Flux Balance Analysis Flux Balance Analysis (FBA) Is a Computational Method for Studying Fluxes Through Metabolic Networks at Steady State

Total Page:16

File Type:pdf, Size:1020Kb

Flux Balance Analysis Flux Balance Analysis (FBA) Is a Computational Method for Studying Fluxes Through Metabolic Networks at Steady State Flux balance analysis Flux balance analysis (FBA) is a computational method for studying fluxes through metabolic networks at steady state. Here, steady state means that metabolic fluxes (reaction rates) and ​ ​ intracellular metabolite concentration are both constant over time. Therefore, the total rates of production and consumption of any intracellular metabolite must be equal (otherwise the ​ ​ metabolite concentration would change). We will see how this “balancing” of fluxes help us analyze metabolic networks. For each reaction acting on metabolite in a network, we assign a negative stoichiometry coefficient s < 0 if the metabolite is a substrate, and a positive s > 0 if the metabolic is a product ​ ​ ​ ​ of the reaction. For example, for the adenylate kinase reaction AMP + ATP ←→ 2 ADP the stoichiometry coefficient is ­1 for AMP, ­1 for ATP, and +2 for ADP. To deal with metabolic ​ ​ networks consisting of many reactions and metabolites, we collect all these stoichiometry coefficients in a stoichiometry matrix S where metabolites are rows and reactions are columns, ​ ​ ​ ​ and write Smr for the coefficient of metabolite m, reaction r. Below is an example network and ​ ​ ​ ​ ​ ​ ​ corresponding stoichiometry matrix for the urea cycle. For example, the Ass1 has coefficients S33 = ­1 for Citrulline (substrate) and S43 = +1 for ArgSucc (product). Note that uptake and ​ ​ ​ ​ ​ release fluxes (arrows in/out of the “cell”) are not considered as “reactions” here and are not part of the stoichiometry matrix. Now let vr denote the flux through reaction r, in the direction specified by the metabolic network. ​ ​ ​ ​ ​ For example, v1 = 100 in the urea cycle network would denote a flux of 100 (some kind of molar ​ ​ ​ amounts per unit time) through the Cps1 reaction in the forward direction, while negative values mean flux in the reverse direction. Then, the consumption or production of metabolite m due to ​ ​ reaction r is Smr * vr, again positive for production and negative for consumption. Note that since ​ ​ ​ ​ ​ ​ ​ ​ Smr < 0 when metabolite m is a substrate, the rate Smr * vr is negative for substrates, as ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ expected. For example, in the urea cycle network NH4 is consumed by Cps1 at a rate ­100 if v1 ​ ​ ​ ​ = 100, because S11 = ­1. Also, stoichiometry coefficients > 1 will “scale” the production of a ​ ​ ​ metabolite as expected: for example, in the adenylate kinase reaction above, 2 units of ADP is produced per unit time when the flux through the reaction is 1, because the stoichiometry coefficient for ADP is +2. Now, the total production or consumption of a metabolite m in a network is the sum across all n ​ ​ ​ ​ ​ reactions, Sm1 * v1 + Sm2 * v2 + … + Smn * vn (1) ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ (Most of the terms in this sum be zero, since most coefficients Smr = 0, as seen in the urea cycle ​ ​ ​ example; only a few reactions in a network will produce or consume any given metabolite.) The steady­state assumption says that this sum should be zero for every intracellular metabolite m. ​ ​ ​ ​ For metabolites that are considered to be consumed by the cell (nutrients) the sum is negative, while for byproducts released from the cell, the sum is positive. In the urea cycle model, NH ​4 and Citrulline are consumed, while arginine and urea are released; only Carbomyl­P, Ornithine and ArgSucc are considered “intracellular”. (Often, we only model a small part of the cellular metabolic network, so “uptake” and “release” and “intracellular” actually refers to the boundaries of the model, not of the actual cell.) So in the urea cycle model, we obtain three equations from ​ ​ the “intracellular” metabolites in rows 2, 4 and 6 of the stoichiometry matrix. v1 ­ v2 = 0 (Carbomyl­P) ​ ​ ​ ​ ​ v3 ­ v4 = 0 (ArgSucc) ​ ​ ​ ​ ​ ­v2 + v5 = 0 (Ornithine) ​ ​ ​ ​ ​ These equations is the mathematical statement of the fact that fluxes producing and consuming fluxes must balance each other at steady state. Flux balance analysis (FBA) refers to ​ ​ ​ ​ computational methods for solving these equations to explore the possible fluxes of a given metabolite network at steady state. There are many versions of FBA, combining these balancing constriants with experimental data on metabolite uptake or release, with expression data for enzymes; or analyzing effects of loss of an enzyme on metabolic fluxes; or determining fluxes that would be optimal for a certain “task” like maximal ATP production or biomass production. In this computer lab we will explore a simple version of FBA to investigate the capabilities of the pentose phosphate shunt. Flux balance analysis computer lab In this exercise we will analyze a model of the pentose phosphate pathway (PPP). This is a good example of a model where FBA can be helpful, as it is fairly complicated with several loops and branches, and its function is not obvious. The model First look at