NYC Parks Salt Marsh Restoration Design Guidelines
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
BMP #: Constructed Wetlands
Structural BMP Criteria BMP #: Constructed Wetlands Constructed Wetlands are shallow marsh sys- tems planted with emergent vegetation that are designed to treat stormwater runoff. U.S. Fish and Wildlife Service, 2001 Key Design Elements Potential Applications z Adequate drainage area (usually 5 to 10 acres Residential Subdivision: YES minimum) Commercial: YES Ultra Urban: LIMITED Industrial: YES z Maintenance of permanent water surface Retrofit: YES Highway/Road: YES z Multiple vegetative growth zones through vary- ing depths Stormwater Functions z Robust and diverse vegetation Volume Reduction: Low z Relatively impermeable soils or engineered liner Recharge: Low Peak Rate Control: High z Sediment collection and removal Water Quality: High z Adjustable permanent pool and dewatering Pollutant Removal mechanism Total Suspended Solids: x Nutrients: x Metals: x Pathogens: x Pennsylvania Stormwater Management Manual 1 Section 5 - Structural BMPs Figure 1. Demonstration Constructed Wetlands in Arizona (http://ag.arizona.edu/AZWATER/arroyo/094wet.html) Description Constructed Wetlands are shallow marsh systems planted with emergent vegetation that are designed to treat stormwater runoff. While they are one of the best BMPs for pollutant removal, Constructed Wetlands (CWs) can also mitigate peak rates and even reduce runoff volume to a certain degree. They also can provide considerable aesthetic and wildlife benefits. CWs use a relatively large amount of space and require an adequate source of inflow to maintain the perma- nent water surface. Variations Constructed Wetlands can be designed as either an online or offline facilities. They can also be used effectively in series with other flow/sediment reducing BMPs that reduce the sediment load and equalize incoming flows to the CW. -
Alternative Stable States of Tidal Marsh Vegetation Patterns and Channel Complexity
ECOHYDROLOGY Ecohydrol. (2016) Published online in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/eco.1755 Alternative stable states of tidal marsh vegetation patterns and channel complexity K. B. Moffett1* and S. M. Gorelick2 1 School of the Environment, Washington State University Vancouver, Vancouver, WA, USA 2 Department of Earth System Science, Stanford University, Stanford, CA, USA ABSTRACT Intertidal marshes develop between uplands and mudflats, and develop vegetation zonation, via biogeomorphic feedbacks. Is the spatial configuration of vegetation and channels also biogeomorphically organized at the intermediate, marsh-scale? We used high-resolution aerial photographs and a decision-tree procedure to categorize marsh vegetation patterns and channel geometries for 113 tidal marshes in San Francisco Bay estuary and assessed these patterns’ relations to site characteristics. Interpretation was further informed by generalized linear mixed models using pattern-quantifying metrics from object-based image analysis to predict vegetation and channel pattern complexity. Vegetation pattern complexity was significantly related to marsh salinity but independent of marsh age and elevation. Channel complexity was significantly related to marsh age but independent of salinity and elevation. Vegetation pattern complexity and channel complexity were significantly related, forming two prevalent biogeomorphic states: complex versus simple vegetation-and-channel configurations. That this correspondence held across marsh ages (decades to millennia) -
Meadow Pond Final Report 1-28-10
Comparison of Restoration Techniques to Reduce Dominance of Phragmites australis at Meadow Pond, Hampton New Hampshire FINAL REPORT January 28, 2010 David M. Burdick1,2 Christopher R. Peter1 Gregg E. Moore1,3 Geoff Wilson4 1 - Jackson Estuarine Laboratory, University of New Hampshire, Durham, NH 03824 2 – Natural Resources and the Environment, UNH 3 – Department of Biological Sciences, UNH 4 – Northeast Wetland Restoration, Berwick ME 03901 Submitted to: New Hampshire Coastal Program New Hampshire Department of Environmental Services 50 International Drive Pease Tradeport Portsmouth, NH 03801 UNH Burdick et al. 2010 Executive Summary The