Guidelines for the Surveillance of Native Mosquitoes in Europe

Total Page:16

File Type:pdf, Size:1020Kb

Guidelines for the Surveillance of Native Mosquitoes in Europe TECHNICAL REPORT Guidelines for the surveillance of native mosquitoes in Europe www.ecdc.europa.eu ECDC TECHNICAL REPORT Guidelines for the surveillance of native mosquitoes in Europe This report was commissioned by the European Centre for Disease Prevention and Control (ECDC), coordinated by Laurence Marrama, and produced by Francis Schaffner, Avia-GIS bvba, Agro-Veterinary Information and Analysis, Zoersel, Belgium Veerle Versteirt, Avia-GIS bvba, Agro-Veterinary Information and Analysis, Zoersel, Belgium Jolyon Medlock, Public Health England, Emergency Response Department, Porton Down, United Kingdom Acknowledgements We are grateful to all experts who contributed to the elaboration of these guidelines, by sharing experience and information about surveillance systems, or by contributing within the reviewing process. Suggested citation: European Centre for Disease Prevention and Control. Guidelines for the surveillance of native mosquitoes in Europe. Stockholm: ECDC; 2014. Stockholm, November 2014 ISBN 978-92-9193-599-4 doi 10.2900/37227 Catalogue number TQ-06-14-071-EN-N © European Centre for Disease Prevention and Control, 2014 Reproduction is authorised, provided the source is acknowledged ii TECHNICAL REPORT Guidelines for the surveillance of native mosquitoes in Europe Contents Abbreviations ............................................................................................................................................... vi Glossary ...................................................................................................................................................... vii Executive summary ........................................................................................................................................1 Introduction ..................................................................................................................................................3 1 Decision-making process and rapid risk assessment ..................................................................................... 12 2 Operational processes ............................................................................................................................... 23 3 Cost and evaluation ................................................................................................................................... 45 Annex 1: Systematic reviews on existing surveillance guidelines and sampling and identification methods for native mosquito species ......................................................................................................................................... 49 Annex 2: Basic information on the biology of mosquitoes and transmission of MBD pathogens ............................ 53 Annex 3: Prioritisation levels for the surveillance of native mosquitoes .............................................................. 59 Annex 4: Collecting native mosquitoes ........................................................................................................... 65 Annex 5: Methods for identification of native mosquitoes ................................................................................ 79 Annex 6: Principles and detailed methodologies for determination of mosquito population parameters ................ 86 Annex 7: Methods for pathogen screening in field-collected mosquitoes ............................................................ 94 Annex 8: Measuring environmental parameters .............................................................................................. 99 Annex 9: Data management and analysis ..................................................................................................... 105 Annex 10: Methods of dissemination of surveillance results ........................................................................... 109 iii Guidelines for the surveillance of native mosquitoes in Europe TECHNICAL REPORT Figures Figure 1. Reported autochthonous cases of malaria and West Nile fever in Europe and neighbouring countries, 2010–2013 ....................................................................................................................................................2 Figure 2. Native mosquito species ...................................................................................................................4 Figure 3. Potential vector role of European mosquito species for eight arboviruses (Eastern equine encephalitis virus, Japanese encephalitis virus, Rift Valley fever virus, St. Louis encephalitis virus, Sindbis virus, Usutu virus, Venezuelan equine encephalitis virus, and West Nile virus) and Dirofilaria spp. and Plasmodium spp. .................... 6 Figure 4. Flowchart of the procedures and main issues of mosquito vectors and MBD surveillance......................... 8 Figure 5. Decision diagram for the implementation of surveillance of NMS, in relation to the assessment of risk from mosquito-borne disease ........................................................................................................................ 10 Figure 6. Flow chart summary of the procedures to be developed for the surveillance of NMS ............................ 11 Figure 7. Decision diagram of the decision-making process for the assessment of risk from mosquito-borne diseases ...................................................................................................................................................... 13 Figure 8a. Algorithm diagrams for risk assessments with corresponding surveillance procedures; Scenario 1, pre- disease stage: threat levels 1A ‘initial assessment’ (left) and 1B ‘preparedness’ (right, dashed frame).................. 