Boundary Condition Controls on the High-Sand-Flux Regions of Mars Matthew Chojnacki1, Maria E

Total Page:16

File Type:pdf, Size:1020Kb

Boundary Condition Controls on the High-Sand-Flux Regions of Mars Matthew Chojnacki1, Maria E https://doi.org/10.1130/G45793.1 Manuscript received 8 November 2018 Revised manuscript received 18 January 2019 Manuscript accepted 20 February 2019 © 2019 The Authors. Gold Open Access: This paper is published under the terms of the CC-BY license. Published online 11 March 2019 Boundary condition controls on the high-sand-flux regions of Mars Matthew Chojnacki1, Maria E. Banks2, Lori K. Fenton3, and Anna C. Urso1 1Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona 85721, USA 2National Aeronautics and Space Administration (NASA) Goddard Space Flight Center, Greenbelt, Maryland 20771, USA 3Carl Sagan Center at the SETI (Search for Extra-Terrestrial Intelligence) Institute, Mountain View, California 94043, USA ABSTRACT DATA SETS AND METHODS Wind has been an enduring geologic agent throughout the history of Mars, but it is often To assess bed-form morphology and dynamics, unclear where and why sediment is mobile in the current epoch. We investigated whether we analyzed images acquired by the High Resolu- eolian bed-form (dune and ripple) transport rates are depressed or enhanced in some areas tion Imaging Science Experiment (HiRISE) cam- by local or regional boundary conditions (e.g., topography, sand supply/availability). Bed- era on the Mars Reconnaissance Orbiter (0.25–0.5 form heights, migration rates, and sand fluxes all span two to three orders of magnitude m/pixel; McEwen et al., 2007; see Table DR1 in across Mars, but we found that areas with the highest sand fluxes are concentrated in three the GSA Data Repository1). Digi tal terrain mod- regions: Syrtis Major, Hellespontus Montes, and the north polar erg. All regions are located els (1 m/pixel) and orthoimages of dune fields near prominent transition zones of topography (e.g., basins, polar caps) and thermophysical were constructed from HiRISE data using SOCET properties (e.g., albedo variations); these are not known to be critical terrestrial boundary SET® BAE Systems photogrammetry software conditions. The two regions adjacent to major impact basins (Hellas and Isidis Planitia) (Kirk et al., 2008). Volumetric sand fluxes q( crest) showed radially outward upslope winds driving sand movement, although seasonally revers- for dunes were obtained using the product of ing wind regimes were also observed. The northern polar dunes yielded the highest known the estimated height and lee crest displacement fluxes on the planet, driven by summer katabatic winds modulated by the seasonal CO2 cap over the intervening time between acquisition of retreat—processes not known to affect terrestrial dunes. In contrast, southern dune fields repeated HiRISE images (2–5 Mars years), mea- (<45°S) were less mobile, likely as a result of seasonal frost and ground ice suppressing sand sured in units of m3 m–1 yr–1 in time units of Earth availability. Results suggest that, unlike on Earth, large-scale topographic and thermophysi- years. Sand fluxes, migration rates, and heights cal variabilities play a leading role in driving sand fluxes on Mars. were collected for 54 dune fields (495 separate dunes). Ripple migration rates were integrated INTRODUCTION construction appears to be extremely limited on from prior work (Banks et al., 2015, 2018). For most of the history of Mars, eolian pro- Venus (based on orbital radar data; Greeley et al., To provide regional context for monitor- cesses have been one of the leading factors in 1995), whereas bed forms on Titan (a moon of ing sites, topographic and thermal properties landscape evolution, in contrast to Earth and Saturn) cover an estimated ~13% of the surface (albedo and daytime surface temperature) were early Mars, where aqueous processes prevailed. (from similar data; Le Gall et al., 