northern portion of Meadow Pond Marsh remained choked with an invasive exotic variety of Phragmites australis (common reed) in 2002, despite tidal restoration in 1995. Our project goal was to implement several construction techniques to reduce the dominance of Phragmites and then examine the ecological responses of the system (as a whole as well as each experimental treatment) to inform future restoration actions at Meadow Pond. The construction treatments were: creeks, creeks and pools, sediment excavation with a large pool including native marsh plantings. Creek construction increased tides at all treatments so that more tides flooded the marsh and the highest spring tides increased to 30 cm. Soil salinity increased at all treatment areas following restoration, but also increased at control areas, so greater soil salinity could not be attributed to the treatments. Decreases in Phragmites cover were not statistically significant, but treatment areas did show significant increases in native vegetation following restoration. Fish habitat was also increased by creek and pool construction and excavation, so that pool fish density increased from 1 to 40 m-2. -
The Evolution of the Artificial Wildbird Tidal Mudflat in Fukuoka, Japan
1 The Evolution of the MIA DOCTO + SCOTT WALLS Jacob Bintliff, Mariana Chavez, Daniela Peña Corvillon, Artificial Wildbird Tidal Johanna Hoffman, Katelyn Walker, UC Berkeley, LA 205 Studio Mudflat in Fukuoka, Japan Spring 2012 2 PRESENTATION CONTENT INTRODUCTION // SCIENTIFIC ANALYSIS // WETLAND DESIGN // HUMAN INTERFACE // CONCLUSIONS 3 CONTEXT 4 5 6 CONTEXT BEFORE PRESENT 7 ISLAND CITY 8 9 ITERATIONS ORIGINAL WETLAND PLAN 10 ITERATIONS JAPAN STUDENT WORKSHOP 11 ITERATIONS 2008 Land Use Plan ~8.5 - 9 ha ~12 ha ~10 ha ~10 ~7 ha Setup of the central area ~8.75 ha ~38.25 ha We will establish a lively ~7 ha interactive space by inviting urban functions such as commercial and ~ 6.75 ha corporate functions, and dissemination of information on education, ~2.25 ha Wild Bird Park 3.9 ha 3.1 ha School and Amenities culture, and art. Further, public transportation Green Space facilities and facilities for 4.1 ha convenience are invited Assigned Facilities Teriha Town to improve the business Hospital ~18 ha environment in the area. Apartments 4.1+ ha Joint Independent Houses Spcialist Clinic 1.8 ha ~1.5 ha Commercial Elderly Elderly Center? Center Planned Subdivision 1.6 ha 1.2 ha Coporate (Sold) 0.9 ha Planned Use/Mixed Use Idustrial and hatches based on legend color code and denote use type Research & Development Currently Built Port Warf 1000 m UC BERKELEY LAND USE PLAN 12 ITERATIONS UC BERKELEY LAND USE PLAN 13 ITERATIONS 16 Hectare Wild Bird Park UC BERKELEY - JAPAN WETLAND DESIGN 14 DESIGN GOALS Provide natural habitat for migrating bird species -
NATIONAL WETLANDS INVENTORY and the NATIONAL WETLANDS RESEARCH CENTER PROJECT REPORT FOR: GALVESTON BAY INTRODUCTION the U.S. Fi
NATIONAL WETLANDS INVENTORY AND THE NATIONAL WETLANDS RESEARCH CENTER PROJECT REPORT FOR: GALVESTON BAY INTRODUCTION The U.S. Fish & Wildlife Service's National Wetlands Inventory is producing maps showing the location and classification of wetlands and deepwater habitats of the United States. The Classification of Wetlands and Deepwater Habitats of the United States by Cowardin et al. is the classification system used to define and classify wetlands. Upland classification will utilize the system put forth in., A Land Use and Land Cover Classification System For Use With Remote Sensor Data. by James R. Anderson, Ernest E. Hardy, John T. Roach, and Richard E. Witmer. Photo interpretation conventions, hydric soils-lists and wetland plants lists are also available to enhance the use and application of the classification system. The purpose of the report to users is threefold: (1) to provide localized information regarding the production of NWI maps, including field reconnaissance with a discussion of imagery and interpretation; (2) to provide a descriptive crosswalk from wetland codes on the map to common names and representative plant species; and (3) to explain local geography, climate, and wetland communities. II. FIELD RECONNAISSANCE Field reconnaissance of the work area is an integral part for the accurate interpretation of aerial photography. Photographic signatures are compared to the wetland's appearance in the field by observing vegetation, soil and topography. Thus information is weighted for seasonality and conditions existing at the time of photography and at ground truthing. Project Area The project area is located in the southeastern portion of Texas along the coast. Ground truthing covered specific quadrangles of each 1:100,000 including Houston NE, Houston SE, Houston NW, and Houston SW (See Appendix A, Locator Map). -