the network figure and make sure you recognize the various reactions and metabolites in the pentose phosphate pathway. (The representation may be a bit unusual!) The abbreviated names for reactions and metabolites in this network are derived from a large published model for the human metabolic network [Thiele, 2013]. In Excel (2007 or later), make sure the optimization solver add­on is activated: go to excel options ­­ add­ins, click “Go … “ next to “manage add­ins”, and make sure the “Solver” add­in is checked. Open the provided excel file. The largest part of the sheet is the matrix of stoichiometry coefficients that describe the network model. As with the urea cycle model above, a negative value indicates that a metabolite (in rows) is consumed by a reaction (in columns), while a positive value indicates the metabolite is produced. Check some of the reactions against the network model and make sure you understand the representation. At the bottom is (row 25) are the values for fluxes through each reaction (the vr in the above), ​ ​ ​ initially all zero. Positive values will mean net flux in the forward direction; negative values means in reverse. To the right (column P) is the total consumption (negative) or production (positive) of each metabolite, calculated from the stoichiometry and fluxes as in equation (1) above. 1. Try setting some fluxes to specific values (enter into row 25) to see how the totals per ​ metabolite changes. Compare with equation (1) above, and make sure you understand how the total is calculated. Columns Q, R hold the constraints. (Column Q is only for readability, not used in calculations). Setting a metabolite = 0 means the metabolite is required to balance (is considered intracellular). Glucose (glc­D) is set = ­100 here to model uptake of this metabolite at a specified rate. Metabolites set to be >= 0 may be produced (at any rate) but not taken up (co2, for example), while those set to <= 0 may be consumed but not produced (atp, for example). Finally, h2o is not constrained at all in this model, denoted “free”. 2. Looking at the pathway diagram, set fluxes manually (by entering values in row 25) so that ​ the model takes up 1 glucose (total for glc­D = ­1) and produces glyceraldehyde­2­phosphate (g3p). This in effect bypasses the PPP. Are all internal metabolites accounted for (all = 0 constraints really zero) ? What byproducts do you get? Ribose production We will next use the Solver add­in to solve the flux balance equations and investigate how much ribose­5­phosphate (r5p) can (theoretically) be generated by the PPP from glucose. But before doing this, study the PPP pathway and try to figure out how r5p should be synthesized. 3. Intuitively, what reactions are used to synthesize r5p? How many r5p do you think can be ​ obtained from 100 units of glucose? Now use the solver to find a maximal r5p production solution by choosing the total for r5p as the target, set to maximize. Go to Data ­­ Solver to see the solver configuration; it should look like this: The range under “By Changing Cells” is the cells holding the fluxes (variables). Below this are cells holding the flux balance constraints, defining what metabolites must be produced ( >= ), consumed ( <= ) or balanced ( = ). Set the target cell to P20 to maximize ribose­5­phosphate and click solve. If everything is correct the solver should reply like this: Click OK and investigate the total r5p production and the values of fluxes through the various reactions. Q: Is the maximal amount of r5p what you expected? Does it make sense considering the ​ number of carbons in ribose and glucose? Q: Which reactions produce r5p in this flux state? (Look at the stoichiometry coefficients for r5p ​ and the values of the corresponding fluxes.) Q: Is this an oxidative process? Does it require energy? ​ Q: The product r5p contains not only the carbon from glucose, but also a phosphate group. ​ Where does this phosphate derive from in this model? Q: Write down the net reaction carried out by this network at this flux state. ​ If you feel the result is counterintuitive, explore the fluxes found for other reactions! Does the result “add up” ? How are the interconnected reactions carried out by the transketolases (TKT1, TKT2) and transaldolase (TALA) exploited in this flux state? It may help to fill in flux values on top of the pathway schematic to visualize the results. Glucose oxidation to CO2 The PPP can also oxidize glucose to CO2, and use the energy obtain to produce the reducing agent NADPH. Before using the solver to investigate this, answer the following by only looking at the pathway: Q: Which reactions / pathway in the network oxidizes glucose to CO2? ​ Q: How much CO2 would you think the PPP can obtain from 100 units of glucose? How much ​ NADPH? As before, use the solver to find the maximal co2 production solution, now choosing total CO2 as target, set to maximize. Q: Is the maximal amount of co2 what you expected? Does it make sense considering the ​ number of carbons in glucose? Q: Which reactions are involved in this flux state? Are the values reasonable? ​ In this model we have not taken into account that reactions may be irreversible in practise, for example phosphofructokinase (PFK) which is driven by ATP.