2012). The examined from Mars Orbiter Laser Altimeter Recent orbital studies have revealed that winds numerous extraneous environmental factors on data (Smith et al., 2001) and Thermal Emission frequently transport fine-grained sediments planetary bodies with atmospheres (e.g., transport Spectrometer (on the Mars Global Surveyor) across the surface of Mars today, as evidenced capacity, sand supply, topography) operate non- data (Christensen et al., 1992), respectively. See by the mobility of eolian bed forms (dunes and linearly to produce self-organized bed forms that the GSA Data Repository, sections 1 and 2, for ripples; e.g., Silvestro et al., 2010; Chojnacki evolve in response to environmental conditions additional methodology and boundary condition et al., 2011, 2017, 2018; Bridges et al., 2011, (e.g., Kocurek and Lancaster, 1999; Ewing and characterization details, respectively. 2012; Ayoub et al., 2014; Banks et al., 2015, Kocurek, 2010). Recognition of these underly- 2018). The degree of contemporary sand mobil- ing boundary conditions can provide insight into RESULTS ity has implications for the Martian climate, dust landscape evolution on Mars because eolian pro- cycle, and landscape evolution. Moreover, spa- cesses have played a major role there for most of Global Results of Bed-Form Transport tial variations in bed-form transport parameters its history (Armstrong and Leovy, 2005). Parameters relate to external forcing factors (i.e., boundary The objective of this investigation was to Active eolian bed forms were detected across conditions), some of which may be unique to assess the boundary conditions that govern bed- Mars within craters, canyons, structural fossae, the red planet. form migration trends on Mars and whether those volcanic paterae, polar basins, and extracrater (e.g., Terrestrial antecedent conditions, such as conditions differ from ones on Earth. Recogniz- plains) terrain (Fig. 1). The average migration rate, near-surface water tables and vegetation, can ing these factors may also provide predictabil- typically for barchan or barchanoid dune morphol- critically influence local bed-form patterns and ity for other locations lacking sufficient data for ogies, across all sites investigated here was ~0.5 ± mobility. On Mars, factors like crater morphology monitoring. This was achieved by quantifying the 0.4 m/yr (1σ) for dunes ~2–120 m tall. Superposed and local surface roughness can influence sand dynamic activity of bed forms globally and evalu- sub-meter-tall ripples (~40 cm tall, where height fluxes (Chojnacki et al., 2017). Large-scale dune ating the regional factors that may play a role. estimates were from in situ observations; Ewing 1GSA Data Repository item 2019150, Figures DR1–DR5, Tables DR1 (list of images), Tables DR2 and DR3 (region summary tables), and Animations DR1–DR8, is available online at http:// www .geosociety .org /datarepository /2019/, or on request from editing@ geosociety .org. CITATION: Chojnacki, M., Banks, M.E., Fenton, L.K., and Urso, A.C., 2019, Boundary condition controls on the high-sand-flux regions of Mars: Geology, v. 47, p. 427–430, https:// doi .org /10 .1130 /G45793.1 Geological Society of America | GEOLOGY | Volume 47 | Number 5 | www.gsapubs.org 427 Downloaded from https://pubs.geoscienceworld.org/gsa/geology/article-pdf/47/5/427/4680645/427.pdf by NASA Goddard Space Flight Ctr user on 24 September 2019 Figure 1. Global trends in E conditions dictate many physical aspects of dune bed-form mobility. Top: N Polar cap morphology and activity, the three regions with Map of sand dune crest Abalos Undae Olympia Undae Sand Flux (m3 m–1 yr –1) remarkably high sand fluxes deserve further flux measurements for 0.8–5.0 54 dune fields (graduated consideration. 