Chapter 1 Are Water Beetles Good

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 1 Are Water Beetles Good Departamento de Ecología e Hidrología Facultad de Biología Universidad de Murcia Use of Iberian water beetles in biodiversity conservation Uso de los coleópteros acuáticos ibéricos en la conservación de la biodiversidad Memoria presentada para optar al grado de doctor en Biología por el licenciado David Sánchez Fernández 2008 "Si Dios es el autor de todas las criaturas, hay que reconocer que siente una extraordinaria simpatía por los escarabajos". John B. S. Haldane A mis padres ÍNDICE Use of Iberian water beetles in biodiversity conservation Uso de los coleópteros acuáticos ibéricos en la conservación de la biodiversidad Resumen general……………………………………………………………………………… 1 General Abstract……………………………………………………………………………… 25 Chapter 1. Are water beetles good indicators of biodiversity in Mediterranean aquatic ecosystems? The case of the Segura river basin (SE Spain)……………….. 49 Chapter 2. Selecting areas to protect the biodiversity of aquatic ecosystems in a semiarid Mediterranean region using water beetles. ………………………… 69 Chapter 3. Bias in freshwater biodiversity sampling: the case of Iberian water beetles … 93 Chapter 4. Assessing models for forecasting species richness of Iberian water beetles… 117 Chapter 5. Are the endemic water beetles of the Iberian Peninsula and the Balearic Islands effectively protected?……………. ……………………………………. 137 Acknowledgements/Agradecimientos……………………………………………………...… 173 Coleópteros acuáticos ibéricos y conservación de la biodiversidad Resumen General 1 Resumen General 2 Coleópteros acuáticos ibéricos y conservación de la biodiversidad Resumen General INTRODUCCIÓN Actualmente, uno de los principales problemas ambientales es la aceleración en la tasa de extinción de especies asociada con actividades humanas, hecho que provoca una pérdida irreversible de información biológica y que puede tener consecuencias impredecibles (Kerr y Currie, 1995; Purvis y Hector, 2000). En este sentido, la conservación de la diversidad biológica ha llegado a convertirse en una preocupación global y un objetivo ineludible. Esta circunstancia se ha visto plasmada en la Convención sobre Diversidad Biológica (United Nations Environment Programme, 2005). Existe un amplio consenso científico en el reconocimiento del alto grado de amenaza al que está sometida la biodiversidad acuática, por encima de otros ecosistemas (Allan y Flecker, 1993; Master et al., 1998; Ricciardi y Rasmussen, 1999). Además, durante las próximas décadas, probablemente aumentaran las presiones humanas sobre los recursos acuáticos, poniendo todavía más especies en peligro (Strayer, 2006). La pérdida de biodiversidad acuática es especialmente preocupante en el caso de la Península Ibérica, un área de alto interés biogeográfico, reconocida como una de las regiones europeas más interesantes en términos de diversidad de especies (Médail y Quézel, 1999; Domínguez-Lozano et al., 1996; Reyjol et al., 2007). Esta región presenta una amplia diversidad de ecosistemas acuáticos, abarcando desde arroyos de cabecera, pasando por pozas, humedales y ramblas hipersalinas, hasta salinas interiores y costeras. Muchos de estos ecosistemas son únicos tanto por la presencia de especies raras y endémicas como por sus características ecológicas (Ribera, 2000; Ribera et al., 2003; Gómez et al., 2005). Por otro lado, el paisaje en esta región ha estado sometido a una fuerte influencia humana durante cientos de años, dando lugar a una progresiva pérdida de especies y hábitats acuáticos. La transformación de los tradicionales paisajes 3 Resumen General agrícolas extensivos a agricultura intensiva se ha acelerado en las últimas décadas, y la actual expansión de tierras irrigadas en esta zona está incrementando las demandas de agua para uso agrícola, dando lugar a la reducción de caudales naturales en ríos y arroyos, sobreexplotación de acuíferos, pérdida de fuentes y la disminución de reservas de agua en embalses (Martínez-Fernández y Esteve, 2005). A pesar de estos evidentes cambios, tan rápidos como destructivos, la biodiversidad acuática goza de una prioridad muy baja en iniciativas de conservación llevadas a cabo por organizaciones gubernamentales, tanto a escala nacional como internacional (Balmford et al., 2002; Saunders et al., 2002). Así, la conservación de los ecosistemas