Journal of the Oklahoma Native Plant Society, Volume 2, Number 1
54 Oklahoma Native Plant Record Volume 2, Number 1, December 2002 Schoenoplectus hallii and S. saximontanus 2000 Wichita Mountain Wildlife Refuge Survey Dr. Lawrence K. Magrath Curator-USAO (OCLA) Herbarium Chickasha, OK 73018-5358 A survey to determine locations of populations of Schoenoplectus hallii and S. saximontanus was conducted at Wichita Mountains Wildlife Refuge in August and September 2000. One or both species were found at 20 of the 134 locations surveyed. A distinctive terminal achene character was found specifically that the transverse ridges of S. hallii appeared to be rounded and S. saximontanus appeared to be rounded with a projecting narrow wing. Basal macroachenes have not yet been properly described but are borne singly at the base of each culm and are about 3-4 times larger than the terminal achenes. It is speculated that amphicarpy may be related to grazing pressure, the basal macroachene being produced even if the upper portion is consumed, as a response to grazing. Both species are grazed/disturbed by bison, elk, and longhorns on the Refuge. Introduction the drawdown mud, sand, or gravel flats. A survey to determine locations of However in some places they occur in shallow populations of Schoenoplectus hallii (A. Gray) water up to a depth of about a foot [30.5cm]. S.G. Smith (Hall’s bulrush) and S. saximontanus They seem to compete with perennial emergent (Fernald) J. Raynal (Rocky Mountain bulrush) plants and with most emergent annuals. was conducted on the Wichita Mountains In addition to the 36 sites that I Wildlife Refuge during late August through personally examined, WMWR staff examined September 2000. -
2018 Canadian NAWMP Report
September 2018 nawmp.wetlandnetwork.ca HabitatMatters 2018 Canadian NAWMP Report “Autumn Colours – Wood Duck” from the 2018 Canadian Wildlife Habitat Conservation Stamp series. Artist: Pierre Girard North American Waterfowl Management Plan —— Plan nord-américain de gestion de la sauvagine —— Plan de Manejo de Aves Acuáticas Norteamérica TableContents of 1 About the NAWMP 2 National Overview 2 Accomplishments 3 Expenditures and Contributions 4 Canadian Waterfowl Habitat Benefits All North Americans 6 Habitat Joint Ventures 7 Prairie Habitat Joint Venture 12 Eastern Habitat Joint Venture 17 Pacific Birds Habitat Joint Venture 23 Canadian Intermountain Joint Venture 28 Species Joint Ventures 29 Sea Duck Joint Venture 31 Black Duck Joint Venture 33 Arctic Goose Joint Venture 36 Partners About the NAWMP Hooded Merganser duckling. The North American Waterfowl Management Plan (NAWMP) Laura Kaye is an international partnership to restore, conserve and protect waterfowl populations and associated habitats through management decisions based on strong biological waterfowl populations. Mexico became a signatory to the foundations. The ultimate goal is to achieve abundant and NAWMP with its update in 1994. As a result, the NAWMP resilient waterfowl populations and sustainable landscapes. partnership extends across North America, working at national The NAWMP engages the community of users and supporters and regional levels on a variety of waterfowl and habitat committed to conserving and valuing waterfowl and wetlands. management issues. In 1986, the Canadian and American governments signed this Since its creation, the NAWMP’s partners have worked to international partnership agreement, laying the foundation conserve and restore wetlands, associated uplands and other for international cooperation in the recovery of declining key habitats for waterfowl across Canada, the United States and Mexico. -
Wetlands, Biodiversity and the Ramsar Convention