5.0–9.0 Arabia Terra Syrtis Major circles with low [red], 9.0–19.8 moderate [orange], and Mobile Valles Marineris Isidis basin Gale Syrtis Major high [green] sand flux No Detection Meridiani values), bed-form mobility Dunes across the low-albedo (~0.1) Syrtis detection status (trian- Hellespontus Major are found in a variety of geographical con- Hellas basin gles; Banks et al., 2015, Terra Cimmeria texts (e.g., fossae, paterae, plains, and craters), but 2018), and dune field dis- Terra Sirenum Noachis Terra their migration vectors appear to be strongly influ- tributions (red polygons; S Polar cap enced by the 4–5-km-deep Isidis basin to the east Hayward et al., 2014). Three high-sand-flux Dune Rate (m yr–1) Dune Height (m) Sand Flux (m3 m–1 yr –1) (Fig. 3; Table DR2). Westward sand transport at regions of Syrtis Major, n=495 n=495 n=495 this equatorial latitude is governed by the super- Hellespontus Montes, and 0.49 ± 0.43 19 ± 14 7.8 ± 6.4 position of the meridional (Hadley cell) overturn- the north polar erg (Mars) ing circulation and planetary rotation, but this flow are outlined in black and shown in more detail in is further enhanced by a strong thermal tide and Figure 3. Base map is Mars Orbiter Laser Altimeter (MOLA) shaded relief with colorized eleva- anabatic slope winds driven up and radially out- tion from +4 (red) to –5 km (blue). Bottom: Histograms of dune metrics with averages ± 1σ. ward from the dusty Isidis basin (albedo ~0.23) by daytime solar heating (e.g., Ayoub et al., 2014). et al., 2017) showed similar rates (~0.5 m/yr), west of the Isidis basin, Hellespontus west of the Dunes near Jezero crater and deep within Nili Fos- although examples of faster ripples have often been Hellas basin, and the circumpolar erg adjacent to sae are clearly migrating to the west-northwest reported (Bridges et al., 2012). The average qcrest the north polar cap (Figs. 3 and 4). Elevation pro- (Chojnacki et al., 2018), whereas sand dunes along for all dune fields ranged between 0.8 and 17.6 files several hundreds of kilometers in length from Nili and Meroe Paterae are translating toward the m3 m–1 yr–1 (Fig. 2), while the highest flux for an basins toward the higher-elevation terrains have west-southwest (Fig. 3; see Animations DR1 3 –1 –1 individual dune was 35 m m yr (average qcrest = 4–7 km in relief, except for the shorter (~2-km- and DR2 and Table DR1).
Recommended publications
  • Boundary Condition Controls on the High-Sand-Flux Regions of Mars Matthew Chojnacki1, Maria E
    https://doi.org/10.1130/G45793.1 Manuscript received 8 November 2018 Revised manuscript received 18 January 2019 Manuscript accepted 20 February 2019 © 2019 The Authors. Gold Open Access: This paper is published under the terms of the CC-BY license. Published online 11 March 2019 Boundary condition controls on the high-sand-flux regions of Mars Matthew Chojnacki1, Maria E. Banks2, Lori K. Fenton3, and Anna C. Urso1 1Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona 85721, USA 2National Aeronautics and Space Administration (NASA) Goddard Space Flight Center, Greenbelt, Maryland 20771, USA 3Carl Sagan Center at the SETI (Search for Extra-Terrestrial Intelligence) Institute, Mountain View, California 94043, USA ABSTRACT DATA SETS AND METHODS Wind has been an enduring geologic agent throughout the history of Mars, but it is often To assess bed-form morphology and dynamics, unclear where and why sediment is mobile in the current epoch. We investigated whether we analyzed images acquired by the High Resolu- eolian bed-form (dune and ripple) transport rates are depressed or enhanced in some areas tion Imaging Science Experiment (HiRISE) cam- by local or regional boundary conditions (e.g., topography, sand supply/availability). Bed- era on the Mars Reconnaissance Orbiter (0.25–0.5 form heights, migration rates, and sand fluxes all span two to three orders of magnitude m/pixel; McEwen et al., 2007; see Table DR1 in across Mars, but we found that areas with the highest sand fluxes are concentrated in three the GSA Data Repository1). Digi tal terrain mod- regions: Syrtis Major, Hellespontus Montes, and the north polar erg.