18 Figure 8b. Algorithm diagrams for risk assessments with corresponding surveillance procedures; Scenario 2, disease stage: threat levels 2A ‘occasional cases’ (top) and 2B ‘recurrent cases’ (bottom, dashed frame) ............. 19 Figure 9. Diagram of surveillance procedures for native mosquito species, according to the identified risk and the two defined diseases stages .......................................................................................................................... 23 Figure 10a. Collecting population parameters of native mosquito species: desired output and related key and optional procedures; pre-disease stage .......................................................................................................... 30 Figure 10b. Collecting population parameters of native mosquito species: desired output and related key and optional procedures; disease stage ................................................................................................................ 31 Figure 11. Decision tree for screening of virus/parasite (V/P) pathogens in native mosquito species, showing procedures, datasets, and their expected outcomes (pre-disease and disease stages) ........................................ 34 Figure 12. Surveillance procedures and data collection for environmental parameters and their related datasets; pre-disease (top) and disease stages (bottom) ............................................................................................... 37 Figure 13. Native mosquito species surveillance: dissemination/communication of outcomes and effects ............. 42 Figure 14. Flowchart for the assessment of surveillance procedures and data .................................................... 48 Figure A1-A. Prisma flow chart: paper selection and inclusion/exclusion process for SR A (existing guidelines), SR B (sampling methods), and SR C (native mosquito species identification)* ........................................................... 50 Figure A2-A: Biological cycle of a mosquito (subfamily Culicinae) ..................................................................... 54 Figure A3-A. Flyer for the ‘i Moustique’ project, France (left); website for ‘Mückenatlas’, Germany (right) ............ 62 Figure A3-B. Project AtrapaelTigre.com, Spain: Tigatrapp App screenshots (left), web site screenshot (right) ....... 63 Figure A3-C. Project ‘Muggenradar’, the Netherlands: website screenshot (left); project ‘Mosquito Recording Scheme’, UK: reporting form (right) ............................................................................................................... 64 Figure A4-A. Larval sampling: dipping (top left); netting (top right); sampling with a 1l plastic tray (bottom left), and with a small net and a tray (bottom right)................................................................................................ 67 Figure A4-B: Adult sampling/trapping; backpack aspirator (top left), bird-baited trap (top right); dog- and chicken- baited traps (bottom left); horse-baited trap (bottom right) ............................................................................. 70 Figure A4-C. Habitats unsuitable for native mosquito species; adults (top) and larvae (bottom) .......................... 73 Figure A4-D. Proper placement of mosquito traps. Top: CO2-baited CDC miniature light trap in a wetland; bottom left: CO2-baited CDC miniature light trap (next to a black-light trap for biting midges); bottom right: gravid trap .. 74 Figure A4-E: Habitats suitable for native mosquito species ............................................................................... 74 Figure A4-F. Example of an operational surveillance plan ................................................................................. 75 Figure
Recommended publications
  • Mosquito Species Identification Using Convolutional Neural Networks With
    www.nature.com/scientificreports OPEN Mosquito species identifcation using convolutional neural networks with a multitiered ensemble model for novel species detection Adam Goodwin1,2*, Sanket Padmanabhan1,2, Sanchit Hira2,3, Margaret Glancey1,2, Monet Slinowsky2, Rakhil Immidisetti2,3, Laura Scavo2, Jewell Brey2, Bala Murali Manoghar Sai Sudhakar1, Tristan Ford1,2, Collyn Heier2, Yvonne‑Marie Linton4,5,6, David B. Pecor4,5,6, Laura Caicedo‑Quiroga4,5,6 & Soumyadipta Acharya2* With over 3500 mosquito species described, accurate species identifcation of the few implicated in disease transmission is critical to mosquito borne disease mitigation. Yet this task is hindered by limited global taxonomic expertise and specimen damage consistent across common capture methods. Convolutional neural networks (CNNs) are promising with limited sets of species, but image database requirements restrict practical implementation. Using an image database of 2696 specimens from 67 mosquito species, we address the practical open‑set problem with a detection algorithm for novel species. Closed‑set classifcation of 16 known species achieved 97.04 ± 0.87% accuracy independently, and 89.07 ± 5.58% when cascaded with novelty detection. Closed‑set classifcation of 39 species produces a macro F1‑score of 86.07 ± 1.81%. This demonstrates an accurate, scalable, and practical computer vision solution to identify wild‑caught mosquitoes for implementation in biosurveillance and targeted vector control programs, without the need for extensive image database development for each new target region. Mosquitoes are one of the deadliest animals in the world, infecting between 250–500 million people every year with a wide range of fatal or debilitating diseases, including malaria, dengue, chikungunya, Zika and West Nile Virus1.