Wetlands, Biodiversity and the Ramsar Convention Wetlands, Biodiversity and the Ramsar Convention: the role of the Convention on Wetlands in the Conservation and Wise Use of Biodiversity edited by A. J. Hails Ramsar Convention Bureau Ministry of Environment and Forest, India 1996 [1997] Published by the Ramsar Convention Bureau, Gland, Switzerland, with the support of: • the General Directorate of Natural Resources and Environment, Ministry of the Walloon Region, Belgium • the Royal Danish Ministry of Foreign Affairs, Denmark • the National Forest and Nature Agency, Ministry of the Environment and Energy, Denmark • the Ministry of Environment and Forests, India • the Swedish Environmental Protection Agency, Sweden Copyright © Ramsar Convention Bureau, 1997. Reproduction of this publication for educational and other non-commercial purposes is authorised without prior perinission from the copyright holder, providing that full acknowledgement is given. Reproduction for resale or other commercial purposes is prohibited without the prior written permission of the copyright holder. The views of the authors expressed in this work do not necessarily reflect those of the Ramsar Convention Bureau or of the Ministry of the Environment of India. Note: the designation of geographical entities in this book, and the presentation of material, do not imply the expression of any opinion whatsoever on the part of the Ranasar Convention Bureau concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Citation: Halls, A.J. (ed.), 1997. Wetlands, Biodiversity and the Ramsar Convention: The Role of the Convention on Wetlands in the Conservation and Wise Use of Biodiversity. -
Constructed Wetlands
VA DEQ STORMWATER DESIGN SPECIFICATION NO. 13 CONSTRUCTED WETLAND VIRGINIA DEQ STORMWATER DESIGN SPECIFICATION No. 13 CONSTRUCTED WETLANDS VERSION 1.9 March 1, 2011 SECTION 1: DESCRIPTION Constructed wetlands, sometimes called stormwater wetlands, are shallow depressions that receive stormwater inputs for water quality treatment. Wetlands are typically less than 1 foot deep (although they have greater depths at the forebay and in micropools) and possess variable microtopography to promote dense and diverse wetland cover (Figure 13.1). Runoff from each new storm displaces runoff from previous storms, and the long residence time allows multiple pollutant removal processes to operate. The wetland environment provides an ideal environment for gravitational settling, biological uptake, and microbial activity. Constructed wetlands are the final element in the roof-to-stream runoff reduction sequence. They should only be considered for use after all other upland runoff reduction opportunities have been exhausted and there is still a remaining water quality or Channel Protection Volume to manage. Version 1.9, March 1, 2011 Page 1 of 30 VA DEQ STORMWATER DESIGN SPECIFICATION NO. 13 CONSTRUCTED WETLAND SECTION 2: PERFORMANCE The overall stormwater functions of constructed wetlands are summarized in Table 13.1. Table 13.1. Summary of Stormwater Functions Provided by Constructed Wetlands Stormwater Function Level 1 Design Level 2 Design Annual Runoff Volume Reduction (RR) 0% 0% Total Phosphorus (TP) EMC 50% 75% Reduction1 by BMP Treatment Process Total Phosphorus (TP) Mass Load 50% 75% Removal 1 Total Nitrogen (TN) EMC Reduction by 25% 55% BMP Treatment Process Total Nitrogen (TN) Mass Load 25% 55% Removal Yes. -
City Record Edition
VOLUME CXLII NUMBER 98 THURSDAY, MAY 21, 2015 Price: $4.00 Environmental Protection ������������������������� 1982 Agency Chief Contracting Office � � � � � � � 1982 THE CITY RECORD TABLE OF CONTENTS Health and Hospitals Corporation . 1982 BILL DE BLASIO PUBLIC HEARINGS AND MEETINGS Health and Mental Hygiene . 1982 Mayor Housing Preservation and Development ��� 1983 Banking Commission ��������������������������������� 1969 STACEY CUMBERBATCH Tenant Resources � � � � � � � � � � � � � � � � � � � 1983 Borough President - Manhattan ��������������� 1969 Commissioner, Department of Citywide Borough President - Queens . 1969 Human Resources Administration . 1983 Administrative Services City Planning Commission . 1970 Information Technology and Community Boards . 1978 Telecommunications. 