Processes 2021, 9, 1–9; doi:https://doi.org/10.3390/pr9020322 S1 of S9

Supplementary Materials: Supplementary Materials for “Approaches to Model Metabolism: A Review on Constraint-based, and Kinetic Metabolic Modeling”

Mohammadreza Yasemi , Mario Jolicoeur *

Text S1: Mathematical formulations of constraint-based models

Stoichiometric matrix formulation The stoichiometric matrix for a with m metabolites and n reactions is as follows:   Sm×n = si,j {i = 1, ..., m|j = 1, ..., n} (1) m×n

n n dxi + − = ∑ sij vj − ∑ sij vj, i = 1, . . . , m (2) dt j=1 j=1

Therefore, we have one column vector for each reaction and Eq.2 can be written in matrix-vector notation for the whole metabolic network as follows:

d~x = S × ~v (3) dt m n

The null space of stoichiometric matrix formulation Where is the rank for stoichiometric matrix S, the basis for the null space is a set with q = (n − r) linearly independent column vectors of dimension n, which generates the null space for stoichiometric matrix S when spanned [1].

~ n ~ ~ ~ ~ ~ K (S) = {bi ∈ R (i = 1, . . . , q) | S.bi = 0 and bi.bj = 0 (i 6= j)} (4) ~ ~ Null space(S) = span{b1,..., bq}, q = (n − r) (5)

Metabolic Flux Analysis (MFA) MFA provides an empirical flux map:

S.~v = 0 " # h i ~vu Su Sk = 0 (6) ~vk T −1 T ~vu = −[(Su Su) Su ]Sk~vk Processes 2021, 9 ; doi:https://doi.org/10.3390/pr9020322 S2 of S9

Flux Balance Analysis (FBA) The mathematical formulation of a cell objective, accounting for defined fluxes restrictions with bounding limits for the reaction fluxes, is developed as a optimization problem for FBA:

max C~T.~v subject to: (7) S.~v = 0 lb < ~v < ub

Modeling approaches complying to the thermodynamics-based constraints formulation The formulation of TMFA combines constraints from FBA, directionality and constraints on metabolites concentrations as follows:

S.~v = 0, (8)

0 ≤ vi ≤ zivMax, {i = 1, ..., r}, (9) 0 0◦ ∆rGi − K + Kzi < 0, {i = 1, ..., r|∆rGi is known}, (10) m 0◦ 0 0◦ ∆rGi + RT ∑ ni,j ln xj = ∆rGi , {i = 1, ..., r + L|∆rGi is known}, (11) j=1 0 ∆rGi − Kyi < 0, {i = 1, ..., r + L}, (12) r r yi + ∑ αi,jzj ≤ ∑ αi,j, {i = 1, ..., r + L} (13) j=1 j=1

In this method, each reversible reaction is decomposed to two backward and forward reactions. Therefore, there will be no negative vi value. zi is a binary number equal to one when there is non-zero flux or otherwise equals to zero. In Eq 10, K is fixed as a value to make sure the inequality is satisfied when zi and vi are zeros. Of interest, the whole inequality checks that the solution for flux distribution obeys the second law of thermodynamics. The Gibbs free energy calculation for each reaction i is carried out in Eq 11 with considering the activity xj of involved metabolites. Processes 2021, 9 ; doi:https://doi.org/10.3390/pr9020322 S3 of S9

Figure S1: EFMs enumeration for the running example with reversible reactions

S1 EFMs enumeration for the running example.pdf

Figure S1. EFMs enumeration for the running example with reversible reactions (a) The balanced metabolic network is same as in the main text. (b) The basis for the null space is the kernel matrix of the stoichiometric matrix. (c) 7 EFMs are enumerated assuming that all the reactions are reversible, except for v6 which is inward. Each EFM is a linear combination of the basis vectors and for this system with reversible reactions, the negative coefficients in the columns 6 and 7 appear. (d-j) The flux maps for the EFMs are shown on the substrate graph of the network. (g,i,j) The EFMs that include some reactions in the reverse direction. (h) The EFM that includes a futile cycle. Processes 2021, 9 ; doi:https://doi.org/10.3390/pr9020322 S4 of S9

Table S1. Properties of the different MPA methods.