    [Show full text]
  • American Journal of Veterinary Research
    American Journal of Veterinary Research Index for Volume 71 No. 1 – 12 January – December 2010 Published by AMERICAN VETERINARY MEDICAL ASSOCIATION 1931 N MEACHAM RD, SUITE 100, SCHAUMBURG, IL 60173-4360 Index to News A American Anti-Vivisection Society (AAVS) AAHA Nutritional Assessment Guidelines for Dogs and Cats MSU veterinary college ends nonsurvival surgeries, 497 Nutritional assessment guidelines, consortium introduced, 1262 American Association of Swine Veterinarians (AASV) Abandonment AVMA board, HOD convene during leadership conference, 260 Corwin promotes conservation with pageant of ‘amazing creatures,’ 1115 AVMA seeks input on model practice act, 1403 American Association of Veterinary Immunologists (AAVI) CRWAD recognizes research, researchers, 258 Abbreviations FDA targets medication errors resulting from unclear abbreviations, 857 American Association of Veterinary Laboratory Diagnosticians (AAVLD) Abuse Organizations to promote veterinary research careers, 708 AVMA seeks input on model practice act, 1403 American Association of Veterinary Parasitologists (AAVP) Academy of Veterinary Surgical Technicians (AVST) CRWAD recognizes research, researchers, 258 NAVTA announces new surgical technician specialty, 391 American Association of Veterinary State Boards (AAVSB) Accreditation Stakeholders weigh in on competencies needed by veterinary grads, 388 Dates announced for NAVMEC, 131 USDA to restructure accreditation program, require renewal, 131 American Association of Zoo Veterinarians (AAZV) Education council schedules site
    [Show full text]
  • Dirofilaria Immitis in Cats: Diagnosis and Management*
    CE Article #2 Dirofilaria immitis in Cats: Diagnosis and Management * C. Thomas Nelson, DVM a Animal Medical Centers of Northeast Alabama Anniston, Alabama ABSTRACT: Imaging and laboratory studies can help with the diagnosis of heartworm disease in cats, but no test is definitive. Furthermore, even when the diagnosis can be reliably established, therapy directed at the heartworms does little to help the cat. Rather, management is directed at alleviating clinical signs, with an emphasis on prevention for all. iagnosis is the most challenging part of tions are often single sex. When microfilariae feline heartworm disease because are produced, they are only present for 1 or 2 Dno single test can reliably detect heart - months, at which time the cat’s immune sys - worms at all stages. Veterinarians must be will- tem eliminates them and suppresses further ing to conduct multiple and even repeat tests embryogenesis. 1 (Table 1 and Figure 1 ) to obtain a diagnosis and to correctly interpret and apply the results .b Radiology The most common radiographic finding in DIAGNOSIS feline heartworm disease is an enlargement of Microfilariae the right caudal lobar artery (see Figure 2 in the Filtration tests for microfilariae are virtually companion article beginning on page 382 ). This useless in cats because cats are only transiently is best seen on a ventrodorsal view. A bron - microfilaremic, if at all. To be microfilaremic, a chointerstitial pulmonary pattern (Figure 2) cat must have both a mature male and a may also be noted, but this finding is not mature female worm, and because cats typi - unique to feline heartworm disease.