y la biota acuática en la Península Ibérica se ha convertido en una delicada y urgente tarea. En este sentido, se hace necesario identificar aquellas áreas con alta biodiversidad y/o que albergan especies amenazadas con el objetivo de asignar prioridades de conservación (Margules y Pressey 2000; Moore et al., 2003). Para intentar aproximarnos a algo tan complejo como es la medida de la biodiversidad, una de las estrategias más utilizadas es el uso de indicadores o sustitutos de biodiversdidad. Entre estos, se suelen utilizar medidas de biodiversidad a escala amplia (datos climáticos y de tipos de vegetación), características del hábitat (naturalidad o tipismo), rangos taxonómicos altos (géneros o familias) o taxones indicadores (Noss, 1990; Williams, 1996). En este último caso, se utilizan grupos con taxonomía bien conocida que han sido suficientemente estudiados en un área determinada, asumiendo que sus patrones de riqueza, rareza y endemicidad son similares a los del resto de grupos menos conocidos (Reyers y Jaarsveld, 2000). Con frecuencia, los invertebrados acuáticos han sido utilizados como indicadores del estado ecológico o la calidad de los hábitats, sobre todo con relación al enriquecimiento por nutrientes o la presencia de determinados contaminantes (Wright et al., 2000). Sin embargo, se ha prestado poca atención a la identificación de posibles taxones indicadores de biodiversidad acuática (Paszkowski y Tonn 2000; Heino 2002; Briers y Biggs 2003). Para identificar áreas prioritarias de conservación, tradicionalmente se han utilizado plantas y/o vertebrados, especialmente aves, mientras que los artrópodos han sido ignorados sistemáticamente en los estudios (Posadas et al., 2001; Serrano, 2002), a pesar de que representan sobre el 95% de todas las especies de fauna conocidas (Hull et al., 1998; Palmer, 1999; Sluys, 1999). Dentro de los invertebrados acuáticos, los coleópteros son uno de los grupos más ricos. Se estima que podría haber actualmente en la tierra sobre unas 18.000 especies de coleópteros acuáticos (Jäch y Balke, 2008), siendo uno de los grupos más útiles 4 Coleópteros acuáticos ibéricos y conservación de la biodiversidad para clasificar ecosistemas acuáticos en función de su interés de conservación (Jeffries, 1988; Foster et al., 1990). Los coleópteros acuáticos constituyen potencialmente un grupo ideal para ser usado como indicadores de biodiversidad ya que cumplen muchos de los criterios propuestos en la literatura para la selección de este tipo de taxones indicadores (Noss, 1990; Pearson y Cassola, 1992; Pearson, 1994). A pesar de esto, se hace necesario elaborar test formales para evaluar si los potenciales grupos indicadores reflejan el conjunto de la biodiversidad acuática. En este contexto, es imprescindible el uso de taxones indicadores adecuados para seleccionar áreas para la conservación de la biodiversidad acuática, que puedan medir, de esta manera, la efectividad de las áreas protegidas existentes en la conservación de la biodiversidad acuática e identificar vacíos de protección, es decir, áreas que están fuera de los espacios protegidos y que son interesantes para la conservación de la biodiversidad acuática (Scott et al., 1993). Este último objetivo es crucial, ya que la designación de áreas protegidas ha estado basada históricamente en criterios de oportunismo o ad hoc, y por otro lado, los esfuerzos para conservar la biodiversidad acuática han sido escasos, creándose muy pocas áreas para conservarla específicamente (Saunders et al., 2002). Para proporcionar información científica sobre patrones y procesos de biodiversidad basados en estos taxones indicadores que permitan desarrollar estrategias de conservación adecuadas, es necesario disponer de bases de datos de calidad (Prendergast et al., 1993; Soberón y Peterson, 2004; Guralnick et al., 2007; Hortal et al., 2007). Sin embargo, solo determinados países con suficientes recursos y con una larga tradición naturalista son capaces de producir buenos mapas de distribución para varios grupos taxonómicos basados en el desarrollo de muestreos suficientes (Lawton et al., 1994; Griffiths et al., 1999). Este no es el caso de los países mediterráneos, como España, en los que los inventarios para muchos de los grupos faunísticos, especialmente insectos, son incompletos o inexistentes (Ramos et al., 2001), apareciendo vacíos importantes cuando se