MPA Methods Properties Method Advantages Disadvantages Applications Toolbox/Software Name Elementary No need for flux measurement Calculation of all EFMs is Suitable for small to medium scale models [4, METATOOL [13]; Flux Mode and optimality objective function computationally demanding 6]; Identification of coregulated and coexpressed CellNetAnalyzer (EFM) [2]; Every flux distribution can be [4,5]; Small percentage of EFMs are reactions and genes [7]; Composition of the [14]; COPASI decomposed into basic functional biologically relevant [4] minimal substrate required [7–9]; Quantification [15]; Efmtool[16]; units without cancellation [3,4] of cellular robustness [4,10,11]; Study of gene YANAsquare [17] deletions and knockouts [4,12]; Finding operational modes and optimal routes [12]; Finding pathway length [12] Extreme No need for flux measurement and Fluxes can cancel out [4,18,19]; Do Suitable for small to medium scale models [4,6]; To Expa [21]; Pathway optimality objective function [2]; not decompose reversible exchange caluclate the edges of solution space cone [18] METATOOL [13]; Analysis Reducing number of pathways and reactions [20]; Not suitable to study CellNetAnalyzer [14]; (EPA) applicability for assessing network mutations and the effect of reaction YANAsquare [17] properties [12] removal [12] Minimal cut Unbiased solution space with MCS may eliminate desired To predict metabolic reaction candidates for OptKnock [25]; set (MCS)/ respect to optimality objectives; functionalities of a metabolic elimination in order to couple cell growth and CellNetAnalyzer constrained Exploits minimum desired yields of network mistakenly [24]; The production [23]; The applicability is extended to (version 2018.2) [14] minimal cut bioproducts and minimum desired computation cost is still higher than genome-scale models [22] set (cMCS) biomass yield as additional inputs to FBA-based methods constrain the design space; The flux distributions are obligated to only represent growth that is coupled with production [22,23]

Table S2. The hypothesized objective functions of the cell and their biological rationales. Particular Objectives of the Cell Objective Biological rationale Reference Maximum growth In the exponential growth phase, cells utilize their [26] resources to maximize proliferation, i.e. to form new biomass. This assumption is biologically relevant for both and eukaryotes, although a large part of cell resources are directed to maintenance cell in eukaryotes. Maximum bioenergetic Cells aim for the maximal ATP production, or [27,28] production maximum reducing power, which dictates a distinct distribution of carbon flux. Minimum overall Cells aim for the minimum sum of the squares of [29–31] intracellular flux fluxes, based on the assumed maximum enzymatic efficiency for cellular growth. Maximum product Recombinant DNA (rDNA) facilitates the design [32] formation of modified cell lines with desired traits beyond predetermined cell objectives. Minimum reaction steps Assuming that the cell chooses the shortest [33] metabolic path from a substrate to a product. Minimum redox potential Focus cell capability to generate energy through [34] ubiquitous redox reactions. Processes 2021, 9 ; doi:https://doi.org/10.3390/pr9020322 S5 of S9

Table S3. List of the flux balance analysis enhancements.

