TkiSiiSTracking in Space and Time: Assessing the relationships between paleobiogeography, paleoecology, and macroevolution

Alyygcia L. Stigall Department of Geological Sciences and OHIO Center for Ecology and Evolutionary Studies OutlineOutline

New methods and emerging opportunities in paleobiogeography:: •• Biogeographic controls on macroevolution •• Biogeographic range and paleoecology/ •• Potential for synthesis

Case Studies: •• Miocene Radiation of Equinae •• Late Biodiversity Crisis •• Late Richmondian Invasion

Future research directions Controls on species range

1 4 1 ,3 1,4,5 1 1 1 1 1 1 1 2 6 3 2 1 1 1 2 Historical Factors 1 1 2 1 •• Primary during speciation 1

1 Ecological Factors

•• Primary during species 1 1,4 duration & extinction

•• Traditionally separate subdiciplines •• Historical Biogeography •• Ecological Biogeography Integrated biogeographic approach, part I

Relationship between biogeography & macroevolution •• Research qqquestions: •• Speciation mode •• Clade history •• Adaptive radiations •• Tectonic vs climatic influences •• Tools: phylogenetic biogeography (detailed in Lieberman, 2000) Phylogenetic biogeography

Evolutionary relationships Evolution of biogeographic areas

1,2 1 6 4 1 1 1,3 1,6 3 1 3 3 4 4,6

1,4,6 1 3,4 3 3 1,3 1,3 Areas of Endemism: 1 1 Northern Appalachian basin 2 Southern Appalachian basin 1 3 Michigan Basin 1 4 Iowa Basin 1 5 Missouri Basin 1 6 Western United States 1

Spppeciation mode Relationshippggp of biogeographic areas 1,2 1 6 4 1 1 1,3 1,6 3 1 3 3 4 4,6 Ancestor Ancestor 1,4,6 1 3,4 3 Bolivia Bolivia 3 1,3 Europe Europe 1,3 1 W. Canada W. Canada

1 Michigan B. Michigan B. 1 Appalachian B. Western US 1 1 Western US Appalachian B. 1 Central US Central US Example 1: Miocene Equinae

Maguire & Stigall (2008), Palaeo3 Equid Phylogentic Biogeography Speciation mode

•• Dispersal dominant mode of speciation

Vicariance Dispersal

•• ClilClilCyclical processes drive evolution of area relationships

Vicariance vs. Geodispersal Maguire & Stigall (2008), Palaeo3 Example 2: Late Devonian Biodiversity Crisis

•• Species invasions due to continental assembly and trangressiiions resuldildilted in greatly reduced faunal endemismendemism •• Extinction rates elevated •• Speciation rates depresseddepressed

North America Europe N. Africa NorthernNorthern Western Central Eastern

Late Late DevonianDevonian Cosmopolitan Fauna

GreatGreatGreat Old World/ Middle B asin/O ld Basin/Old VenezuelanVenezuelan-- DevonianDevonian Michigan ENA Old WorldOld World WorldWorld Columbian Late Devonian Speciation Mode

1,2 1 6 4 1 1 1,3 1,6 3 1 3 3 4 4,6 0 1 4 4 3 3,4 2 3,4 2 1 3 4 1 1,3,4 3 0 1,2,4 1,3,4 5 2 1,3,4,5 4 4 3,4 44 1,4,6 1 3,4 4 4 4 3 4 4 3 4 1,3 1,3 1 4 4 1 4 4 1 episode of vicariance 4 4 Area cladogram from 1 episode of dispersal (invasion) 4 1 Area cladogram from Stigall Rode (2005) 4 1 Stigall Rode (2005) 0, 1,4 0035110 42700000 0 0000 14 02,852 7,90,56 0 5 0 0035 0,10 0 0 1 11 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 4 1 ,3 1,4,5 1 1 1 1 1 1 1 2 6 3 2 0 0 0 0 0 1 1 1 2 1 1 2 0 0 0 0 1 00 0 0 0 1 0

0 0 1

Overall, 1 1,4 0 Area cladogram from 0,3 LOW rates of vicariance, Area cladogram Rode & Lieberman (2002) but rampant dispersal from Rode (2004)

•• Low vicariance due to lack of opportunities for isolation during invasive regime & contributed to speciation rate decline Late Devonian Speciation Mode

•• Speciation by vicariance virtually nonnon--existentexistent •• All speci ati on vi a di spersal (i.e. spec ies invas ions )

Number of Number of Percent Percent Clade vicariance dispersal speciation by speciation events events vicariance by dispersal Schizophoria (Schizophoria) 21711%89%

Flower ia 7 7 50% 50%

Leptodesma (Leiopteria) 2 6 25% 75% Archaeostraca 6 13 32% 68% Overall 17 43 28% 72% Modern Fauna 70% 30% Stigall & Lieberman (2006), J. Biogeography Late Devonian Speciation Rate