representa en un mapa toda la información disponible de especies de insectos. Esto es especialmente evidente cuando se representan amplias escalas espaciales. Este inconveniente puede ser solventado empleando métodos de modelado estadístico, que se basan en la información de áreas con inventarios fiables y, a partir de estas, son capaces de predecir determinados atributos de biodiversidad en el resto del territorio, (Hortal et al., 2001; Ferrier, 2002; Lobo y Martín-Piera, 2002; Hortal et al., 2004; Ferrier y Guisan, 2006; Lobo, 2008). Sin embargo, la incompleta cobertura tanto geográfica como ambiental de estas áreas adecuadamente muestreadas puede comprometer la utilidad 5 Resumen General de los modelos predictivos basados en ellas (Hortal y Lobo, 2006). Por lo tanto, se hace necesario incorporar en los estudios de biodiversidad tanto medidas del esfuerzo de muestreo como estimas de los posibles
Recommended publications
  • Dorothy J. Jackson FRES FLS, Scottish Entomologist: a Bibliography Jack R
    The University of Maine DigitalCommons@UMaine Biology and Ecology Faculty Scholarship School of Biology and Ecology 10-2018 Dorothy J. Jackson FRES FLS, Scottish Entomologist: A Bibliography Jack R. McLachlan UMaine, [email protected] Follow this and additional works at: https://digitalcommons.library.umaine.edu/bio_facpub Part of the Entomology Commons, and the History of Science, Technology, and Medicine Commons Repository Citation McLachlan, JR (2018) Dorothy J. Jackson FRES FLS, Scottish entomologist: a bibliography. Latissimus 42: 10-13 This Article is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Biology and Ecology Faculty Scholarship by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. ISSN 0966 2235 LATISSIMUS NEWSLETTER OF THE BALFOUR-BROWNE CLUB Number Forty Two October 2018 October 2018 LATISSIMUS 42 10 DOROTHY J. JACKSON FRES FLS, SCOTTISH ENTOMOLOGIST: A BIBLIOGRAPHY Jack R. McLachlan Dorothy Jean Jackson FRES FLS (1892-1973) should be familiar to anyone interested in water beetles. She published prolifically on the ecology, distribution, flight capacity, and parasites of water beetles, and made especially important contributions to our knowledge of dytiscids. Lees (1974) provided a very brief and somewhat accurate obituary. I am currently preparing a more comprehensive biography of her and would be grateful to receive any notes or anecdotes from those that knew or met her. Foster (1991), at the request of the late Hans Schaeflein, was the first effort in putting together a publication list. Here I provide a more extensive bibliography of her work that is almost certainly incomplete, but I think includes most of her scientific output between 1907 and 1973.
    [Show full text]
  • Water Beetles
    Ireland Red List No. 1 Water beetles Ireland Red List No. 1: Water beetles G.N. Foster1, B.H. Nelson2 & Á. O Connor3 1 3 Eglinton Terrace, Ayr KA7 1JJ 2 Department of Natural Sciences, National Museums Northern Ireland 3 National Parks & Wildlife Service, Department of Environment, Heritage & Local Government Citation: Foster, G. N., Nelson, B. H. & O Connor, Á. (2009) Ireland Red List No. 1 – Water beetles. National Parks and Wildlife Service, Department of Environment, Heritage and Local Government, Dublin, Ireland. Cover images from top: Dryops similaris (© Roy Anderson); Gyrinus urinator, Hygrotus decoratus, Berosus signaticollis & Platambus maculatus (all © Jonty Denton) Ireland Red List Series Editors: N. Kingston & F. Marnell © National Parks and Wildlife Service 2009 ISSN 2009‐2016 Red list of Irish Water beetles 2009 ____________________________ CONTENTS ACKNOWLEDGEMENTS .................................................................................................................................... 1 EXECUTIVE SUMMARY...................................................................................................................................... 2 INTRODUCTION................................................................................................................................................ 3 NOMENCLATURE AND THE IRISH CHECKLIST................................................................................................ 3 COVERAGE .......................................................................................................................................................