Enhancements of Flux Balance Analysis Method Name Approach Regulation Enzyme-cost Reference application Flux Balance Analysis (FBA) Steady-state NO NO Studying gene knockouts [35,36], Studying cell constraint-based growth on different media [35], Finding metabolic gaps [37] Dynamic FBA (dFBA) Iterative or NO NO Description of unsteady-state growth and dynamic by-product secretion in aerobic batch, fed-batch, and anaerobic batch cultures [38], analysis of diauxic growth in [38], study of carbon storage metabolism in microalgae [39] Dynamic enzyme-cost FBA Dynamic NO YES Prediction of dynamic changes in metabolic (deFBA) fluxes and biomass composition during metabolic adaptations [40] Resource balance analysis Steady-state NO YES Prediction of the cell composition of bacteria with (RBA) respect to their medium [41] Dynamic resource balance Dynamic NO YES Optimization of production of added-value analysis (dRBA) compounds by bacteria [42] Regulatory FBA (rFBA) Iterative, YES NO Regulation of gene expression [43,44], predict Boolean logic of high-throughput experiments outcome [45], indication of knowledge gaps and unknown components and interactions [45], identification of potential targets for transcription factors [46] Steady-state regulatory FBA Steady-state YES NO Prediction of gene expression and metabolic fluxes (SR-FBA) [47] Probabilistic regulation of Steady-state, YES NO Statistical inference of regulatory network, metabolism (PROM) probabilistic automated quantification of regulatory Interactions [48] Integrated FBA (iFBA) Iterative, YES NO Encapsulation of dynamics of internal metabolites, Boolean logic, consideration of signaling molecules [49] ODE Integrated dynamic FBA Iterative, YES YES Integration of metabolic, signaling and regulatory (idFBA) Boolean logic, networks [50] ODE Parsimonious FBA (pFBA) Steady-state NO YES describing metabolic states of the cell by minimizing the overall enzymatic fluxes to eliminate the alternative flux solutions [51] Enzyme-cost FBA (ecFBA) Steady-state YES YES incorporating enzyme kinetic information in FBA framework, reduces the flux variability [52] Regulatory dynamic Dynamic YES YES Consideration of enzyme production cost and enzyme-cost FBA (r-deFBA) regulatory events, integration of metabolic, signaling and regulatory networks [53]

Table S4. Comparison of MFA and FBA.

Metabolic Flux Analysis (MFA) Flux Balance Analysis (FBA) −1 T ~vu = −Su Sm~vm max~c .~v; subject to: S.~v = 0 and lb < ~v < ub ~vu: unknown flux vector; ~v: flux vector; ~vm: measured flux vector; ~c: weights associated to fluxes based on the Su , Sm: stoichiometric matrix subsets for unknown and objective of optimization; measured fluxes respectively [54]. lb , ub: allowed lower and upper bound respectively for the flux values[35,55]. Applicable for small to medium scale metabolic networks Applicable for small to genome-scale metabolic networks at steady-state. For calculation of the empirical value of at steady-state. For calculation of the feasible flux unknown intracellular metabolic fluxes from measured distribution from objective function linear optimization. extracellular metabolites’ concentration changes.

Accurate and simple approach; Simple approach; No need for kinetic parameters; No need for kinetic parameters; Giving empirical results. Giving feasible results set. but, but, Does not consider kinetics; Does not consider kinetics; Valid at steady-state conditions; Valid at steady-state conditions; There is a trade-off between the number of measured fluxes Optimization objective may not be realistic; and laborious experimental work. Highly likely to have more than one feasible solution; Affected by incomplete genome annotation. MetaFluxNet [56]; FiatFlux [57]; OpenFlux [58]. MetaFluxNet [56]; COBRA Toolbox [59]; FASIMU [60]. Processes 2021, 9 ; doi:https://doi.org/10.3390/pr9020322 S6 of S9

Table S5. Databases for retrieving the equilibrium constants. Databases for retrieving the equilibrium constants Name Specification Reference eQuilibrator Biochemical thermodynamics data calculator. [61] Factsage Thermodynamics properties database and [62] calculator. NIST National Institute of Standards and Technology. [20]