•• Extinction not elevated above background during Late Devonian

•• Speciation rate declines to near zero Stigall (2008) Late Devonian Speciation Summary

•• During the Late Devonian crisis interval: •• Spppeciation rates appproach zero •• Extinction elevated, but not in excess of background rates

•• Numerous inter--basinalbasinal species invasions observed •• Speciation by vicariance virtually nonnon--existentexistent •• All speciation via dispersal (i.e. species invasionsinvasions))

•• Breakdown of biogeographicand paleoecologic barriers resulted in shu tdown of allopatricallopatric speciationspeciation

Rode & Lieberman (2004), Palaeo33 Integrated biogeographic approach, part II

Relationship between biogeography & paleoecologygygy •• Research questions •• Range contractions and expansions 22 •• Niche evolution vs. niche constancyconstancy •• Habitat tracking of communities vs. individualistic species response •• Tools: GISTools:GISGIS--based analyses 11 incorporating environmental variables •• Provides data amenable to statistical methods of hypothesis testingtesting Methods of quantitative range modeling

Praewaagenoconcha speciosa GIS based approaches

•• Polygon enclosure models •• Requires robust set of species occurrence data •• Create minimum convex hullshulls 17,000 kmkm17,000 22 •• Ecological niche models •• Requires (1) robust set of specidies occurrence data AND (2) robust set of environmental parameters determined fffrom sedimentological proxies 53,500 kmkm53,500 22 Stigall Rode & Lieberman (2005) Environmental data and interpolation Ecological Niche Models •• Predict species’ ranges to occupy the geographic extent of the fundamental niche •• Utilize computer learning based (genetic) algorithm to estimate species’ fundamental niche from a set of known occurrence sites and environmental data

                         

              100 0 200

kilometers Water deptatedeptdepth Leptodesma spinerigum

Data collection Environmental interpolation Range prediction Stigall Rode & Lieberman (2005) Example 2: Late Devonian Biodiversity Crisis

•• GISGIS--basedbased geographic range reconstruction (methods of Rode & Lieberman, 2000; detailed in Stigall, 2006)

•• Over 5000 data points used to reconstruct ranges of 341 species in 19 temporal bins (Rode & Lieberman, 2004)

Geographic distribution of data

# ##### ## ## # # # # #### ###### # ###### ## Range of TylothyrisTylothyris mesacostalis during Early rhenanarhenana zone (Latezone(Late(Late FrasnianFrasnian):): 10,309 km22

Rode & Lieberman (2004), Palaeo3 Example 2: Late Devonian Biodiversity Crisis

ENM analysis •• Species occurrence data combined with nine environmental factors:factors: Percent mud, silt, sand Oxygygygenation Substrate typypype Percent limestone Ichnofacies BiofaciesBiofacies Depositional environment Bedding style Water depth

Inferred water depth

Percent silt Percent mud Inferred water depth

Stigall Rode & Lieberman (2005) Temporal range change Praewaagenoconcha speciosa Cariniferella carinata

(Late varcuspunctata zone) ZoneZone Late varcus ZoneZone

linguiformis ZoneZone linguiformis ZoneZone

Stigall Rode & Lieberman (2005) Identify interbasinal species invasions Exa m ple: Example: Pseudatrypa devoniana Two invasion events: 1)1) Appalachian to Iowa basins in punctatapunctata zonezonezone (mid FrasnianFrasnian,, onset of TR cycle IIcIIc)) 2)2) Iowa to New Mexico basins in rhenanarhenana zone (Late Frasnian,Frasnian, onset of TR cycle IIdIId)) 22 Total interbasinal invasions

11

Stigall & Lieberman (2006), J Biogeo Rode & Lieberman (2004), Palaeo3 Examine survival vs. geographic range

1. Comparison of geographic range size vs. survival VictimsVictims SurvivorsSurvivors N=30N=30 N=127N=127 Mean range: 6212 Mean range: 15446 SE mean: 895 SE mean: 3592

TT--test:test: Hoo: μμss > μμvv N=157 p= 0.009p= 0.009 2. Comppyarison of survival status vs. invasive history X2 table Invasive species NonNon--invasiveinvasive species 1818 109109 ExtinctExtinct 27.8627.86 99.1499.14 1616 1212 SurviveSurvive 6614614.14 21. 8621868621 86

N= 155 N= 155 p<< 0.0010.001p<< observed/observed/ expectedexpected OO>>EE Rode & Lieberman (2004), Palaeo3 Integrated biogeographic approach III

Complex feedback loops between biogeography, paleoecologygygy, and macroevolution •• Research questions: •• Biodiversity crises •• ItInter bas ina lii/bitiithinvasion / biotic interchange even ts •• Tools: integrated analyses of phylogenetic and environmental patterns Case Study 3: Richmondian InvasionInvasion

