principles of programming are already understood; this book does not specifically aim to teach `problem solving' or `programming'. This book aims to: ¡ Familiarise the reader with imperative programming as another way of imple- menting programs. The aim is to preserve the programming style, that is, the programmer thinks functionally while implementing an imperative pro- gram. ¡ Provide understanding of the differences between functional and imperative pro- gramming. Functional programming is a high level activity.
    [Show full text]
  • Julia: a Modern Language for Modern ML
    Julia: A modern language for modern ML Dr. Viral Shah and Dr. Simon Byrne www.juliacomputing.com What we do: Modernize Technical Computing Today’s technical computing landscape: • Develop new learning algorithms • Run them in parallel on large datasets • Leverage accelerators like GPUs, Xeon Phis • Embed into intelligent products “Business as usual” will simply not do! General Micro-benchmarks: Julia performs almost as fast as C • 10X faster than Python • 100X faster than R & MATLAB Performance benchmark relative to C. A value of 1 means as fast as C. Lower values are better. A real application: Gillespie simulations in systems biology 745x faster than R • Gillespie simulations are used in the field of drug discovery. • Also used for simulations of epidemiological models to study disease propagation • Julia package (Gillespie.jl) is the state of the art in Gillespie simulations • https://github.com/openjournals/joss- papers/blob/master/joss.00042/10.21105.joss.00042.pdf Implementation Time per simulation (ms) R (GillespieSSA) 894.25 R (handcoded) 1087.94 Rcpp (handcoded) 1.31 Julia (Gillespie.jl) 3.99 Julia (Gillespie.jl, passing object) 1.78 Julia (handcoded) 1.2 Those who convert ideas to products fastest will win Computer Quants develop Scientists prepare algorithms The last 25 years for production (Python, R, SAS, DEPLOY (C++, C#, Java) Matlab) Quants and Computer Compress the Scientists DEPLOY innovation cycle collaborate on one platform - JULIA with Julia Julia offers competitive advantages to its users Julia is poised to become one of the Thank you for Julia. Yo u ' v e k i n d l ed leading tools deployed by developers serious excitement.
    [Show full text]
  • Foreign Library Interface by Daniel Adler Dia Applications That Can Run on a Multitude of Plat- Forms
    30 CONTRIBUTED RESEARCH ARTICLES Foreign Library Interface by Daniel Adler dia applications that can run on a multitude of plat- forms. Abstract We present an improved Foreign Function Interface (FFI) for R to call arbitary na- tive functions without the need for C wrapper Foreign function interfaces code. Further we discuss a dynamic linkage framework for binding standard C libraries to FFIs provide the backbone of a language to inter- R across platforms using a universal type infor- face with foreign code. Depending on the design of mation format. The package rdyncall comprises this service, it can largely unburden developers from the framework and an initial repository of cross- writing additional wrapper code. In this section, we platform bindings for standard libraries such as compare the built-in R FFI with that provided by (legacy and modern) OpenGL, the family of SDL rdyncall. We use a simple example that sketches the libraries and Expat. The package enables system- different work flow paths for making an R binding to level programming using the R language; sam- a function from a foreign C library. ple applications are given in the article. We out- line the underlying automation tool-chain that extracts cross-platform bindings from C headers, FFI of base R making the repository extendable and open for Suppose that we wish to invoke the C function sqrt library developers. of the Standard C Math library. The function is de- clared as follows in C: Introduction double sqrt(double x); We present an improved Foreign Function Interface The .C function from the base R FFI offers a call (FFI) for R that significantly reduces the amount of gate to C code with very strict conversion rules, and C wrapper code needed to interface with C.
    [Show full text]
  • Modern Garbage Collector for Hashlink and Its Formal Verification
    MEng Individual Project Imperial College London Department of Computing Modern garbage collector for HashLink and its formal verification Supervisor: Prof. Susan Eisenbach Author: Aurel Bílý Second Marker: Prof. Sophia Drossopoulou June 15, 2020 Abstract Haxe [1] is a high-level programming language that compiles code into a number of targets, including other programming languages and bytecode formats. Hash- Link [2] is one of these targets: a virtual machine dedicated to Haxe. There is no manual memory management in Haxe, and all of its targets, including HashLink, must have a garbage collector (GC). HashLink’s current GC implementation, a vari- ant of mark-and-sweep, is slow, as shown in GC-bound benchmarks. Immix [3] is a GC algorithm originally developed for Jikes RVM [4]. It is a good alternative to mark-and-sweep because it requires minimal changes to the inter- face, it has a very fast allocation algorithm, and its collection is optimised for CPU memory caching. We implement an Immix-based GC for HashLink. We demonstrate significant performance improvements of HashLink with the new GC in a variety of benchmarks. We also formalise our GC algorithm with an abstract model defined in Coq [5], and then prove that our implementation correctly implements this model using VST-Floyd [6] and CompCert [7]. We make the con- nection between the abstract model and VST-Floyd assertions in a novel way, suit- able to complex programs with a large state. Acknowledgements Firstly, I would like to thank Lily for her never-ending support and patience. I would like to thank my supervisor, Susan, for the great advice and intellectu- ally stimulating discussions over the years, as well as for allowing me to pursue a project close to my heart.
    [Show full text]