    [Show full text]
  • North Polar Region of Mars: Advances in Stratigraphy, Structure, and Erosional Modification
    Icarus 196 (2008) 318–358 www.elsevier.com/locate/icarus North polar region of Mars: Advances in stratigraphy, structure, and erosional modification Kenneth L. Tanaka a,∗, J. Alexis P. Rodriguez b, James A. Skinner Jr. a,MaryC.Bourkeb, Corey M. Fortezzo a,c, Kenneth E. Herkenhoff a, Eric J. Kolb d, Chris H. Okubo e a US Geological Survey, Flagstaff, AZ 86001, USA b Planetary Science Institute, Tucson, AZ 85719, USA c Northern Arizona University, Flagstaff, AZ 86011, USA d Google, Inc., Mountain View, CA 94043, USA e Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA Received 5 June 2007; revised 24 January 2008 Available online 29 February 2008 Abstract We have remapped the geology of the north polar plateau on Mars, Planum Boreum, and the surrounding plains of Vastitas Borealis using altimetry and image data along with thematic maps resulting from observations made by the Mars Global Surveyor, Mars Odyssey, Mars Express, and Mars Reconnaissance Orbiter spacecraft. New and revised geographic and geologic terminologies assist with effectively discussing the various features of this region. We identify 7 geologic units making up Planum Boreum and at least 3 for the circumpolar plains, which collectively span the entire Amazonian Period. The Planum Boreum units resolve at least 6 distinct depositional and 5 erosional episodes. The first major stage of activity includes the Early Amazonian (∼3 to 1 Ga) deposition (and subsequent erosion) of the thick (locally exceeding 1000 m) and evenly- layered Rupes Tenuis unit (ABrt), which ultimately formed approximately half of the base of Planum Boreum. As previously suggested, this unit may be sourced by materials derived from the nearby Scandia region, and we interpret that it may correlate with the deposits that regionally underlie pedestal craters in the surrounding lowland plains.
    [Show full text]
  • INVESTIGATING the ORIGIN of GYPSUM in OLYMPIA UNDAE: CHARACTERIZING the MINERALOGY of the BASAL UNIT. E. Das1, J. F. Mustard1 and J
    52nd Lunar and Planetary Science Conference 2021 (LPI Contrib. No. 2548) 2390.pdf INVESTIGATING THE ORIGIN OF GYPSUM IN OLYMPIA UNDAE: CHARACTERIZING THE MINERALOGY OF THE BASAL UNIT. E. Das1, J. F. Mustard1 and J. D. Tarnas1,2, 1Department of Earth, Environmental and Planetary Sciences, Brown University, Providence RI 02912 ([email protected]), 2Jet Propulsion Laboratory, California Institute of Technology Introduction: The Olympia Undae Sand Sea, near eigenvectors derived from the Hysime algorithm [10] the North Polar ice cap, contains the largest known and determines the independent components of the deposit of gypsum discovered on Mars [1]. The mixed system. 2) Dot Product Mapping: The dot formation of gypsum requires liquid water, hinting that products of the image cube with individual it formed in the North Polar region under circumstances eigenvectors, specifically those containing interesting vastly different from today’s Martian environment. The spectral features, are obtained to highlight regions presence of gypsum in the late Amazonian age dunes, within the image cube where the target mineral may likely sourced from materials of the late Hesperian- have a strong spectral signal. The 3rd eigenvector along early/mid-Amazonian ages [2], are consistent with with its associated dot product map of a subset of wetter periods during these ages. Since the discovery of CRISM image (HRL00003084) over Olympia Undae gypsum in the north polar dunes, various hypotheses are shown in Figure 1. The 3rd eigenvector was chosen have been suggested for its source. One hypothesis as it contained prominent spectral features similar to the suggested formation from in-situ aqueous alteration of target mineral gypsum.
    [Show full text]
  • This Article Appeared in a Journal Published by Elsevier. the Attached
    (This is a sample cover image for this issue. The actual cover is not yet available at this time.) This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Aeolian Research 8 (2013) 29–38 Contents lists available at SciVerse ScienceDirect Aeolian Research journal homepage: www.elsevier.com/locate/aeolia Review Article Summary of the Third International Planetary Dunes Workshop: Remote Sensing and Image Analysis of Planetary Dunes, Flagstaff, Arizona, USA, June 12–15, 2012 ⇑ Lori K. Fenton a, , Rosalyn K. Hayward b, Briony H.N. Horgan c, David M. Rubin d, Timothy N. Titus b, Mark A. Bishop e,f, Devon M. Burr g, Matthew Chojnacki g, Cynthia L. Dinwiddie h, Laura Kerber i, Alice Le Gall j, Timothy I. Michaels a, Lynn D.V. Neakrase k, Claire E. Newman l, Daniela Tirsch m, Hezi Yizhaq n, James R. Zimbelman o a Carl Sagan Center at the SETI Institute, 189 Bernardo Ave., Suite 100, Mountain View, CA 94043, USA b United States Geological Survey, Astrogeology Science Center, 2255 N.