References

1. Famili, I.; Palsson, B.O. The Convex Basis of the Left Null Space of the Stoichiometric Matrix Leads to the Definition of Metabolically Meaningful Pools. Biophysical Journal 2003, 85, 16–26. doi:10.1016/s0006-3495(03)74450-6. 2. Trinh, C.T.; Wlaschin, A.; Srienc, F. Elementary mode analysis: a useful analysis tool for characterizing cellular metabolism. Applied Microbiology and 2009, 81, 813–826. doi:10.1007/s00253-008-1770-1. 3. Schuster, S.; Hilgetag, C.; Woods, J.H.; Fell, D.A. Reaction routes in biochemical reaction systems: Algebraic properties, validated calculation procedure and example from nucleotide metabolism. Journal of Mathematical Biology 2002, 45, 153–181. doi:10.1007/s002850200143. 4. Zanghellini, J.; Ruckerbauer, D.E.; Hanscho, M.; Jungreuthmayer, C. Elementary flux modes in a nutshell: Properties, calculation and applications. Biotechnology Journal 2013, 8, 1009–1016. doi:10.1002/biot.201200269. 5. Acuña, V.; Marchetti-Spaccamela, A.; Sagot, M.F.; Stougie, L. A note on the complexity of finding and enumerating elementary modes. BioSystems 2010, 99, 210–214. doi:10.1016/j.biosystems.2009.11.004. 6. Jungreuthmayer, C.; Zanghellini, J. Designing optimal cell factories: Integer programing couples elementary mode analysis with regulation. BMC 2012, 6, 103. doi:10.1186/1752-0509-6-103. 7. Schilling, C.H.; Palsson, B.Ø. Assessment of the Metabolic Capabilities of Haemophilus influenzae Rd through a Genome-scale Pathway Analysis. Journal of Theoretical Biology 2000, 203, 249–283. doi:https://doi.org/10.1006/jtbi.2000.1088. 8. Carlson, R.; Srienc, F. Fundamental Escherichia coli biochemical pathways for biomass and energy production: Identification of reactions. Biotechnology and Bioengineering 2004, 85, 1–19. doi:10.1002/bit.10812. 9. Trinh, C.T.; Thompson, R.A., Elementary mode analysis: A useful metabolic pathway analysis tool for reprograming microbial metabolic pathways. In Reprogramming microbial metabolic pathways; Springer, 2012; pp. 21–42. 10. Stelling, J.; Gilles, E.D.; Schuster, S.; Klamt, S.; Bettenbrock, K. Metabolic network structure determines key aspects of functionality and regulation. Nature 2002, 420, 190–193. doi:10.1038/nature01166. 11. Behre, J.; Wilhelm, T.; von Kamp, A.; Ruppin, E.; Schuster, S. Structural robustness of metabolic networks with respect to multiple knockouts. Journal of Theoretical Biology 2008, 252, 433–441. doi:10.1016/j.jtbi.2007.09.043. 12. Klamt, S.; Stelling, J. Two approaches for metabolic pathway analysis? Trends in Biotechnology 2003, 21, 64–69. doi:10.1016/S0167-7799(02)00034-3. 13. Pfeiffer.; Sanchez, V.; Nuno, J.; Montero.; Schuster. METATOOL: for studying metabolic networks. Bioinformatics 1999, 15, 251–257. doi:10.1093/bioinformatics/15.3.251. 14. Klamt, S.; Saez-Rodriguez, J.; Gilles, E.D. Structural and functional analysis of cellular networks with CellNetAnalyzer. BMC SYSTEMS BIOLOGY 2007, 1, 2–2. doi:10.1186/1752-0509-1-2. 15. Hoops, S.; Sahle, S.; Gauges, R.; Lee, C.; Pahle, J.; Simus, N.; Singhal, M.; Xu, L.; Mendes, P.; Kummer, U. COPASI—a complex pathway simulator. Bioinformatics 2006, 22, 3067–3074. 16. Terzer, M.; Stelling, J. Large-scale computation of elementary flux modes with bit pattern trees. Bioinformatics 2008, 24, 2229–2235. doi:10.1093/bioinformatics/btn401. Processes 2021, 9 ; doi:https://doi.org/10.3390/pr9020322 S7 of S9