Recommended publications
  • In Vivo Metabolism of [1,6-13C2]Glucose Reveals Distinct
    H OH metabolites OH Article 13 In Vivo Metabolism of [1,6- C2]Glucose Reveals Distinct Neuroenergetic Functionality between Mouse Hippocampus and Hypothalamus Antoine Cherix 1,†, Rajesh Sonti 1,‡, Bernard Lanz 1 and Hongxia Lei 2,3,*,§ 1 Laboratory of Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; [email protected] (A.C.); [email protected] (R.S.); bernard.lanz@epfl.ch (B.L.) 2 Animal Imaging and Technology (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland 3 Faculty of Medicine, University of Geneva, CH-1206 Geneva, Switzerland * Correspondence: [email protected] † Current address: Wellcome Centre for Integrative Neuroimaging (WIN), Oxford Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK. ‡ Current address: Department of Pharmaceutical analysis, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad- NH 65, Hyderabad 500037, India. § Current address: Wuhan United Imaging Life Science Instruments Ltd., Wuhan 430206, China. Abstract: Glucose is a major energy fuel for the brain, however, less is known about specificities of its metabolism in distinct cerebral areas. Here we examined the regional differences in glucose utilization between the hypothalamus and hippocampus using in vivo indirect 13C magnetic res- 1 13 13 onance spectroscopy ( H-[ C]-MRS) upon infusion of [1,6- C2]glucose. Using a metabolic flux analysis with a 1-compartment mathematical model of brain metabolism, we report that compared to hippocampus, hypothalamus shows higher levels of aerobic glycolysis associated with a marked Citation: Cherix, A.; Sonti, R.; Lanz, gamma-aminobutyric acid-ergic (GABAergic) and astrocytic metabolic dependence.
    [Show full text]
  • Quantitative Analysis of Amino Acid Metabolism in Liver Cancer Links Glutamate Excretion to Nucleotide Synthesis
    Quantitative analysis of amino acid metabolism in liver cancer links glutamate excretion to nucleotide synthesis Avlant Nilssona,1, Jurgen R. Haanstrab,1, Martin Engqvista, Albert Gerdingc,d, Barbara M. Bakkerb,c, Ursula Klingmüllere, Bas Teusinkb, and Jens Nielsena,f,2 aDepartment of Biology and Biological Engineering, Chalmers University of Technology, SE41296 Gothenburg, Sweden; bSystems Biology Lab, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, NL1081HZ Amsterdam, The Netherlands; cLaboratory of Pediatrics, Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, NL-9713AV Groningen, The Netherlands dDepartment of Laboratory Medicine, University of Groningen, University Medical Center Groningen, NL-9713AV Groningen, The Netherlands; eDivision of Systems Biology and Signal Transduction, German Cancer Research Center, D-69120 Heidelberg, Germany; and fNovo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, DK2800, Denmark Contributed by Jens Nielsen, March 9, 2020 (sent for review November 4, 2019; reviewed by Eytan Ruppin and Matthew G. Vander Heiden) Many cancer cells consume glutamine at high rates; counterintu- the excretion of lactate, glutamate, alanine, and glycine (5). How- itively, they simultaneously excrete glutamate, the first interme- ever, a full genome-wide modeling approach is required to expand diate in glutamine metabolism. Glutamine consumption has been our knowledge of how metabolism functions beyond the canonical linked to replenishment of tricarboxylic acid cycle (TCA) interme- pathways and, in particular, to understand the intricate effects of diates and synthesis of adenosine triphosphate (ATP), but the metabolic compartmentalization and the interplay between ex- reason for glutamate excretion is unclear. Here, we dynamically change fluxes and synthesis of biomass.