•• Late Ordovician invasion of taxa from W. into ENA •• Related to oceanographic changes (Holland & PatzkowskyPatzkowsky, 1997), 1997) •• Ecological patterns well characterized (Holland & PatzkowskyPatzkowsky, 2007), 2007)

Stratigraphic framework (after Holland & Patzkowsky,Patzkowsky, 1996) GISGIS--basedbased geographic range reconstruction

Entire species occurrence data set Geographic range of HbHeber tllHbtlltellaaoccoccident ali liidt s

C4C4 C5C5 C6C6

C1C1 C2C2 C3C3 Stigall & Smith, in review Stratigraphic distribution of species

Species C1 C2 C3 C4 C5 C6 Dalmanella multisecta ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ Leptaena gibbosa ‐‐‐‐‐‐‐ Platystrophia auburnensis ‐‐‐‐‐‐‐ Platystrophia corryvillensis ‐‐‐‐‐‐‐ Platystrophia crassa ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ Platystrophia hopensis ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ Native species: Platystrophia morrowensis ‐‐‐‐‐‐‐ Restricted to Platystrophia sublaticosta ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ Plectorthis aequivalis ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ Maysvillian Plectorthis fissicosta ‐‐‐‐‐‐‐ Plectorthis neglecta ‐‐‐‐‐‐‐ Plectorthis plicatella ‐‐‐‐‐‐‐ Sowerbyella rugosa ‐‐‐‐‐‐‐ Strophomena maysvillensis ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ Strophomena planoconvexa ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ Zygospira cincinnatiensis ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ Dalmanella meeki ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ Hebertella occidentalis ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ Native species: Hebertella subjugata ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ Platystrophia cypha ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ Carryover to Platystrophia laticosta ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ Richmondian Platystrophia ponderosa ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ Rafinesquina alternata ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ Zygygos pira modesta ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ Hebertella alveata ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ Platystrophia acutilirata ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ Platystrophia annieana ‐‐‐‐‐‐‐ Platystrophia clarksvillensis ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ Descendants of Platystrophia cummingsi ‐‐‐‐‐‐‐ native species: Platystrophia elkhornensis ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ Platystrophia forestei ‐‐‐‐‐‐‐ SpeciateSpeciateinin Platystrophia moritura ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ Richmondian ShStrophomena concordidensis ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ Strophomena nutans ‐‐‐‐‐‐‐ Strophomena planumbona ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ Strophomena sulcata ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ Strophomena vetusta ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ Austinella scovellei ‐‐‐‐‐‐‐ Catazyga schuchertana ‐‐‐‐‐‐‐ Eochonetes clarksvillensis ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ Glyptorthis insculpta ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ Hiscobeccus capax ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ Richmondian Holtedahlina sulcata ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ extrabasinal Lepidocyclus perlamellosum ‐‐‐‐‐‐‐ Leptaena richmondensis ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ invadersinvaders Plaesiomys subquadrata ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ Stigall & Smith, in Retrorsirostra carleyi ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ Rhynchotrema denatum ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐ reviewreview Tetraphalerella neglecta ‐‐‐‐‐‐‐ Native species vs. extrabasinal invadersinvaders 1. Comparison of geographic range of native vs. invasive species

All Native Species TT--test:test: N = 59 Extrabasinal InvadersInvaders p = 0. 998998p= 12001200 18001800 24002400 30003000 95% CI for mean geographic range (km22))

2C2. Compar ison o f surv iva l s tttatus o f na tive spec ies vs. geographic range

MaysvillianMaysvillianonlyonly TT--test:test: N = 39 Carryover Taxa p < 0.0005p 0.0005 0 12001200 24002400 36003600 95% CI for mean geographic range (km22))

3. Comparison of species groups vs. geographic range

Maysvillian Restricted Extrabasinal Invaders ANOVA: N = 59 Carryover Taxa p = 0.025p 0.025 Richmondian Speciation

0 12001200 24002400 36003600 22 95% CI for mean geographic range (km )) Stigall, 2008 HebertellaHebertella phylogeny & biogeography

Geographic Area Midcontinent Speciation style Cincinnati Arch Dispersal (Invasion Events) Nashville Dome Vicariance Northern Canada Klingensmith (2007) Integrating historical and ecological palbileobiogeograp hy

•• Provides clues to evolutionary patterns and feedbacks often masked in single approach analyses

•• In the Late Devonian and Late Ordovician case studies:studies: •• Preferential survival of species with wide geographic ranges (=ecological generalists) •• Preferential survival of invader taxa (typically ecological generalists) •• Reduced opportunities for vicariance •• Decline in overall speciation rate •• Increased invasions result in decreased speciation Conclusions