    [Show full text]
  • Data-Driven Identification of Potential Zika Virus Vectors Michelle V Evans1,2*, Tad a Dallas1,3, Barbara a Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8
    RESEARCH ARTICLE Data-driven identification of potential Zika virus vectors Michelle V Evans1,2*, Tad A Dallas1,3, Barbara A Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8 1Odum School of Ecology, University of Georgia, Athens, United States; 2Center for the Ecology of Infectious Diseases, University of Georgia, Athens, United States; 3Department of Environmental Science and Policy, University of California-Davis, Davis, United States; 4Cary Institute of Ecosystem Studies, Millbrook, United States; 5Department of Infectious Disease, University of Georgia, Athens, United States; 6Center for Tropical Emerging Global Diseases, University of Georgia, Athens, United States; 7Center for Vaccines and Immunology, University of Georgia, Athens, United States; 8River Basin Center, University of Georgia, Athens, United States Abstract Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States. *For correspondence: mvevans@ DOI: 10.7554/eLife.22053.001 uga.edu Competing interests: The authors declare that no competing interests exist.
    [Show full text]
  • RESCON 2020 Proceedings
    POSTGRADUATE INSTITUTE OF SCIENCE UNIVERSITY OF PERADENIYA SRI LANKA PGIS RESEARCH CONGRESS 2020 PROCEEDINGS 26th - 28th November 2020 Copyright © 2020 by Postgraduate Institute of Science All rights reserved. No part of this publication may be reproduced, distributed, stored in a retrieval system, and transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher. ISBN 978-955-8787-10-6 Published by Postgraduate Institute of Science (PGIS) University of Peradeniya Peradeniya 20400 SRI LANKA Printed by Sanduni Offset Printers (Pvt) Ltd, 1/4, Sarasavi Uyana Goodshed Road, Sarasavi Uyana, Peradeniya 20400, Sri Lanka Printed in the Democratic Socialist Republic of Sri Lanka ii TABLE OF CONTENTS Message from the Director, Postgraduate Institute of Science ....................................... v Message from the Congress Chairperson ..................................................................... vii Message from the Editor-in-Chief .................................................................................ix Message from the Chief Guest .......................................................................................xi Editorial Board ............................................................................................................ xiii Academic Coordinators of the Virtual Technical Sessions .........................................xiv A Brief Biography of the Keynote Speaker .................................................................
    [Show full text]
  • A Review of the Mosquito Species (Diptera: Culicidae) of Bangladesh Seth R
    Irish et al. Parasites & Vectors (2016) 9:559 DOI 10.1186/s13071-016-1848-z RESEARCH Open Access A review of the mosquito species (Diptera: Culicidae) of Bangladesh Seth R. Irish1*, Hasan Mohammad Al-Amin2, Mohammad Shafiul Alam2 and Ralph E. Harbach3 Abstract Background: Diseases caused by mosquito-borne pathogens remain an important source of morbidity and mortality in Bangladesh. To better control the vectors that transmit the agents of disease, and hence the diseases they cause, and to appreciate the diversity of the family Culicidae, it is important to have an up-to-date list of the species present in the country. Original records were collected from a literature review to compile a list of the species recorded in Bangladesh. Results: Records for 123 species were collected, although some species had only a single record. This is an increase of ten species over the most recent complete list, compiled nearly 30 years ago. Collection records of three additional species are included here: Anopheles pseudowillmori, Armigeres malayi and Mimomyia luzonensis. Conclusions: While this work constitutes the most complete list of mosquito species collected in Bangladesh, further work is needed to refine this list and understand the distributions of those species within the country. Improved morphological and molecular methods of identification will allow the refinement of this list in years to come. Keywords: Species list, Mosquitoes, Bangladesh, Culicidae Background separation of Pakistan and India in 1947, Aslamkhan [11] Several diseases in Bangladesh are caused by mosquito- published checklists for mosquito species, indicating which borne pathogens. Malaria remains an important cause of were found in East Pakistan (Bangladesh).