    [Show full text]
  • Bregalnica River Watershed”
    Project Report “Ecological Data Gap Analysis and Ecological Sensitivity Map Development for the Bregalnica River Watershed” Dekons-Ema and Macedonian Ecological Society Book 4 Report on the status of protected areas in Bregalnica watershed Project coordinator: Slavčo Hristovski Director: Menka Spirovska Skopje, December 2015 Report on the status of protected areas in Bregalnica watershed Project implementation: Dekons-Ema and Macedonian Ecological Society Project funding: Center for the development of Eastern Planning Region Editors: Brajanoska Robertina and Slavcho Hristovski Authors: Brajanoska Robertina Valentina Slavevska Daniela Jovanovska Slavcho Hristovski Stamenkovikj Vasko Avukatov Metodija Velevski Nikolcho Velkovski Aleksandar Sarov Mitko Kostadinovski Zlatko Levkov Bogoljub Sterijovski Vlado Matevski Katerina Rusevska Ljiljana Tomovikj Sonja Ivanovska Despina Kitanova Svetlana Pejovikj Vladimir Dzabirski Aleksandar Stojanov Natalija Melovska Ljupcho Melovski Dime Melovski Evgenija Jordanovska Citation: Brajanoska, R., Hristovski, S. eds. (2015). Report on the status of protected areas in Bregalnica watershed. Final report of the project “Ecological Data Gap Analysis and Ecological Sensitivity Map Development for the Bregalnica River Watershed”, Book 4, Skopje. Dekons-Ema Environmental Management Associates Mitropolit Teodosij Gologanov st., 44/4 1000 Skopje [email protected] http://www.ema.com.mk Macedonian Ecological Society Vladimir Nazor st., 10 1000 Skopje [email protected] http://www.mes.org.mk The Report on the status of protected areas in Bregalnica watershed was prepared within the Project " Ecological Data Gap Analysis and Ecological Sensitivity Map Development for the Bregalnica River Watershed ", Contract No., 0205-145/10 of 16.06.2014, signed between the Center for the development of Eastern Planning Region, represented by Dragica Zdraveva, coordinator of the Center and Environmental Management Associates Dekons-Ema represented by Menka Spirovska, Director.
    [Show full text]
  • Torix Rickettsia Are Widespread in Arthropods and Reflect a Neglected Symbiosis
    GigaScience, 10, 2021, 1–19 doi: 10.1093/gigascience/giab021 RESEARCH RESEARCH Torix Rickettsia are widespread in arthropods and Downloaded from https://academic.oup.com/gigascience/article/10/3/giab021/6187866 by guest on 05 August 2021 reflect a neglected symbiosis Jack Pilgrim 1,*, Panupong Thongprem 1, Helen R. Davison 1, Stefanos Siozios 1, Matthew Baylis1,2, Evgeny V. Zakharov3, Sujeevan Ratnasingham 3, Jeremy R. deWaard3, Craig R. Macadam4,M. Alex Smith5 and Gregory D. D. Hurst 1 1Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Wirral CH64 7TE, UK; 2Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, 8 West Derby Street, Liverpool L69 7BE, UK; 3Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1, Canada; 4Buglife – The Invertebrate Conservation Trust, Balallan House, 24 Allan Park, Stirling FK8 2QG, UK and 5Department of Integrative Biology, University of Guelph, Summerlee Science Complex, Guelph, Ontario N1G 2W1, Canada ∗Correspondence address. Jack Pilgrim, Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK. E-mail: [email protected] http://orcid.org/0000-0002-2941-1482 Abstract Background: Rickettsia are intracellular bacteria best known as the causative agents of human and animal diseases. Although these medically important Rickettsia are often transmitted via haematophagous arthropods, other Rickettsia, such as those in the Torix group, appear to reside exclusively in invertebrates and protists with no secondary vertebrate host. Importantly, little is known about the diversity or host range of Torix group Rickettsia.