    [Show full text]
  • Dark Dunes on Mars
    CHAPTER II: PLANET MARS – THE BACKGROUND Like Earth, its neighbour planet, Mars, is a terrestrial planet with a solid surface, an atmosphere, two ice-covered pole caps, and not one but two moons (Phobos and Deimos). Some differences, such as a greater distance to the sun, a smaller diameter, a thinner atmosphere, and the longer duration of a year distinguish Mars from the Earth, not to forget the absence of life…so far. Nevertheless, there are many correlations between terrestrial and Martian geological and geomorphological processes, permitting researchers to apply knowledge from terrestrial studies more or less directly to Mars. However, a closer look reveals that the dissimilarities, though few, can make fundamental differences in process background and development. The following chapter provides a brief but necessary insight into the geological and physical background of this planet, imparting to the reader some fundamental knowledge about Mars, which is useful for understanding this work. Fig. 1 presents an impression of Mars viewed from space. Figure 1: The planet Mars: a global view (Viking 1 Orbiter mosaic [NASA]). Chapter II Planet Mars – The Background 5 Table 1 provides a summary of some major astronomical and physical parameters of Mars, giving the reader an impression of the extent to which they differ from terrestrial values. Table 1: Parameters of Mars [Kieffer et al., 1992a]. Property Dimension Orbit 227 940 000 km (1.52 AU) mean distance to the Sun Diameter 6794 km Mass 6.4185 * 1023 kg 3 Mean density ~3.933 g/cm Obliquity
    [Show full text]
  • Water and Martian Habitability Results of an Integrative Study Of
    Planetary and Space Science 98 (2014) 128–145 Contents lists available at ScienceDirect Planetary and Space Science journal homepage: www.elsevier.com/locate/pss Water and Martian habitability: Results of an integrative study of water related processes on Mars in context with an interdisciplinary Helmholtz research alliance “Planetary Evolution and Life” R. Jaumann a,b,n, D. Tirsch a, E. Hauber a, G. Erkeling c, H. Hiesinger c, L. Le Deit a,d, M. Sowe b, S. Adeli a, A. Petau a, D. Reiss c a DLR, Institute of Planetary Research, Berlin, Germany b Freie Universität Berlin, Institute of Geosciences, Berlin, Germany c Institut für Planetologie, Westfälische Wilhelms-Universität, Münster, Germany d Laboratoire de Planétologie et Géodynamique, UMR 6112, CNRS, Université de Nantes, Nantes, France article info abstract Article history: A study in context with the Helmholtz Alliance ‘Planetary Evolution and Life’ focused on the (temporary) Received 11 March 2013 existence of liquid water, and the likelihood that Mars has been or even is a habitable planet. Both Received in revised form geomorphological and mineralogical evidence point to the episodic availability of liquid water at the 10 February 2014 surface of Mars, and physical modeling and small-scale observations suggest that this is also true for Accepted 21 February 2014 more recent periods. Habitable conditions, however, were not uniform over space and time. Several key Available online 5 March 2014 properties, such as the availability of standing bodies of water, surface runoff and the transportation of Keywords: nutrients, were not constant, resulting in an inhomogeneous nature of the parameter space that needs to Mars be considered in any habitability assessment.
    [Show full text]
  • The Mars Global Surveyor Mars Orbiter Camera: Interplanetary Cruise Through Primary Mission
    p. 1 The Mars Global Surveyor Mars Orbiter Camera: Interplanetary Cruise through Primary Mission Michael C. Malin and Kenneth S. Edgett Malin Space Science Systems P.O. Box 910148 San Diego CA 92130-0148 (note to JGR: please do not publish e-mail addresses) ABSTRACT More than three years of high resolution (1.5 to 20 m/pixel) photographic observations of the surface of Mars have dramatically changed our view of that planet. Among the most important observations and interpretations derived therefrom are that much of Mars, at least to depths of several kilometers, is layered; that substantial portions of the planet have experienced burial and subsequent exhumation; that layered and massive units, many kilometers thick, appear to reflect an ancient period of large- scale erosion and deposition within what are now the ancient heavily cratered regions of Mars; and that processes previously unsuspected, including gully-forming fluid action and burial and exhumation of large tracts of land, have operated within near- contemporary times. These and many other attributes of the planet argue for a complex geology and complicated history. INTRODUCTION Successive improvements in image quality or resolution are often accompanied by new and important insights into planetary geology that would not otherwise be attained. From the variety of landforms and processes observed from previous missions to the planet Mars, it has long been anticipated that understanding of Mars would greatly benefit from increases in image spatial resolution. p. 2 The Mars Observer Camera (MOC) was initially selected for flight aboard the Mars Observer (MO) spacecraft [Malin et al., 1991, 1992].