17. Schwarz, R.; Liang, C.; Kaleta, C.; Kühnel, M.; Hoffmann, E.; Kuznetsov, S.; Hecker, M.; Griffiths, G.; Schuster, S.; Dandekar, T. Integrated network reconstruction, visualization and analysis using YANAsquare. BMC bioinformatics 2007, 8, 313. doi:Artn 313 10.1186/1471-2105-8-313. 18. Papin, J.; Stelling, J.; Price, N.; Klamt, S.; Schuster, S.; Palsson, B. Comparison of network-based pathway analysis methods. Trends in biotechnology 2004, 22, 400–405. 19. Schilling, C.H.; Letscher, D.; Palsson, B.Ø. Theory for the Systemic Definition of Metabolic Pathways and their use in Interpreting Metabolic Function from a Pathway-Oriented Perspective. Journal of Theoretical Biology 2000, 203, 229–248. doi:10.1006/jtbi.2000.1073. 20. Goldberg, R.N.; Tewari, Y.B.; Bhat, T.N. Thermodynamics of enzyme-catalyzed reactions- a database for quantitative biochemistry. Bioinformatics 2004, 20, 2874–2877. doi:10.1093/bioinformatics/bth314. 21. Bell, S.L.; Palsson, B.Ø. Expa: a program for calculating extreme pathways in biochemical reaction networks. Bioinformatics 2004, 21, 1739–1740. 22. von Kamp, A.; Klamt, S. Growth-coupled overproduction is feasible for almost all metabolites in five major production . Nat Commun 2017, 8, 15956. doi:10.1038/ncomms15956. 23. Banerjee, D.; Eng, T.; Lau, A.K.; Sasaki, Y.; Wang, B.; Chen, Y.; Prahl, J.P.; Singan, V.R.; Herbert, R.A.; Liu, Y.; Tanjore, D.; Petzold, C.J.; Keasling, J.D.; Mukhopadhyay, A. Genome-scale metabolic rewiring improves titers rates and yields of the non-native product indigoidine at scale. Nat Commun 2020, 11, 5385. doi:10.1038/s41467-020-19171-4. 24. Hadicke, O.; Klamt, S. Computing complex metabolic intervention strategies using constrained minimal cut sets. Metab Eng 2011, 13, 204–13. doi:10.1016/j.ymben.2010.12.004. 25. Burgard, A.P.; Pharkya, P.; Maranas, C.D. Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 2003, 84, 647–57. doi:10.1002/bit.10803. 26. Feist, A.M.; Palsson, B.O. The biomass objective function. Current Opinion in Microbiology 2010, 13, 344–349. doi:10.1016/j.mib.2010.03.003. 27. Savinell, J.M.; Palsson, B.O. Network analysis of intermediary metabolism using linear optimization. I. Development of mathematical formalism. Journal of theoretical biology 1992, 154, 421–454. 28. Fell, D.A.; Small, J.R. Fat synthesis in adipose tissue. An examination of stoichiometric constraints. Biochemical Journal 1986, 238, 781–786. 29. Bonarius, H.P.J.; Hatzimanikatis, V.; Meesters, K.P.H.; de Gooijer, C.D.; Schmid, G.; Tramper, J. Metabolic flux analysis of hybridoma cells in different culture media using mass balances. Biotechnology and Bioengineering 1996, 50, 299–318. doi:https://doi.org/10.1002/(SICI)1097-0290(19960505)50:3<299::AID-BIT9>3.0.CO;2-B. 30. Holzhutter, H.G. The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks. Eur J Biochem 2004, 271, 2905–22. doi:10.1111/j.1432-1033.2004.04213.x. 31. Lewis, N.E.; Hixson, K.K.; Conrad, T.M.; Lerman, J.A.; Charusanti, P.; Polpitiya, A.D.; Adkins, J.N.; Schramm, G.; Purvine, S.O.; Lopez-Ferrer, D.; Weitz, K.K.; Eils, R.; Konig, R.; Smith, R.D.; Palsson, B.O. Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models. Mol Syst Biol 2010, 6, 390. doi:10.1038/msb.2010.47. 32. Hjersted, J.L.; Henson, M.A. Steady-state and dynamic flux balance analysis of ethanol production by Saccharomyces cerevisiae. IET Syst Biol 2009, 3, 167–79. doi:10.1049/iet-syb.2008.0103. 33. Maarleveld, T.R.; Wortel, M.T.; Olivier, B.G.; Teusink, B.; Bruggeman, F.J. Interplay between constraints, objectives, and optimality for genome-scale stoichiometric models. PLoS Comput Biol 2015, 11, e1004166. doi:10.1371/journal.pcbi.1004166. 34. Tajparast, M.; Frigon, D. Genome-scale metabolic model of Rhodococcus jostii RHA1 (iMT1174) to study the accumulation of storage compounds during nitrogen-limited condition. BMC Syst Biol 2015, 9, 43. doi:10.1186/s12918-015-0190-y. 35. Orth, J.D.; Thiele, I.; Palsson, B.Ø. What is flux balance analysis? Nature biotechnology 2010, 28, 245–248. 36. Edwards, J.S.; Ibarra, R.U.; Palsson, B.O. In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nature biotechnology 2001, 19. 37. Raman, K.; Chandra, N. Flux balance analysis of biological systems: applications and challenges. Briefings in Bioinformatics 2009, 10, 435–449. doi:10.1093/bib/bbp011. Processes 2021, 9 ; doi:https://doi.org/10.3390/pr9020322 S8 of S9