    [Show full text]
  • A Code of Practice for Canadian Kennel Operations Third Edition | 2018 a CODE of PRACTICE for CANADIAN KENNEL OPERATIONS
    A Code of Practice for Canadian Kennel Operations Third edition | 2018 A CODE OF PRACTICE FOR CANADIAN KENNEL OPERATIONS Acknowledgements The third edition of this Code took seven years to complete. The Canadian Veterinary Medical Association (CVMA) expresses sincere appreciation to Amy Morris of the BC SPCA for her research, coordination, and drafting support, Dr. Sherlyn Spooner and Dr. Colleen Marion for their signifcant contributions to the Code’s development, and Dr. Warren Skippon and Dr. Shane Renwick for their leadership. The CVMA also wishes to express gratitude to the small animal subcommittee members who provided drafting, feedback, and guidance over the seven-year period: Dr. Patricia Turner, Dr. Carol Morgan, Dr. Alice Crook, Dr. Tim Zaharchuk, Dr. Jim Berry, Dr. Michelle Lem, Ms. Barb Cartwright, Dr. Michelle Groleau, Dr. Tim Arthur, Ms. Christine Archer, Dr. Chris Bell, Dr. Doug Whiteside, Dr. Michael Cockram, Dr. Patricia Alderson, Dr. Trevor Lawson, Dr. Gilly Griffn, and Dr. Marilyn Keaney. The CVMA thanks the following organizations and their representatives who were consulted to review the Code and provide comments before publication: provincial veterinary associations and regulatory licensing bodies, Canadian veterinary colleges, the American Veterinary Medical Association, the Canadian Federation of Humane Societies, Agriculture and Agri-Food Canada, the Canadian Kennel Club, the Pet Industry Joint Advisory Council of Canada, the National Companion Animal Coalition, and the Registered Veterinary Technologists and Technicians of Canada. © 2018 Canadian Veterinary Medical Association. This document or any portion thereof may be quoted or reproduced with proper attribution to the author ‘Canadian Veterinary Medical Association’. Canadian Veterinary Medical Association Third Edition | 2018 i A CODE OF PRACTICE FOR CANADIAN KENNEL OPERATIONS Preface Since the release of the Code of Practice for Canadian Kennel Operations second edition in 2007, both our society and science have advanced with respect to the humane treatment of dogs.
    [Show full text]
  • Laboratory Studies of Anopheles Atroparvus in Relation To
    [ 478 ] LABORATORY STUDIES OF ANOPHELES ATBOPARVUS IN RELATION TO MYXOMATOSIS BY C. H. ANDREWES, R. C. MUIRHEAD-THOMSON AND J. P. STEVENSON* National Institute for Medical Research, Mill Hill, London, N.W.I and the Infesta- tion Control Division, Ministry of Agriculture, Fisheries and Food, Tolworth, Surrey Though rabbit fleas (Spilopsyllus) are the principal vectors of myxomatosis in Britain (Armour & Thompson, 1955), Anopheles labranchiae atroparvus^ has been implicated in its transmission amongst domestic rabbits (Muirhead-Thomson, 1956). This mosquito was first shown to carry infection under laboratory condi- tions by Jacotot, Toumanoff, Vallee & Virat in France (1954). They found that in- fection was transmitted up to 21 days after the infective blood meal; that a single bite of the Anopheles was sufficient to produce infection and that a single mosquito could infect several rabbits one after the other at short intervals. These basic observations have been confirmed. In addition, it has been shown that infection can be produced by insertion of the mosquito's mouthparts alone, without actual feeding; that, after the first few days, virus is present only in the mouthparts of the insect; and that infected mosquitoes can remain infective for several months, much longer than is reported for this insect by the French workers or for other mosquitoes by Australian workers (Fenner, Day & Woodroofe, 1952). The possibility that myxoma virus multiplies in A. atroparvus will be discussed. METHODS We used both wild and laboratory-reared atroparvus, most frequently wild caught semi-hibernating insects. Rabbits used for feeding experiments were first anaes- thetized by intraperitoneal injection of nembutal.