    [Show full text]
  • Lessons from Genome Skimming of Arthropod-Preserving Ethanol Benjamin Linard, P
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archive Ouverte en Sciences de l'Information et de la Communication Lessons from genome skimming of arthropod-preserving ethanol Benjamin Linard, P. Arribas, C. Andújar, A. Crampton-Platt, A. P. Vogler To cite this version: Benjamin Linard, P. Arribas, C. Andújar, A. Crampton-Platt, A. P. Vogler. Lessons from genome skimming of arthropod-preserving ethanol. Molecular Ecology Resources, Wiley/Blackwell, 2016, 16 (6), pp.1365-1377. 10.1111/1755-0998.12539. hal-01636888 HAL Id: hal-01636888 https://hal.archives-ouvertes.fr/hal-01636888 Submitted on 17 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Lessons from genome skimming of arthropod-preserving 2 ethanol 3 Linard B.*1,4, Arribas P.*1,2,5, Andújar C.1,2, Crampton-Platt A.1,3, Vogler A.P. 1,2 4 5 1 Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 6 5BD, UK, 7 2 Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot 8 SL5 7PY, UK, 9 3 Department
    [Show full text]
  • The Evolution and Genomic Basis of Beetle Diversity
    The evolution and genomic basis of beetle diversity Duane D. McKennaa,b,1,2, Seunggwan Shina,b,2, Dirk Ahrensc, Michael Balked, Cristian Beza-Bezaa,b, Dave J. Clarkea,b, Alexander Donathe, Hermes E. Escalonae,f,g, Frank Friedrichh, Harald Letschi, Shanlin Liuj, David Maddisonk, Christoph Mayere, Bernhard Misofe, Peyton J. Murina, Oliver Niehuisg, Ralph S. Petersc, Lars Podsiadlowskie, l m l,n o f l Hans Pohl , Erin D. Scully , Evgeny V. Yan , Xin Zhou , Adam Slipinski , and Rolf G. Beutel aDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; bCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; cCenter for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany; dBavarian State Collection of Zoology, Bavarian Natural History Collections, 81247 Munich, Germany; eCenter for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; fAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; gDepartment of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany; hInstitute of Zoology, University of Hamburg, D-20146 Hamburg, Germany; iDepartment of Botany and Biodiversity Research, University of Wien, Wien 1030, Austria; jChina National GeneBank, BGI-Shenzhen, 518083 Guangdong, People’s Republic of China; kDepartment of Integrative Biology, Oregon State
    [Show full text]
  • Metacommunities and Biodiversity Patterns in Mediterranean Temporary Ponds: the Role of Pond Size, Network Connectivity and Dispersal Mode
    METACOMMUNITIES AND BIODIVERSITY PATTERNS IN MEDITERRANEAN TEMPORARY PONDS: THE ROLE OF POND SIZE, NETWORK CONNECTIVITY AND DISPERSAL MODE Irene Tornero Pinilla Per citar o enllaçar aquest document: Para citar o enlazar este documento: Use this url to cite or link to this publication: http://www.tdx.cat/handle/10803/670096 http://creativecommons.org/licenses/by-nc/4.0/deed.ca Aquesta obra està subjecta a una llicència Creative Commons Reconeixement- NoComercial Esta obra está bajo una licencia Creative Commons Reconocimiento-NoComercial This work is licensed under a Creative Commons Attribution-NonCommercial licence DOCTORAL THESIS Metacommunities and biodiversity patterns in Mediterranean temporary ponds: the role of pond size, network connectivity and dispersal mode Irene Tornero Pinilla 2020 DOCTORAL THESIS Metacommunities and biodiversity patterns in Mediterranean temporary ponds: the role of pond size, network connectivity and dispersal mode IRENE TORNERO PINILLA 2020 DOCTORAL PROGRAMME IN WATER SCIENCE AND TECHNOLOGY SUPERVISED BY DR DANI BOIX MASAFRET DR STÉPHANIE GASCÓN GARCIA Thesis submitted in fulfilment of the requirements to obtain the Degree of Doctor at the University of Girona Dr Dani Boix Masafret and Dr Stéphanie Gascón Garcia, from the University of Girona, DECLARE: That the thesis entitled Metacommunities and biodiversity patterns in Mediterranean temporary ponds: the role of pond size, network connectivity and dispersal mode submitted by Irene Tornero Pinilla to obtain a doctoral degree has been completed under our supervision. In witness thereof, we hereby sign this document. Dr Dani Boix Masafret Dr Stéphanie Gascón Garcia Girona, 22nd November 2019 A mi familia Caminante, son tus huellas el camino y nada más; Caminante, no hay camino, se hace camino al andar.