38. Mahadevan, R.; Edwards, J.S.; Doyle, F.J. Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophysical journal 2002, 83, 1331–1340. 39. Ghorbaniagham, A. DEVELOPMENT OF A DYNAMIC MODEL TO DESCRIBE CHO CELLS METABOLIC NETWORK AND REGULATION 2013. 40. Waldherr, S.; Oyarzún, D.A.; Bockmayr, A. Dynamic optimization of metabolic networks coupled with gene expression. Journal of Theoretical Biology 2015, 365, 469–485. doi:https://doi.org/10.1016/j.jtbi.2014.10.035. 41. Goelzer, A.; Fromion, V.; Scorletti, G. Cell design in bacteria as a convex optimization problem. Automatica 2011, 47, 1210–1218. doi:https://doi.org/10.1016/j.automatica.2011.02.038. 42. Jeanne, G.; Goelzer, A.; Tebbani, S.; Dumur, D.; Fromion, V. Dynamical resource allocation models for bioreactor optimization. IFAC-PapersOnLine 2018, 51, 20–23. doi:https://doi.org/10.1016/j.ifacol.2018.09.020. 43. Covert, M.W.; Schilling, C.H.; Palsson, B. Regulation of Gene Expression in Flux Balance Models of Metabolism. Journal of Theoretical Biology 2001, 213, 73–88. doi:https://doi.org/10.1006/jtbi.2001.2405. 44. Covert, M.W.; Palsson, B.O. Transcriptional regulation in constraints-based metabolic models of Escherichia coli. J Biol Chem 2002, 277, 28058–64. doi:10.1074/jbc.M201691200. 45. Covert, M.W.; Knight, E.M.; Reed, J.L.; Herrgard, M.J.; Palsson, B.O. Integrating high-throughput and computational data elucidates bacterial networks. Nature 2004, 429, 92–96. doi:10.1038/nature02456. 46. Herrgard, M.J.; Lee, B.S.; Portnoy, V.; Palsson, B.Ø. Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae. Genome research 2006, 16, 627–635. doi:10.1101/gr.4083206. 47. Shlomi, T.; Eisenberg, Y.; Sharan, R.; Ruppin, E. A genome-scale computational study of the interplay between transcriptional regulation and metabolism. Molecular systems biology 2007, 3, 101–101. doi:10.1038/msb4100141. 48. Chandrasekaran, S.; Price, N.D. Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences 2010, 107, 17845. doi:10.1073/pnas.1005139107. 49. Covert, M.W.; Xiao, N.; Chen, T.J.; Karr, J.R. Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli. Bioinformatics 2008, 24, 2044–2050. doi:10.1093/bioinformatics/btn352. 50. Min Lee, J.; Gianchandani, E.P.; Eddy, J.A.; Papin, J.A. Dynamic Analysis of Integrated Signaling, Metabolic, and Regulatory Networks. PLOS Computational Biology 2008, 4, e1000086. doi:10.1371/journal.pcbi.1000086. 