•• Quantitative methods provide new analytical rigor to paleobiogeography •• Potential to analyze complex paleobiological patterns •• Capacity for hypothesis testing and generation

Emerging research questions •• Relationship between species ranges and speciation •• Range expansion and contraction under shifting paleoecological regimes •• Impppact of invasive species on communit y structure and macroevolutionary dynamics •• Mechanics of transitions between endemic and cosmopolitan faunas •• How ecology and geographic range impact extinction during both background and crisis intervals Acknowledgements

•• Collaborators: Bruce Lieberman

•• Students: B. Klingensmith,Klingensmith, K. Maguire, J. Smith

•• Funding:Funding: Ohio University, ACS’s Petroleum Research Fund Referenced papers & figure sources

•• KlingensmithKlingensmith,, B.C., 2007. GISGIS--basedbased biogeography of Cincinnatian (Upper Ordovician) with special reference to HebertellaHebertella.. Unpublished MS thesis, Ohio University, Athens, Ohio. •• MaguireMaguire,, K.C., and Stigall, A.L. 2008. Paleobiogeography of Miocene Equinae of North America: A phylogenetic biogeographic analysis of the relative roles of climate, vicariance, and dispersal. PalaeogeographyPalaeogeography,, Palaeoclimatology,Palaeoclimatology, Palaeoecology,Palaeoecology, 267: 175-175- 184.184. •• Rod e, A . L., and Lie berman, B. S. 2002. Phy logene tic an d biogeograp hic ana lys is o f Devon ian phllhyllocar ididhll crustJlftaceans. Journal of Paleontology, 76(2): 269269--284.284. •• Rode, A.L., and Lieberman, B.S. 2004. Using GIS to unlock the interactions between biogeography, environment, and evolution iinn Middle and Late Devonian brachiopods and bivalves. PalaeogeographyPalaeogeography,, Palaeoclimatology,Palaeoclimatology, Palaeogeography,Palaeogeography, 211(3211(3--4):4): 345-345-359.359. •• Rode, A.L. 2004. Phylogenetic revision of the Devonian bivalve, Leptodesma ((LeiopteriaLeiopteria)). Yale University Postilla,Postilla, 229: 11--26.26. •• Rode, A .L ., and Lieberman, B .S . 2005 . Integrating biogeography and evolution using phylogenetics andandand PaleoGISPaleoGIS: A case study involving Devonian crustaceans. Journal of Paleontology, 79(2): 267267--276.276. •• Stigall, A.L. 2008. Tracking species in space and time: Assessing the relationships between paleobiogeography, paleoecology, and macroevolution, p. 227227--242.242. InIn P. H. Kelly and R. K. Bambach (eds.) From Evolution to Geobiology:Geobiology: Research Questions Driving Paleontology at the Start of a New Century. The Paleontological Society Papers, volume 14. •• Stigg,all, A.L. 2008. Integratin g GIS and pygphylogenetic bio ggpygeography to assess s peciesecies--levellevel biogggpeographic patterns: A case study of Late Devonian faunal dynamics. In P. Upchurch, A. McGowan, and C. Slater, (eds.), Palaeogeography and Palaeobiogeography:Palaeobiogeography: Biodiversity in Space and Time. CRC Press, expected publication December, 2008. •• StigallStigall,, A.L., and Lieberman, B.S. 2006. Quantitative Paleobiogeography: GIS, Phylogenetic Biogeographic Analysis, and Conservation Insights. Journal of Biogeography, 33 (12): 20512051--20602060.. •• Stigall, A.L., and J. Smith. GISGIS--basedbased analysis of biogeography in the type Cincinnatian: Quantifying biogeographic shifts across an the Ric hmon dian Invas ion. PlPalaeont tlologi ca Elec tron iiElt caca,, iiin prep. •• Stigall Rode, A.L. 2005. Systematic revision of the Devonian brachiopods Schizophoria ((SchizophoriaSchizophoria)) and ““and Schuchertella” from North America. Journal of Systematic Palaeontology,Palaeontology, 3(2): 133133--167.167. •• Stigall Rode, A.L., and Lieberman, B.S. 2005. Using environmental niche modelling to study the Late Devonian biodiversity crisis, p. 93-93p. -180.180. InIn D. J. Over, J. R. Morrow, and P .B. Wignall (eds.), Understanding Late Devonian and PermianPermian--TriassicTriassic Biotic and Climatic Events: Towards an Integrated Approach. Developments in Palaeontology andandand Stratigraphy, Elsevier, Amsterdam. •• Stigall Rode, A.L., and Lieberman, B.S. 2005. Paleobiogeographic patterns in the Middle and Late Devonian emphasizing LaurentiaLaurentia.. Palaeogeography,Palaeogeography, Palaeoclimatology,Palaeoclimatology, Palaeoecology,Palaeoecology, 222 (3(3--4):4): 272-272-284.284.