    [Show full text]
  • Colymbetes Paykulli Group (Coleoptera: Dytiscidae)
    RESEARCH ARTICLE Changing Names with Changed Address: Integrated Taxonomy and Species Delimitation in the Holarctic Colymbetes paykulli Group (Coleoptera: Dytiscidae) Marcus K. Drotz1*, Tomas Brodin2, Anders N. Nilsson2 1 Lake Vänern Museum of Natural and Cultural History, Lidköping, Västra Götaland, Sweden, 2 Department of Ecology and Environmental Science, Umeå University, Umeå, Västerbotten, Sweden * [email protected] Abstract OPEN ACCESS Species delimitation of geographically isolated forms is a long-standing problem in less studied insect groups. Often taxonomic decisions are based directly on morphologic varia- Citation: Drotz MK, Brodin T, Nilsson AN (2015) Changing Names with Changed Address: Integrated tion, and lack a discussion regarding sample size and the efficiency of migration barriers or Taxonomy and Species Delimitation in the Holarctic dispersal/migration capacity of the studied species. These problems are here exemplified in Colymbetes paykulli Group (Coleoptera: Dytiscidae). a water beetle complex from the Bering Sea region that separates North America from Eur- PLoS ONE 10(11): e0143577. doi:10.1371/journal. asia. Only a few sampled specimens occur from this particular area and they are mostly pone.0143577 found in museum and private collections. Here we utilize the theory of integrated taxonomy Editor: Donald James Colgan, Australian Museum, to discuss the speciation of the Holarctic Colymbetes paykulli water beetle complex, which AUSTRALIA historically has included up to five species of which today only two are recognized. Three Received: June 2, 2014 delimitation methods are used; landmark based morphometry of body shape, variation in Accepted: November 8, 2015 reticulation patterns of the pronotum exo-skeleton and sequence variation of the partial Published: November 30, 2015 mitochondrial gene Cyt b.
    [Show full text]
  • Volume 42, Number 2 June 2015
    Wisconsin Entomological Society N e w s I e t t e r Volume 42, Number 2 June 2015 Monitoring and Management - A That is, until volunteer moth surveyor, Steve Sensible Pairing Bransky, came onto the scene. Steve had By Beth Goeppinger, Wisconsin Department done a few moth and butterfly surveys here ofN atural Resources and there on the property. But that changed in 2013. Armed with mercury vapor lights, Richard Bong State Recreation Area is a bait and a Wisconsin scientific collector's heavily used 4,515 acre property in the permit, along with our permission, he began Wisconsin State Park system. It is located in surveying in earnest. western Kenosha County. The area is oak woodland, savanna, wetland, sedge meadow, He chose five sites in woodland, prairie and old field and restored and remnant prairie. savanna habitats. He came out many nights Surveys of many kinds and for many species in the months moths might be flying. After are done on the property-frog and toad, finding that moth populations seemed to drift fence, phenology, plants, ephemeral cycle every 3-5 days, he came out more ponds, upland sandpiper, black tern, frequently. His enthusiasm, dedication and grassland and marsh birds, butterfly, small never-ending energy have wielded some mammal, waterfowl, muskrat and wood surprising results. Those results, in turn, ducks to name a few. Moths, except for the have guided us in our habitat management showy and easy-to-identify species, have practices. been ignored. Of the 4,500 moth species found in the state, Steve has confirmed close to 1,200 on the property, and he isn't done yet! He found one of the biggest populations of the endangered Papaipema silphii moths (Silphium borer) in the state as well as 36 species of Catocola moths (underwings), them.
    [Show full text]
  • A Genus-Level Supertree of Adephaga (Coleoptera) Rolf G
    ARTICLE IN PRESS Organisms, Diversity & Evolution 7 (2008) 255–269 www.elsevier.de/ode A genus-level supertree of Adephaga (Coleoptera) Rolf G. Beutela,Ã, Ignacio Riberab, Olaf R.P. Bininda-Emondsa aInstitut fu¨r Spezielle Zoologie und Evolutionsbiologie, FSU Jena, Germany bMuseo Nacional de Ciencias Naturales, Madrid, Spain Received 14 October 2005; accepted 17 May 2006 Abstract A supertree for Adephaga was reconstructed based on 43 independent source trees – including cladograms based on Hennigian and numerical cladistic analyses of morphological and molecular data – and on a backbone taxonomy. To overcome problems associated with both the size of the group and the comparative paucity of available information, our analysis was made at the genus level (requiring synonymizing taxa at different levels across the trees) and used Safe Taxonomic Reduction to remove especially poorly known species. The final supertree contained 401 genera, making it the most comprehensive phylogenetic estimate yet published for the group. Interrelationships among the families are well resolved. Gyrinidae constitute the basal sister group, Haliplidae appear as the sister taxon of Geadephaga+ Dytiscoidea, Noteridae are the sister group of the remaining Dytiscoidea, Amphizoidae and Aspidytidae are sister groups, and Hygrobiidae forms a clade with Dytiscidae. Resolution within the species-rich Dytiscidae is generally high, but some relations remain unclear. Trachypachidae are the sister group of Carabidae (including Rhysodidae), in contrast to a proposed sister-group relationship between Trachypachidae and Dytiscoidea. Carabidae are only monophyletic with the inclusion of a non-monophyletic Rhysodidae, but resolution within this megadiverse group is generally low. Non-monophyly of Rhysodidae is extremely unlikely from a morphological point of view, and this group remains the greatest enigma in adephagan systematics.