51. Calmels, C.; McCann, A.; Malphettes, L.; Andersen, M.R. Application of a curated genome-scale metabolic model of CHO DG44 to an industrial fed-batch process. Metabolic Engineering 2019, 51, 9–19. doi:https://doi.org/10.1016/j.ymben.2018.09.009. 52. Yeo, H.C.; Hong, J.; Lakshmanan, M.; Lee, D.Y. Enzyme capacity-based genome scale modelling of CHO cells. Metabolic Engineering 2020, 60, 138–147. doi:https://doi.org/10.1016/j.ymben.2020.04.005. 53. Liu, L.; Bockmayr, A. Regulatory dynamic enzyme-cost flux balance analysis: A unifying framework for constraint-based modeling. Journal of Theoretical Biology 2020, 501, 110317. doi:https://doi.org/10.1016/j.jtbi.2020.110317. 54. Stephanopoulos, G.; Aristidou, A.A.; Nielsen, J. Metabolic engineering: principles and methodologies; Academic press, 1998. 55. Thiele, I.; Palsson, B.O. A protocol for generating a high-quality genome-scale metabolic reconstruction. NATURE PROTOCOLS 2010, 5, 93–121. doi:10.1038/nprot.2009.203. 56. Lee, D.Y.; Yun, H.; Park, S.; Lee, S.Y. MetaFluxNet: the management of metabolic reaction information and quantitative metabolic flux analysis. Bioinformatics 2003, 19, 2144–2146. 57. Zamboni, N.; Fischer, E.; Sauer, U. FiatFlux – a software for metabolic flux analysis from 13C-glucose experiments. BMC Bioinformatics 2005, 6, 209. doi:10.1186/1471-2105-6-209. 58. Quek, L.E.; Wittmann, C.; Nielsen, L.K.; Krömer, J.O. OpenFLUX: efficient modelling software for 13C-based metabolic flux analysis. Microbial Cell Factories 2009, 8, 25. doi:10.1186/1475-2859-8-25. 59. Schellenberger, J.; Que, R.; Fleming, R.M.; Thiele, I.; Orth, J.D.; Feist, A.M.; Zielinski, D.C.; Bordbar, A.; Lewis, N.E.; Rahmanian, S. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2. 0. Nature protocols 2011, 6, 1290. doi:10.1038/nprot.2011.308. Processes 2021, 9 ; doi:https://doi.org/10.3390/pr9020322 S9 of S9

60. Hoppe, A.; Hoffmann, S.; Gerasch, A.; Gille, C.; Holzhütter, H.G. FASIMU: flexible software for flux-balance computation series in large metabolic networks. BMC bioinformatics 2011, 12, 28. 61. Flamholz, A.; Noor, E.; Bar-Even, A.; Milo, R. eQuilibrator—the biochemical thermodynamics calculator. Nucleic Acids Research 2011, 40, D770–D775. doi:10.1093/nar/gkr874. 62. Bale, C.W.; Bélisle, E.; Chartrand, P.; Decterov, S.A.; Eriksson, G.; Gheribi, A.E.; Hack, K.; Jung, I.H.; Kang, Y.B.; Melançon, J.; Pelton, A.D.; Petersen, S.; Robelin, C.; Sangster, J.; Spencer, P.; Van Ende, M.A. FactSage thermochemical software and databases, 2010–2016. Calphad 2016, 54, 35–53. doi:https://doi.org/10.1016/j.calphad.2016.05.002.