    [Show full text]
  • Nicotinamide Adenine Dinucleotide Is Transported Into Mammalian
    RESEARCH ARTICLE Nicotinamide adenine dinucleotide is transported into mammalian mitochondria Antonio Davila1,2†, Ling Liu3†, Karthikeyani Chellappa1, Philip Redpath4, Eiko Nakamaru-Ogiso5, Lauren M Paolella1, Zhigang Zhang6, Marie E Migaud4,7, Joshua D Rabinowitz3, Joseph A Baur1* 1Department of Physiology, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States; 2PARC, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States; 3Lewis-Sigler Institute for Integrative Genomics, Department of Chemistry, Princeton University, Princeton, United States; 4School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom; 5Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States; 6College of Veterinary Medicine, Northeast Agricultural University, Harbin, China; 7Mitchell Cancer Institute, University of South Alabama, Mobile, United States Abstract Mitochondrial NAD levels influence fuel selection, circadian rhythms, and cell survival under stress. It has alternately been argued that NAD in mammalian mitochondria arises from import of cytosolic nicotinamide (NAM), nicotinamide mononucleotide (NMN), or NAD itself. We provide evidence that murine and human mitochondria take up intact NAD. Isolated mitochondria preparations cannot make NAD from NAM, and while NAD is synthesized from NMN, it does not localize to the mitochondrial matrix or effectively support oxidative phosphorylation. Treating cells *For correspondence: with nicotinamide riboside that is isotopically labeled on the nicotinamide and ribose moieties [email protected] results in the appearance of doubly labeled NAD within mitochondria. Analogous experiments with †These authors contributed doubly labeled nicotinic acid riboside (labeling cytosolic NAD without labeling NMN) demonstrate equally to this work that NAD(H) is the imported species.
    [Show full text]
  • Flux Balance Analysis to Model Microbial Metabolism for Electricity Generation
    Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. Flux balance analysis to model microbial metabolism for electricity generation A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy in Computational Biology and Bioengineering at Lincoln University by Longfei Mao Lincoln University 2013 Abstract of a thesis submitted in partial fulfilment of the requirements for the Degree of Philosophy Flux balance analysis to model microbial metabolism for electricity generation by Longfei Mao Abstract Microbial fuel cells (MFCs) are bioelectrochemcial devices that possess a similar design to a fuel cell, with an anode and a cathode connected through an electrical circuit. Unlike fuel cells, MFCs use microorganisms as biocatalysts to convert organic matter into electrons and protons, of which a portion can be transferred to electrode to generate electricity. Since all microorganisms transfer electrons during metabolism inside the cell, there could potentially be unlimited choices of biocatalyst candidates for MFCs for various applications. However, in reality, the application of MFCs is heavily restricted by their low current outputs.
    [Show full text]
  • Metabolic Flux Analysis—Linking Isotope Labeling and Metabolic Fluxes
    H OH metabolites OH Review Metabolic Flux Analysis—Linking Isotope Labeling and Metabolic Fluxes Yujue Wang 1,2, Fredric E. Wondisford 1, Chi Song 3, Teng Zhang 4 and Xiaoyang Su 1,2,* 1 Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; [email protected] (Y.W.); [email protected] (F.E.W.) 2 Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA 3 Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH 43210, USA; [email protected] 4 Department of Mathematics, University of Central Florida, Orlando, FL 32816, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-732-235-5447 Received: 14 September 2020; Accepted: 4 November 2020; Published: 6 November 2020 Abstract: Metabolic flux analysis (MFA) is an increasingly important tool to study metabolism quantitatively. Unlike the concentrations of metabolites, the fluxes, which are the rates at which intracellular metabolites interconvert, are not directly measurable. MFA uses stable isotope labeled tracers to reveal information related to the fluxes. The conceptual idea of MFA is that in tracer experiments the isotope labeling patterns of intracellular metabolites are determined by the fluxes, therefore by measuring the labeling patterns we can infer the fluxes in the network. In this review, we will discuss the basic concept of MFA using a simplified upper glycolysis network as an example. We will show how the fluxes are reflected in the isotope labeling patterns. The central idea we wish to deliver is that under metabolic and isotopic steady-state the labeling pattern of a metabolite is the flux-weighted average of the substrates’ labeling patterns.