    [Show full text]
  • Wind Erosion of Layered Sediments on Mars: the Role of Terrain
    Wind erosion of layered sediments on Mars: The role of terrain For submission to ROSES - Solar System Workings 2014 (NNH14ZDA001N-SSW) 1. Table of contents ............................................................................................................0 2. Scientific/Technical/Management ................................................................................1 2.1 Summary .................................................................................................................1 2.2 Goals of the Proposed Study .................................................................................1 2.3 Scientific Background ............................................................................................1 2.3.1. Wind erosion on Mars ...................................................................................1 2.3.2. Slope winds ...................................................................................................3 2.3.3. Formation of sedimentary mounds and moats ..............................................4 2.4 Technical Approach and Methodology ................................................................4 2.4.1. Application of the Mars Regional Atmospheric Modeling System ..............5 2.4.2. Numerical experiments with idealized craters and canyons .........................6 2.4.3. Consideration of the effect of sedimentary infill (sedimentary mounds) .....7 2.4.4. Simulation of slope-eroding winds for geologically realistic terrain ............9 2.4.5. Incorporation of slope
    [Show full text]
  • Carnegie Institution Carnegie
    C68099_CVR.qxd:CVR 3/29/11 7:58 Page 1 2009-2010 CARNEGIE INSTITUTION FOR 2009-2010 SCIENCE YEAR BOOK 1530 P Street, N.W. Washington DC 20005 Phone: 202.387.6400 Carnegie Institution Fax: 202.387.8092 www.CarnegieScience.edu FOR SCIENCE CARNEGIE INSTITUTION FOR SCIENCE INSTITUTION FOR CARNEGIE YEAR BOOK The paper used in the manufacturing this year book contains 30% post-consumer recycled fiber. By using recycled fiber in place of virgin fiber, the Carnegie Institution preserved 41 trees, saved 126 pounds of waterborne waste, saved 18,504 gallons of water and prevented 4031 pounds of greenhouse gasses. The energy used to print the report was produced by wind power. Designed by Tina Taylor, T2 Design Printed by Monroe Litho ISSN 0069-066X C68099_CVR.qxd:CVR 3/29/11 7:58 Page 2 Department of Embryology 3520 San Martin Dr. / Baltimore, MD 21218 410.246.3001 Geophysical Laboratory 5251 Broad Branch Rd., N.W. / Washington, DC 20015-1305 202.478.8900 Department of Global Ecology 260 Panama St. / Stanford, CA 94305-4101 650.462.1047 The Carnegie Observatories 813 Santa Barbara St. / Pasadena, CA 91101-1292 626.577.1122 Las Campanas Observatory Casilla 601 / La Serena, Chile Department of Plant Biology 260 Panama St. / Stanford, CA 94305-4101 650.325.1521 Department of Terrestrial Magnetism 5241 Broad Branch Rd., N.W. / Washington, DC 20015-1305 202.478.8820 Office of Administration 1530 P St., N.W. / Washington, DC 20005-1910 202.387.6400 www.CarnegieScience.edu 2 009-2010 YEAR BOOK The President’s Report July 1, 2009 - June 30, 2010 CARNEGIE INSTITUTION FOR SCIENCE Former Presidents Former Trustees Daniel C.