    [Show full text]
  • World Catalogue of Haliplidae – Corrections and Additions, 2 (HALIPLIDAE) 25
    ©Wiener Coleopterologenverein (WCV), download unter www.biologiezentrum.at 22 Koleopt. Rdsch. 83 (2013) Koleopterologische Rundschau 83 23–34 Wien, September 2013 Laccophilus sordidus SHARP, 1882 First record from Iran. This is the most northern limit of the distribution of the species. It was World Catalogue of Haliplidae – previously known from Egypt, Saudi Arabia, and Yemen. corrections and additions, 2 Acknowledgements (Coleoptera: Haliplidae) We are grateful to Dr. H. Fery (Berlin) for his help with identification of some specimens and B.J. van VONDEL Dr. J. Hájek (Prague) for his help with literature. The deputy of research, Shahid Chamran University of Ahvaz is thanked for financial support of Abstract the project (# 101). A second series of corrections and additions to the World Catalogue of Haliplidae (Coleoptera) published as part of Volume 7 of the World Catalogue of insect series (VONDEL 2005) are presented. References All new taxa, new synonymies and new data on distribution are summarized. The number of species of the family Haliplidae is now 240, distributed in five genera. DARILMAZ, M.C., İNCEKARA, Ü. & VAFAEI, R. 2013: Contribution to the knowledge of Iranian Aquatic Adephaga (Coleoptera). – Spixiana 36 (1): 149–152. Key words: Coleoptera, Haliplidae, World Catalogue, additions, corrections. FERY, H. & HOSSEINIE, S.O. 1998: A taxonomic revision of Deronectes Sharp, 1882 (Insecta: Coleoptera: Dytiscidae) (part II). – Annalen des Naturhistorischen Museums Wien B 100: 219–290. Introduction FERY, H., PEŠIĆ, V. & DARVISHZADEH, I. 2012: Faunistic notes on some Hydradephaga from the Khuzestan, Hormozgan and Sistan & Baluchestan provinces in Iran, with descriptive notes on the The World Catalogue of the beetle family Haliplidae (VONDEL 2005) was published on June 24, female of Glareadessus franzi Wewalka & Biström 1998 (Coleoptera, Dytiscidae, Noteridae).
    [Show full text]
  • A Manual for the Survey and Evaluation of the Aquatic Plant and Invertebrate Assemblages of Grazing Marsh Ditch Systems
    A manual for the survey and evaluation of the aquatic plant and invertebrate assemblages of grazing marsh ditch systems Version 6 Margaret Palmer Martin Drake Nick Stewart May 2013 Contents Page Summary 3 1. Introduction 4 2. A standard method for the field survey of ditch flora 5 2.1 Field survey procedure 5 2.2 Access and licenses 6 2.3 Guidance for completing the recording form 6 Field recording form for ditch vegetation survey 10 3. A standard method for the field survey of aquatic macro- invertebrates in ditches 12 3.1 Number of ditches to be surveyed 12 3.2 Timing of survey 12 3.3 Access and licences 12 3.4 Equipment 13 3.5 Sampling procedure 13 3.6 Taxonomic groups to be recorded 15 3.7 Recording in the field 17 3.8 Laboratory procedure 17 Field recording form for ditch invertebrate survey 18 4. A system for the evaluation and ranking of the aquatic plant and macro-invertebrate assemblages of grazing marsh ditches 19 4.1 Background 19 4.2 Species check lists 19 4.3 Salinity tolerance 20 4.4 Species conservation status categories 21 4.5 The scoring system 23 4.6 Applying the scoring system 26 4.7 Testing the scoring system 28 4.8 Conclusion 30 Table 1 Check list and scoring system for target native aquatic plants of ditches in England and Wales 31 Table 2 Check list and scoring system for target native aquatic invertebrates of grazing marsh ditches in England and Wales 40 Table 3 Some common plants of ditch banks that indicate salinity 50 Table 4 Aquatic vascular plants used as indicators of good habitat quality 51 Table 5a Introduced aquatic vascular plants 53 Table 5a Introduced aquatic invertebrates 54 Figure 1 Map of Environment Agency regions 55 5.
    [Show full text]