Version dated: June 16, 2021

Supplementary Information to: Phylogenetic reconstruction of ancestral ecological networks through time for pierid butterflies and their host plants

Mariana P Braga1,2, Niklas Janz1,Soren¨ Nylin1, Fredrik Ronquist3, and

Michael J Landis2

1Department of Zoology, Stockholm University, Stockholm, SE-10691, Sweden;

2Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA;

3Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm,

SE-10405, Sweden

- Reference list used to gather host use records for butterflies

- Supplementary methods: Z-score

- Figure S1: Time-calibrated phylogeny of Pieridae.

- Figure S2: Posterior densities for model parameters.

- Figure S3: Ancestral state reconstruction of Pieridae host repertoire.

- Figure S4: Raw modularity and nestedness across the evolution of the

Pieridae-angiosperm network.

1 *

References

Beccaloni, G. W., A. L. Viloria, S. K. Hall, and G. S. Robinson. 2008. Catalogue of the

hosplants of the Neotropical butterflies.

Braby, M. F. 2000. Butterflies of Australia: Their identification, biology and distribution.

Vol 1 vol. 2. CSIRO Publishing, Collingwood.

Braby, M. F. and K. Nishida. 2007. The immature stages, larval food plants and biology of

Neotropical mistletoe butterflies. Journal of the Lepidopterists’ Society 61:181–195.

Braby, M. F. and J. W. H. Trueman. 2006. Evolution of larval host plant associations and

adaptive radiation in pierid butterflies. Journal of Evolutionary Biology 19:1677–1690.

Corbet, A. S. and H. M. Pendlebury. 1992. The butterflies of the Malay Peninsula. Fourth

edition ed. Malayan Nature Society, Kuala Lumpur.

DeVries, P. J. 1987. The Butterflies of Costa Rica and their Natural History, Papilionidae,

Pieridae, Nymphalidae. Princeton University Press, Princeton.

Freitas, A. V. L. 2008. Description of the early stages of Leucidia. Tropical Lepidopera

18:30–31.

Igarashi, S. and H. Fukuda. 1997. The life histories of Asian butterflies, Vol. 1. Tokai

University Press, Tokyo.

Igarashi, S. and H. Fukuda. 2000. The life histories of Asian butterflies, Vol. 2. Tokai

University Press, Tokyo.

2 Kaminski, L. A., E. P. Barbosa, and A. V. L. Freitas. 2012. Immature Stages of the

Neotropical Mistletoe Butterfly Cunizza hirlanda planasia Fruhstorfer (Pieridae:

Anthocharidini). Journal of the Lepidopterists’ Society 66:143–146.

Larsen, T. B. 1991. The butterflies of Kenya and their natural history. Oxford University

Press, Oxford.

Larsen, T. B. 2005. Butterflies of West Africa. Apollo Books, Stenstrup.

Migdoll, I. 1987. Field guide to the butterflies of Southern Africa. C. Struik, Cape Town.

Mota, L. L., A. K. Silva, A. V. L. Freitas, and L. A. Kaminski. 2016. Immature Stages Of

Archonias Brassolis Tereas (Godart) (Pieridae: ), With Notes On Interspecific

Interactions Between Mistletoe Butterflies. Journal of the Lepidopterists’ Society

70:289–294.

Savela, M. 2014. and some other life forms.

Scott, J. A. 1986. The butterflies of North America. Stanford University Press, Stanford,

CA.

Shapiro, A. M. 1978. The life history of santamarta. New York Entomological

Society 86:45–50.

Shapiro, A. M. 1989. The Zoogeography and systematics of the Argentine Andean and

Patagonian Pierid fauna. Journal of Research on the Lepidoptera 28:137–238.

Shapiro, A. M. 2006. Use of an exotic weed as an ovipositon substrate of the high-Andean

oierid nymphula. Journal of the Lepidopterists’ Society 60:100–101.

Smith, D. S., L. D. Miller, and J. Y. Miller. 1994. The butterflies of West Indies and South

Florida. Oxford University Press, Oxford.

3 Tennent, J. 1996. The butterflies of Morocco, Algeria and Tunisia. Gem Publishing

Company, Wallingford, Oxfordshire.

Tolman, T. and R. Lewington. 1997. Collins field guide: Butterflies of Britain and Europe.

HarperCollinsPublishers Ltd., London.

Tuzov, V. K. 1997. Guide to the butterflies of Russia and adjacent territories. Volume 1:

Hesperiidae, Papilionidae, Pieridae, Satyridae. Pensoft Pub.

Underwood, D. L. A. 1994. Intraspecific Variability in Host Plant Quality and

Ovipositional Preferences in Eucheira socialis (Lepidoptera, Pieridae) 19:245–256.