    [Show full text]
  • Morphological Study of Landforms on the Norther Polar Region of Mars
    Morphological study of landforms on The Norther Polar Region of Mars. Marina Sánchez-Bayton1 , Erwan Tréguier2, Miguel Herraiz 1,3, Patrick Martin4, Akos Kereszturi5,, 6, Beatriz Sánchez-Cano6. 1 Department of Physics of the Earth and Astrophysics, Universidad Complutense de Madrid (UCM), Madrid, Spain 2 Formerly at ESAC (European Space Astronomy Centre), Villanueva de la Cañada, Spain 3 Instituto de Matemática Interdisciplinar (IMI), Madrid, Spain 4 ESAC (European Space Astronomy Centre), Villanueva de la Cañada, Spain 5 Research Centre for Astronomy and Earth Sciences, Konkoly Thege Miklos Astronomical Institute, Hungary 6 Radio and Space Plasma Physics Group, School of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH, UK. 7 European Astrobiology Institute Abstract This study focuses on the characteristics and possible origin of different geologic features located in Scandia Cavi and Olympia Undae. These are two regions close to the northern polar cap of Mars that spans between 64 72-80º N and 150-230º E. They have an especial interest, because they can cast light on the geological evolution of the area, the existence of volcanism and the gypsum formation. We use images from Mars Express and Mars Reconnaissance Orbiter, and topographic information from Mars Global Surveyor that have allowed determine the location and evaluate the morphometric parameters of 201 landforms that were classified into 6 groups: cratered cones CC, impact craters IC, ambiguous craters AC, simple and peaked domes SD, PD, and irregular structures SD. XIV.0 Reunión Científica Sanchez - Bayton et al., under review at JGR Planets 13-15 julio 2020 Context of the research Olympia Undae is the largest continuous dune field on Mars with an average elevation of 4,250 m below the reference ellipsoid.
    [Show full text]
  • A Sedimentary Origin for Intercrater Plains North of the Hellas Basin
    A sedimentary origin for intercrater plains north of the Hellas basin: Implications for climate conditions and erosion rates on early Mars Francesco Salese, Veronique Ansan, Nicolas Mangold, John Carter, Anouck Ody, François Poulet, Gian Gabriele Ori To cite this version: Francesco Salese, Veronique Ansan, Nicolas Mangold, John Carter, Anouck Ody, et al.. A sedimentary origin for intercrater plains north of the Hellas basin: Implications for climate conditions and erosion rates on early Mars. Journal of Geophysical Research. Planets, Wiley-Blackwell, 2016, 121 (11), pp.2239-2267. 10.1002/2016JE005039. hal-02305998 HAL Id: hal-02305998 https://hal.archives-ouvertes.fr/hal-02305998 Submitted on 4 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. PUBLICATIONS Journal of Geophysical Research: Planets RESEARCH ARTICLE A sedimentary origin for intercrater plains north of the Hellas 10.1002/2016JE005039 basin: Implications for climate conditions Key Points: and erosion rates on early Mars • Intercrater plains on the northern rim of Hellas basin are
    [Show full text]
  • Our Evolving Understanding of Aeolian Bedforms, Based on Observation Of
    Aeolian Research 26 (2017) 5–27 Contents lists available at ScienceDirect Aeolian Research journal homepage: www.elsevier.com/locate/aeolia Review Our evolving understanding of aeolian bedforms, based on observation of dunes on different worlds ⇑ Serina Diniega a, , Mikhail Kreslavsky b, Jani Radebaugh c, Simone Silvestro d,e, Matt Telfer f, Daniela Tirsch g a Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA b Earth and Planetary Sciences, University of California – Santa Cruz, 1156 High Str., Santa Cruz, CA 95064, USA c Department of Geological Sciences, Brigham Young University, Provo, UT 84602, USA d INAF Osservatorio Astronomico di Capodimonte, Via Moiariello 16, 80131 Napoli, Italy e Carl Sagan Center, SETI Institute, 189 N Bernardo Ave, Mountain View, CA 94043, USA f SOGEES, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, UK g Institute of Planetary Research, German Aerospace Center (DLR), Rutherfordstrasse 2, 12489 Berlin, Germany article info abstract Article history: Dunes, dune fields, and ripples are unique and useful records of the interaction between wind and gran- Received 5 April 2016 ular materials – finding such features on a planetary surface immediately suggests certain information Revised 30 September 2016 about climate and surface conditions (at least during the dunes’ formation and evolution). Accepted 4 October 2016 Additionally, studies of dune characteristics under non-Earth conditions allow for ‘‘tests” of aeolian pro- Available online 24 October 2016 cess models based primarily on observations of terrestrial features and dynamics, and refinement of the models to include consideration of a wider range of environmental and planetary conditions.
    [Show full text]