    [Show full text]
  • Mathematical Models for Explaining the Warburg Effect: a Review Focussed on ATP and Biomass Production
    Metabolic pathways analysis 2015 1187 Mathematical models for explaining the Warburg effect: a review focussed on ATP and biomass production Stefan Schuster*1, Daniel Boley†, Philip Moller*,¨ Heiko Stark*‡ and Christoph Kaleta§ *Department of Bioinformatics, Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany †Computer Science & Engineering, University of Minnesota, Minneapolis, MN 55455, U.S.A. ‡Institute of Systematic Zoology and Evolutionary Biology, Friedrich Schiller University Jena, Erbertstraße 1, 07737 Jena, Germany §Research Group Medical Systems Biology, Christian-Albrechts-University Kiel, Brunswiker Straße 10, Kiel 24105, Germany Abstract For producing ATP, tumour cells rely on glycolysis leading to lactate to about the same extent as on respiration. Thus, the ATP synthesis flux from glycolysis is considerably higher than in the corresponding healthy cells. This is known as the Warburg effect (named after German biochemist Otto H. Warburg) and also applies to striated muscle cells, activated lymphocytes, microglia, endothelial cells and several other cell types. For similar phenomena in several yeasts and many bacteria, the terms Crabtree effect and overflow metabolism respectively, are used. The Warburg effect is paradoxical at first sight because the molar ATP yield of glycolysis is much lower than that of respiration. Although a straightforward explanation is that glycolysis allows a higher ATP production rate, the question arises why cells do not re-allocate protein to the high-yield pathway of respiration. Mathematical modelling can help explain this phenomenon. Here, we review several models at various scales proposed in the literature for explaining the Warburg effect. These models support the hypothesis that glycolysis allows for a higher proliferation rate due to increased ATP production and precursor supply rates.
    [Show full text]
  • 1 Quantitative Determinants of Aerobic Glycolysis Identify Flux Through the Enzyme 1 GAPDH As a Limiting Step 2 3 Alexander a Sh
    1 Quantitative determinants of aerobic glycolysis identify flux through the enzyme 2 GAPDH as a limiting step 3 4 Alexander A Shestov1*, Xiaojing Liu1*, Zheng Ser1, Ahmad Cluntun2, Yin P Hung3, Lei 5 Huang4, Dongsung Kim2, Anne Le5, Gary Yellen3, John G Albeck6, Jason W 6 Locasale1,2,4** 7 8 1Division of Nutritional Sciences, Cornell University, Ithaca NY 14850 9 2Field of Biochemistry and Molecular Cell Biology, Department of Molecular Biology 10 and Genetics Cornell University, Ithaca NY 14850 11 3Department of Neurobiology, Harvard Medical School, Boston MA 02115 12 4Field of Computational Biology, Department of Biological Statistics and Computational 13 Biology, Cornell University, Ithaca NY 14850 14 5Department of Pathology and Oncology, Johns Hopkins University School of Medicine, 15 Baltimore, MD 21231 16 6Department of Molecular Cell Biology, University of California Davis, Davis CA 95616 17 * Equal contribution 18 ** Correspondence: [email protected] 19 20 Abstract 21 Aerobic glycolysis or the Warburg Effect (WE) is characterized by the increased 22 metabolism of glucose to lactate. It remains unknown what quantitative changes to the 23 activity of metabolism are necessary and sufficient for this phenotype. We developed a 24 computational model of glycolysis and an integrated analysis using metabolic control 25 analysis (MCA), metabolomics data, and statistical simulations. We identified and 26 confirmed a novel mode of regulation specific to aerobic glycolysis where flux through 27 GAPDH, the enzyme separating lower and upper glycolysis, is the rate-limiting step in 28 the pathway and the levels of fructose (1,6) bisphosphate (FBP), are predictive of the rate 29 and control points in glycolysis.