    [Show full text]
  • Diptera: Culicidae) in Southern Iran Accepted: 07-02-2017
    International Journal of Mosquito Research 2017; 4(2): 27-38 ISSN: 2348-5906 CODEN: IJMRK2 IJMR 2017; 4(2): 27-38 Larval habitats, affinity and diversity indices of © 2017 IJMR Received: 06-01-2017 Culicinae (Diptera: Culicidae) in southern Iran Accepted: 07-02-2017 Ahmad-Ali Hanafi-Bojd Ahmad-Ali Hanafi-Bojd, Moussa Soleimani-Ahmadi, Sara Doosti and Department of Medical Entomology and Vector Control, Shahyad Azari-Hamidian School of Public Health, Tehran University of Medical Sciences, Abstract Tehran, Iran. An investigation was carried out studying the ecology of the larvae of Culicinae (Diptera: Culicidae) in Moussa Soleimani-Ahmadi Bashagard County, Hormozgan Province, southern Iran. Larval habitat characteristics were recorded Social Determinants in Health according to habitat situation and type, vegetation, sunlight situation, substrate type, turbidity and water Promotion Research Center, depth during 2009–2011. Physicochemical parameters of larval habitat waters were analyzed for Hormozgan University of electrical conductivity (µS/cm), total alkalinity (mg/l), turbidity (NTU), total dissolved solids (mg/l), Medical Sciences, Bandar Abbas, total hardness (mg/l), acidity (pH), water temperature (°C) and ions such as calcium, chloride, Iran. magnesium and sulphate. In total, 1479 third- and fourth-instar larvae including twelve species representing four genera were collected and identified: Aedes vexans, Culex arbieeni, Cx. Sara Doosti bitaeniorhynchus, Cx. mimeticus, Cx. perexiguus, Cx. quinquefasciatus, Cx. sinaiticus, Cx. theileri, Cx. Department of Medical tritaeniorhynchus, Culiseta longiareolata, Ochlerotatus caballus and Oc. caspius. All species, except Cx. Entomology and Vector Control, bitaeniorhynchus, were reported for the first time in Bashagard County. Culiseta longiareolata (37.5%), School of Public Health, Tehran Cx.
    [Show full text]
  • Companion Animals and Tick-Borne Diseases a Systematic Review
    Companion animals and tick-borne diseases A systematic review Systematic Review December 2017 Public Health Ontario Public Health Ontario is a Crown corporation dedicated to protecting and promoting the health of all Ontarians and reducing inequities in health. Public Health Ontario links public health practitioners, frontline health workers and researchers to the best scientific intelligence and knowledge from around the world. Public Health Ontario provides expert scientific and technical support to government, local public health units and health care providers relating to the following: • communicable and infectious diseases • infection prevention and control • environmental and occupational health • emergency preparedness • health promotion, chronic disease and injury prevention • public health laboratory services Public Health Ontario's work also includes surveillance, epidemiology, research, professional development and knowledge services. For more information, visit publichealthontario.ca. How to cite this document: Ontario Agency for Health Protection and Promotion (Public Health Ontario). Companion animals and tick-borne diseases: a systematic review. Toronto, ON: Queen's Printer for Ontario; 2017. ISBN 978-1-4868-1063-5 [PDF] ©Queen’s Printer for Ontario, 2017 Public Health Ontario acknowledges the financial support of the Ontario Government. Companion animals and tick-borne diseases: a systematic review i Authors Mark P. Nelder, PhD Senior Program Specialist Enteric, Zoonotic & Vector-borne Diseases Communicable Diseases, Emergency
    [Show full text]
  • Mosquitoes of the Maculipennis Complex in Northern Italy