Waterfield, E. M. 1925. Notes on the life-history of Caloperis eulimine. Transactions of the

Royal Entomological Society of London 73:xxvi–xxviii.

4 Supplementary methods: Z-score

We investigated whether changes in modularity and nestedness could be detected over evolutionary time by computing Z-scores for Q and NODF statistics for the observed extant network and for each of the three summary networks at each age. Z-scores and statistical significance for modularity and nestedness were determined by comparing the observed values of Q and NODF to those of a null distribution. Each null distribution was generated using the nullmodel function from the R package vegan (Oksanen et al. 2019) to simulate 1000 null networks. Each null network had the same number of nodes and edges as the observed network (but not the same distribution of edges per node), and edges between nodes were sampled uniformly at random. All Q and NODF values were

x−µ standardized as Z = σ , where x is the Q or NODF statistic that is observed in a particular network, µ is the mean value and σ is the standard deviation for the statistic under the null distribution. This standardisation quantifies the position of the observed metric within the null distribution in standard units (Ulrich et al. 2009), allowing us to compare different networks.

*

References

Oksanen Jari, Blanchet F. Guillaume, Friendly Michael, Kindt Roeland, Legendre Pierre,

McGlinn Dan, Minchin Peter R., O’Hara R. B., Simpson Gavin L., Solymos Peter,

Stevens M. Henry H., Szoecs Eduard, Wagner Helene. vegan: Community Ecology

Package. 2019. R package version 2.5-6.

Ulrich Werner, Almeida-Neto Mario, Gotelli Nicholas J. A consumer’s guide to nestedness

analysis // Oikos. 2009. 118, 1. 3 – 17.

5 Pierphulia [index=9] [index=112] Phulia [index=8] [index=113] [index=10] [index=114] [index=12] [index=115] [index=111] [index=11] [index=116] [index=13]

Ganyra [index=14]

Perrhybris [index=2] [index=119] [index=123] [index=1] [index=120] [index=121] [index=3] [index=4] [index=122] [index=6] [index=117] Talbotia [index=5] [index=118] [index=7]

Charonias [index=16] [index=103] [index=15] [index=124] [index=104] [index=17] [index=105] [index=18] [index=106] [index=19] [index=107] [index=21] [index=108] [index=102] [index=20] [index=125] [index=109] [index=22] [index=24] [index=101] [index=110] [index=23]

[index=126] [index=26] [index=100] [index=25]

Appias [index=27]

Elodina [index=29] [index=99] Leptosia [index=28]

Hesperocharis [index=35] [index=90] Mathania [index=34] [index=91] [index=127] [index=92] Cunizza [index=36] Eroessa [index=37]

[index=96] Euchloe [index=31] [index=93] Zegris [index=30] [index=94] [index=97] Anthocharis [index=32] [index=95] Elphinstonia [index=33]

[index=128] Hebomoia [index=38] [index=98] [index=40] [index=87] Eronia [index=39] [index=88] Colotis [index=41] [index=89] [index=43] [index=86] Teracolus [index=42]

Nepheronia [index=45] [index=85] Pareronia [index=44]

Zerene [index=47] [index=78] [index=129] Colias [index=46] [index=79] Anteos [index=48] [index=80] Catopsilia [index=49] [index=81] Aphrissa [index=51] [index=77] [index=82] Phoebis [index=50]

Gonepteryx [index=53] [index=83] [index=76] Dercas [index=52]

[index=130] Gandaca [index=54]

Leucidia [index=56] [index=84] [index=72] Teriocolias [index=55] [index=73] [index=74] Eurema [index=57] Pyrisitia [index=58] [index=75] Kricogonia [index=60] [index=131] [index=71] Nathalis [index=59]

Pseudopontia [index=61]

Lieinix [index=63] [index=67] Dismorphia [index=62] [index=68] [index=69] Enantia [index=64] [index=70] Pseudopieris [index=65] Leptidea [index=66]

-80 -70 -60 -50 -40 -30 -20 -10 0 Figure 1: Time-calibrated phylogeny of Pieridae butterflies used in this study. Indices of internal nodes correspond to row names in Figure S2.