    [Show full text]
  • Effective Dynamic Models of Metabolic Networks Michael Vilkhovoy∗, Mason Minot∗, Jeffrey D
    bioRxiv preprint doi: https://doi.org/10.1101/047316; this version posted August 31, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Effective Dynamic Models of Metabolic Networks Michael Vilkhovoy∗, Mason Minot∗, Jeffrey D. Varner∗ ∗School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14850 USA Abstract—Mathematical models of biochemical networks are by a pseudo enzyme whose expression is controlled by an useful tools to understand and ultimately predict how cells utilize optimal decision) to achieve a physiological objective (Fig. nutrients to produce valuable products. Hybrid cybernetic models 1A). HCMs generate intracellular flux distributions consistent in combination with elementary modes (HCM) is a tool to model cellular metabolism. However, HCM is limited to reduced with other approaches such as metabolic flux analysis (MFA), metabolic networks because of the computational burden of and also describe dynamic extracellular measurements superior calculating elementary modes. In this study, we developed the to dynamic FBA (DFBA) [12]. However, HCMs are restricted hybrid cybernetic modeling with flux balance analysis or HCM- to networks which can be decomposed into EMs (or EPs). FBA technique which uses flux balance solutions instead of In this study, we developed the hybrid cybernetic modeling elementary modes to dynamically model metabolism. We show HCM-FBA has comparable performance to HCM for a proof with flux balance analysis (HCM-FBA) technique. HCM- of concept metabolic network and for a reduced anaerobic E.
    [Show full text]
  • Modelling Cell Metabolism: a Review on Constraint-Based Steady-State and Kinetic Approaches
    processes Review Modelling Cell Metabolism: A Review on Constraint-Based Steady-State and Kinetic Approaches Mohammadreza Yasemi and Mario Jolicoeur * Research Laboratory in Applied Metabolic Engineering, Department of Chemical Engineering, École Polytechnique de Montréal, P.O. Box 6079, Centre-ville Station, Montréal, QC H3C 3A7, Canada; [email protected] * Correspondence: [email protected] Abstract: Studying cell metabolism serves a plethora of objectives such as the enhancement of bio- process performance, and advancement in the understanding of cell biology, of drug target discovery, and in metabolic therapy. Remarkable successes in these fields emerged from heuristics approaches, for instance, with the introduction of effective strategies for genetic modifications, drug develop- ments and optimization of bioprocess management. However, heuristics approaches have showed significant shortcomings, such as to describe regulation of metabolic pathways and to extrapolate experimental conditions. In the specific case of bioprocess management, such shortcomings limit their capacity to increase product quality, while maintaining desirable productivity and reproducibility levels. For instance, since heuristics approaches are not capable of prediction of the cellular functions under varying experimental conditions, they may lead to sub-optimal processes. Also, such ap- proaches used for bioprocess control often fail in regulating a process under unexpected variations of external conditions. Therefore, methodologies inspired by the systematic mathematical formulation of cell metabolism have been used to address such drawbacks and achieve robust reproducible results. Mathematical modelling approaches are effective for both the characterization of the cell Citation: Yasemi, M.; Jolicoeur, M. physiology, and the estimation of metabolic pathways utilization, thus allowing to characterize Modelling Cell Metabolism: A a cell population metabolic behavior.
    [Show full text]
  • Minireview Metabolic Modelling of Microbes: the Flux-Balance Approach
    Environmental Microbiology (2002) 4(3), 133–140 Minireview Metabolic modelling of microbes: the flux-balance approach Jeremy S. Edwards, Markus Covert and of living; the task that lies ahead is to integrate these Bernhard Palsson details in such a way that we can better understand life as Department of Chemical Engineering, University a whole, and not just the sum of its parts. of Delaware, Newark,` DE 19716, USA. Where is the Life we have lost in living? . Metabolic modelling Where is the knowledge we have lost in information? One area of active research in this area has focused on T.S. Eliot, Choruses from the Rock bacterial metabolism (van Gulik and Heijnen, 1995; Liao et al., 1996; Lee et al., 1997; Sauer et al., 1998; Edwards Introduction and Palsson, 1999; Sauer and Bailey, 1999; Schilling et al., 1999; Edwards and Palsson, 2000a, b; Schilling The history of biological research has witnessed many et al., 2000; Edwards et al., 2001a, b). Genomic infor- great successes, and many more are expected in the mation, coupled with biochemical and strain-specific future. The anticipation of great findings has increased information, has been used to reconstruct whole-cell with the development of high-throughput technologies, metabolic networks for sequenced organisms (Edwards which enable the rapid generation of sequence, transcript, and Palsson, 1999; Schilling and Palsson, 2000) (Fig. 1). and proteomic data, to name but a few examples. As a However, this information is not sufficient to specify com- result, it has become clear that further biological discovery pletely the metabolic phenotypes that will be expressed will be limited not by the availability of biological data under given environmental conditions.