1983 ELI BLACHMAN Editor, The City Record Employees’ Retirement System ����������������� 1978 Agency Chief Contracting Officer � � � � � � 1983 Housing Authority . 1978 Parks and Recreation ��������������������������������� 1983 Published Monday through Friday except Landmarks Preservation Commission . 1978 Small Business Services . 1984 legal holidays by the New York City Mayor’s Office of Contract Services . 1980 Procurement � � � � � � � � � � � � � � � � � � � � � � � 1984 Department of Citywide Administrative PROPERTY DISPOSITION Services under Authority of Section 1066 of AGENCY PUBLIC HEARINGS the New York City Charter. Citywide Administrative Services ������������� 1980 Aging ����������������������������������������������������������� 1984 Office of -
New York City Rules! Regulatory Models for Environmental and Public Health
Pace University DigitalCommons@Pace Pace Law Faculty Publications School of Law 2015 New York City Rules! Regulatory Models for Environmental and Public Health Jason J. Czarnezki Elisabeth Haub School of Law at Pace University Follow this and additional works at: https://digitalcommons.pace.edu/lawfaculty Part of the Environmental Law Commons, Food and Drug Law Commons, and the State and Local Government Law Commons Recommended Citation Jason J. Czarnezki, New York City Rules! Regulatory Models for Environmental and Public Health, 66 Hastings L.J. 1621 (2015), http://digitalcommons.pace.edu/lawfaculty/999/. This Article is brought to you for free and open access by the School of Law at DigitalCommons@Pace. It has been accepted for inclusion in Pace Law Faculty Publications by an authorized administrator of DigitalCommons@Pace. For more information, please contact [email protected]. Articles New York City Rules! Regulatory Models for Environmental and Public Health JASON J. CZARNEZKI* Scholars have become increasingly interested in facilitating improvement in environmental and public health at the local level. Over the lastfew years, former New York City Mayor Michael Bloomberg and the New York City Council have proposed and adopted numerous environmental and public health initiatives, providing a useful case study for analyzing the development and success (or failure) of various regulatory tools, and offering larger lessons about regulation that can be extrapolated to other substantive areas. This Article, first, seeks to categorize and evaluate these "New York Rules," creating a new taxonomy to understanddifferent types of regulation. These "New York Rules" include bans, informational regulation, education, infrastructure,mandates, standard-setting, and economic (dis)incentives. -
Des Oueds Mythiques Aux Rivières Artificielles : L'hydrographie Du Bas-Sahara Algérien
P hysio-Géo - Géographie Physique et Environnement, 2010, volume IV 107 DES OUEDS MYTHIQUES AUX RIVIÈRES ARTIFICIELLES : L'HYDROGRAPHIE DU BAS-SAHARA ALGÉRIEN Jean-Louis BALLAIS (1) (1) : CEGA-UMR "ESPACE" CNRS et Université de Provence, 29 Avenue Robert Schuman, 13621 AIX-EN- PROVENCE. Courriel : [email protected] RÉSUMÉ : À la lumière de recherches récentes, l'hydrographie du Bas-Sahara est revisitée. Il est montré que les oueds mythiques, Igharghar à partir du sud du Grand Erg Oriental, Mya au niveau de Ouargla et Rhir n'existent pas. Parmi les oueds réels fonctionnels, on commence à mieux connaître ceux qui descendent de l'Atlas saharien avec leurs barrages et beaucoup moins bien ceux de la dorsale du M'Zab. Des oueds réels fossiles viennent d'être découverts dans le Souf, à l'amont du Grand Erg Oriental. Les seules vraies rivières, pérennes, tel le grand drain, sont celles alimentées par les eaux de collature des oasis et des réseaux pluviaux des villes. MOTS CLÉS : oueds mythiques, oueds fossiles, oueds fonctionnels, rivières artificielles, Bas-Sahara, Algérie. ABSTRACT: New researches on Bas-Sahara hydrography have been performed. They show that mythical wadis such as wadi Igharghar from south of the Grand Erg Oriental, wadi Mya close to Ouargla and wadi Rhir do not exist. Among the functional real wadis, those that run from the saharan Atlas mountains are best known, due to their dams. Those of the M'Zab ridge are still poorly studied. Fossil real wadis have been just discovered in the Souf region, north of the Grand Erg Oriental.