6 80 80 150 1.5 Host phylogenetic 60 60 distance

100 1.0 anagenetic 40 40 cladogenetic density 50 0.5 20 20 prior

0 0.0 0 0 0.000 0.025 0.050 0.075 0.100 0 2 4 6 0.000 0.025 0.050 0.075 0.100 0.900 0.925 0.950 0.975 1.000

Rate of host-repertoire evolution,μ Phylogenetic-distance power,β Rate of host gain,λ 01 Rate of host loss,λ 10

Figure 2: Estimated marginal posterior densities for parameters in the host-repertoire evo- lution model using two different representations of the phylogenetic distance between host- plant families: anagenetic (time) or cladogenetic (number of branches).

a) Branch lenghts = 1 b) Time-calibrated tree

Index_131 Index_131 Index_130 Index_130 Index_129 Index_129 Index_128 Index_128 Index_127 Index_127 Index_126 Index_126 Index_125 Index_125 Index_124 Index_124 Index_123 Index_123 Index_122 Index_122 Index_121 Index_121 Index_120 Index_120 Index_119 Index_119 Index_118 Index_118 Index_117 Index_117 Index_116 Index_116 Index_115 Index_115 Index_114 Index_114 Index_113 Index_113 Index_112 Index_112 Index_111 Index_111 Index_110 Index_110 Index_109 Index_109 Index_108 Index_108 Posterior Index_107 Index_107 Index_106 Index_106 probability Index_105 Index_105 Index_104 Index_104 1.00 Index_103 Index_103 Index_102 Index_102 Index_101 Index_101 Index_100 Index_100 0.75 Index_99 Index_99 Index_98 Index_98 Index_97 Index_97 0.50 Index_96 Index_96 Index_95 Index_95 Index_94 Index_94 Index_93 Index_93 0.25 Index_92 Index_92 Index_91 Index_91 Index_90 Index_90 Index_89 Index_89 Index_88 Index_88 Index_87 Index_87 Index_86 Index_86 Index_85 Index_85 Index_84 Index_84 Index_83 Index_83 Index_82 Index_82 Index_81 Index_81 Index_80 Index_80 Index_79 Index_79 Index_78 Index_78 Index_77 Index_77 Index_76 Index_76 Index_75 Index_75 Index_74 Index_74 Index_73 Index_73 Index_72 Index_72 Index_71 Index_71 Index_70 Index_70 Index_69 Index_69 Index_68 Index_68 Index_67 Index_67 Amborellaceae Cabombaceae Schisandraceae Annonaceae Siparunaceae Saururaceae Canellaceae Winteraceae Chloranthaceae Acoraceae Dioscoreaceae Araceae Tofieldiaceae Butomaceae Ceratophyllaceae Berberidaceae Platanaceae Trochodendraceae Buxaceae Olacaceae Santalaceae Polygonaceae Caryophyllaceae Amaranthaceae Ericaceae Asteraceae Boraginaceae Solanaceae Bignoniaceae Verbenaceae Sapindaceae Simaroubaceae Akaniaceae Tropaeolaceae Bataceae Resedaceae Capparaceae Cleomaceae Brassicaceae Zygophyllaceae Fabaceae Rosaceae Elaeagnaceae Rhamnaceae Celastraceae Rhizophoraceae Hypericaceae Salicaceae Euphorbiaceae Amborellaceae Cabombaceae Schisandraceae Annonaceae Siparunaceae Saururaceae Canellaceae Winteraceae Chloranthaceae Acoraceae Dioscoreaceae Araceae Tofieldiaceae Butomaceae Ceratophyllaceae Berberidaceae Platanaceae Trochodendraceae Buxaceae Olacaceae Loranthaceae Santalaceae Polygonaceae Caryophyllaceae Amaranthaceae Ericaceae Asteraceae Boraginaceae Solanaceae Bignoniaceae Verbenaceae Sapindaceae Simaroubaceae Akaniaceae Tropaeolaceae Bataceae Resedaceae Capparaceae Cleomaceae Brassicaceae Zygophyllaceae Fabaceae Rosaceae Elaeagnaceae Rhamnaceae Celastraceae Rhizophoraceae Hypericaceae Salicaceae Euphorbiaceae

Figure 3: Posterior probability of ancestral host repertoires of Pieridae butterflies for three different model settings: a) host tree with branch lengths assigned to 1; b) host tree with branch lengths proportional to divergence time; and c) independence model (β = 0). In each panel, rows show the host repertoires at internal nodes of the Pieridae phylogeny (same index as in Fig. S1). The probability of each host being on the host repertoire of each butterfly is shown by the color scale.

7 Modularity, Q

0.6

0.4 Q

0.2 Summary networks 0.1 0.0 0.5 80 60 40 020 Millions of years ago, Ma 0.9 Nestedness, NODF

100 Sampled networks

75 mean

50 NODF

25

0 80 60 40 020 Millions of years ago, Ma

Figure 4: Modularity and nestedness for summary (blues) and sampled networks (orange) from 80 Ma to 10 Ma, and for the observed present-day network (black circles). Each orange violin represents the distribution of the index (Q or NODF) for sampled networks at each time slice and the orange circle shows the mean.

8