    [Show full text]
  • A Mechanism-Aware and Multiomic Machine-Learning Pipeline
    A mechanism-aware and multiomic machine-learning pipeline characterizes yeast cell growth Christopher Culleya,b, Supreeta Vijayakumarb , Guido Zampierib , and Claudio Angioneb,c,1 aFaculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom; bDepartment of Computer Science and Information Systems, Teesside University, Middlesbrough TS1 3BX, United Kingdom; and cHealthcare Innovation Centre, Teesside University, Middlesbrough TS1 3BX, United Kingdom Edited by Jens Nielsen, BioInnovation Institute, Copenhagen, Denmark, and approved June 12, 2020 (received for review February 16, 2020) Metabolic modeling and machine learning are key components in Machine-learning techniques generally ignore previous bio- the emerging next generation of systems and synthetic biology logical knowledge in driving the pattern analysis, limiting the tools, targeting the genotype–phenotype–environment relation- trustworthiness and interpretability of any obtained model. ship. Rather than being used in isolation, it is becoming clear To fill these gaps, constraint-based modeling (CBM) can be that their value is maximized when they are combined. How- used to simulate steady-state metabolism on a cellular scale. ever, the potential of integrating these two frameworks for Metabolic flux profiles generated in silico have been previ- omic data augmentation and integration is largely unexplored. ously used to inform specific machine-learning models (4– We propose, rigorously assess, and compare machine-learning– 9), in some
    [Show full text]
  • Flux Balance Analysis with Objective Function Defined by Proteomics Data-Metabolism of Mycobacterium Tuberculosis Exposed to Mefloquine
    Flux Balance Analysis with Objective Function Defined by Proteomics Data-Metabolism of Mycobacterium tuberculosis Exposed to Mefloquine Montezano, D., Meek, L., Gupta, R., Bermudez, L. E., & Bermudez, J. C. (2015). Flux Balance Analysis with Objective Function Defined by Proteomics Data— Metabolism of Mycobacterium tuberculosis Exposed to Mefloquine. PLoS ONE, 10 (7), e0134014. doi:10.1371/journal.pone.0134014 10.1371/journal.pone.0134014 Public Library of Science Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse RESEARCH ARTICLE Flux Balance Analysis with Objective Function Defined by Proteomics Data—Metabolism of Mycobacterium tuberculosis Exposed to Mefloquine Daniel Montezano1*, Laura Meek2, Rashmi Gupta3, Luiz E. Bermudez2, José C. M. Bermudez1 1 Laboratório de Pesquisa em Processamento Digital de Sinais (LPDS), Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil, 2 College of Veterinary Medicine, Oregon State University, Corvallis, OR, a11111 United States of America, 3 College of Medicine, University of Central Florida, Orlando, FL, United States of America * [email protected] Abstract OPEN ACCESS We present a study of the metabolism of the Mycobacterium tuberculosis after exposure to Citation: Montezano D, Meek L, Gupta R, Bermudez LE, Bermudez JCM (2015) Flux Balance Analysis antibiotics using proteomics data and flux balance analysis (FBA). The use of FBA to study with Objective Function Defined by Proteomics Data prokaryotic organisms is well-established and allows insights into the metabolic pathways —Metabolism of Mycobacterium tuberculosis chosen by the organisms under different environmental conditions. To apply FBA a specific Exposed to Mefloquine. PLoS ONE 10(7): e0134014. objective function must be selected that represents the metabolic goal of the organism.
    [Show full text]