    www.nature.com/scientificreports OPEN Mosquitoes of the Maculipennis complex in Northern Italy Mattia Calzolari1*, Rosanna Desiato2, Alessandro Albieri3, Veronica Bellavia2, Michela Bertola4, Paolo Bonilauri1, Emanuele Callegari1, Sabrina Canziani1, Davide Lelli1, Andrea Mosca5, Paolo Mulatti4, Simone Peletto2, Silvia Ravagnan4, Paolo Roberto5, Deborah Torri1, Marco Pombi6, Marco Di Luca7 & Fabrizio Montarsi4,6 The correct identifcation of mosquito vectors is often hampered by the presence of morphologically indiscernible sibling species. The Maculipennis complex is one of these groups that include both malaria vectors of primary importance and species of low/negligible epidemiological relevance, of which distribution data in Italy are outdated. Our study was aimed at providing an updated distribution of Maculipennis complex in Northern Italy through the sampling and morphological/ molecular identifcation of specimens from fve regions. The most abundant species was Anopheles messeae (2032), followed by Anopheles maculipennis s.s. (418), Anopheles atroparvus (28) and Anopheles melanoon (13). Taking advantage of ITS2 barcoding, we were able to fnely characterize tested mosquitoes, classifying all the Anopheles messeae specimens as Anopheles daciae, a taxon with debated rank to which we referred as species inquirenda (sp. inq.). The distribution of species was characterized by Ecological Niche Models (ENMs), fed by recorded points of presence. ENMs provided clues on the ecological preferences of the detected species, with An. daciae sp. inq. linked to stable breeding sites and An. maculipennis s.s. more associated to ephemeral breeding sites. We demonstrate that historical Anopheles malaria vectors are still present in Northern Italy. In early 1900, afer the incrimination of Anopheles mosquito as a malaria vector, malariologists made big attempts to solve the puzzling phenomenon of “Anophelism without malaria”, that is, the absence of malaria in areas with an abundant presence of mosquitoes that seemed to transmit the disease in other areas1.
    [Show full text]
  • Plasmodium Ovale Malaria Acquired in Central Spain
    DISPATCHES The Study Plasmodium ovale In March 2001, a 75-year-old woman was admitted to the Hospital Príncipe de Asturias in Madrid with a history of inter- Malaria Acquired in mittent fever for 1 week and no obvious infection. Intravenous treatment with ciprofloxacin was prescribed to treat provision- Central Spain ally diagnosed pyelonephritis. While in hospital, the patient Juan Cuadros,* Maria José Calvente,† had two episodes of high fever (39°C–40°C) separated by 48- Agustin Benito,‡ Juan Arévalo,* hour intervals with hypoxemia and deterioration of her general Maria Angeles Calero,* Javier Segura,† condition. On day 7 of fever, the hematologist advised the phy- and Jose Miguel Rubio‡ sician of the presence of rings inside the patient’s erythrocytes (parasitemia rate <1 %). A rapid antigen detection test (HRP2 We describe a case of locally acquired Plasmodium ovale detection; ICT Diagnostics, Amrad Corporation, Victor, Aus- malaria in Spain. The patient was a Spanish woman who had tralia) was done; the test returned negative results for Plasmo- never traveled out of Spain and had no other risk factors for dium falciparum and P. vivax. The sample was later identified malaria. Because patients with malaria may never have visited as P. ovale through microscopy and molecular studies at a ref- endemic areas, occasional transmission of malaria to Euro- erence malaria laboratory. Initial treatment with chloroquine pean hosts is a diagnostic and clinical challenge. followed by primaquine eliminated the infection successfully, and the patient recovered fully without complications. P. ovale was confirmed by semi-nested multiplex poly- n the first decades of the 20th century, malaria was a highly merase chain reaction (PCR) (8).
    [Show full text]