Lecture 3.Pages
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Logic: Representation and Automated Reasoning
Logic Knowledge Representation & Reasoning Mechanisms Logic ● Logic as KR ■ Propositional Logic ■ Predicate Logic (predicate Calculus) ● Automated Reasoning ■ Logical inferences ■ Resolution and Theorem-proving Logic ● Logic as KR ■ Propositional Logic ■ Predicate Logic (predicate Calculus) ● Automated Reasoning ■ Logical inferences ■ Resolution and Theorem-proving Propositional Logic ● Symbols: ■ truth symbols: true, false ■ propositions: a statement that is “true” or “false” but not both E.g., P = “Two plus two equals four” Q = “It rained yesterday.” ■ connectives: ~, →, ∧, ∨, ≡ • Sentences - propositions or truth symbols • Well formed formulas (expressions) - sentences that are legally well-formed with connectives E.g., P ∧ R → and P ~ are not wff but P ∧ R → ~ Q is Examples P Q AI is hard but it is interesting P ∧ Q AI is neither hard nor interesting ~P ∧ ~ Q P Q If you don’t do assignments then you will fail P → Q ≡ Do assignments or fail (Prove by truth table) ~ P ∨ Q None or both of P and Q is true (~ P ∧ ~ Q) ∨ (P ∧ Q) ≡ T Exactly one of P and Q is true (~ P ∧ Q) ∨ (P ∧ ~ Q) ≡ T Predicate Logic ● Symbols: • truth symbols • constants: represents objects in the world • variables: represents ranging objects } Terms • functions: represent properties • Predicates: functions of terms with true/false values e.g., bill_residence_city (vancouver) or lives (bill, vancouver) ● Atomic sentences: true, false, or predicates ● Quantifiers: ∀, ∃ ● Sentences (expressions): sequences of legal applications of connectives and quantifiers to atomic -
First-Order Logic
First-Order Logic Chapter 8 1 Outline • Why FOL? • Syntax and semantics of FOL • Using FOL • Wumpus world in FOL • Knowledge engineering in FOL 2 Pros and cons of propositional logic ☺ Propositional logic is declarative ☺ Propositional logic allows partial/disjunctive/negated information – (unlike most data structures and databases) ☺ Propositional logic is compositional: – meaning of B1,1 ∧ P1,2 is derived from meaning of B1,1 and of P1,2 ☺ Meaning in propositional logic is context-independent – (unlike natural language, where meaning depends on context) Propositional logic has very limited expressive power – (unlike natural language) – E.g., cannot say "pits cause breezes in adjacent squares“ • except by writing one sentence for each square 3 First-order logic • Whereas propositional logic assumes the world contains facts, • first-order logic (like natural language) assumes the world contains – Objects: people, houses, numbers, colors, baseball games, wars, … – Relations: red, round, prime, brother of, bigger than, part of, comes between, … – Functions: father of, best friend, one more than, plus, … 4 Syntax of FOL: Basic elements • Constants KingJohn, 2, NUS,... • Predicates Brother, >,... • Functions Sqrt, LeftLegOf,... • Variables x, y, a, b,... • Connectives ¬, ⇒, ∧, ∨, ⇔ • Equality = • Quantifiers ∀, ∃ 5 Atomic sentences Atomic sentence = predicate (term1 ,...,termn) or term = term 1 2 Term = function (term1,..., termn) or constant or variable • E.g., Brother(KingJohn,RichardTheLionheart) > (Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn))) -
Truth-Conditions
PLIN0009 Semantic Theory Spring 2020 Lecture Notes 1 1 What this module is about This module is an introduction to truth-conditional semantics with a focus on two impor- tant topics in this area: compositionality and quantiication. The framework adopted here is often called formal semantics and/or model-theoretical semantics, and it is characterized by its essential use of tools and concepts developed in mathematics and logic in order to study semantic properties of natural languages. Although no textbook is required, I list some introductory textbooks below for your refer- ence. • L. T. F. Gamut (1991) Logic, Language, and Meaning. The University of Chicago Press. • Irene Heim & Angelika Kratzer (1998) Semantics in Generative Grammar. Blackwell. • Thomas Ede Zimmermann & Wolfgang Sternefeld (2013) Introduction to Semantics: An Essential Guide to the Composition of Meaning. De Gruyter Mouton. • Pauline Jacobson (2014) Compositional Semantics: An Introduction to the Syntax/Semantics. Oxford University Press. • Daniel Altshuler, Terence Parsons & Roger Schwarzschild (2019) A Course in Semantics. MIT Press. There are also several overview articles of the ield by Barbara H. Partee, which I think are enjoyable. • Barbara H. Partee (2011) Formal semantics: origins, issues, early impact. In Barbara H. Partee, Michael Glanzberg & Jurģis Šķilters (eds.), Formal Semantics and Pragmatics: Discourse, Context, and Models. The Baltic Yearbook of Cognition, Logic, and Communica- tion, vol. 6. Manhattan, KS: New Prairie Press. • Barbara H. Partee (2014) A brief history of the syntax-semantics interface in Western Formal Linguistics. Semantics-Syntax Interface, 1(1): 1–21. • Barbara H. Partee (2016) Formal semantics. In Maria Aloni & Paul Dekker (eds.), The Cambridge Handbook of Formal Semantics, Chapter 1, pp. -
Atomic Sentences
Symbolic Logic Study Guide: Class Notes 5 1.2. Notes for Chapter 2: Atomic Sentences 1.2.1. The Basic Structure of Atomic Sentences (2.1, 2.2, 2.3, and 2.5 of the Text) 1. Comparison between simple English sentences and atomic sentences Simple English Sentences Atomic sentences (FOL) (subject-predicate sentences) John is a freshman Freshman (John) John swims. Swim (John) John loves Jenny. Love (John, Jenny) John prefers Jenny to Amy. Prefer (John, Jenny, Amy) John’s mother loves Jenny. Love (mother (John), Jenny) The father of Jenny is angry. Angry (father (Jenny)) John is the brother of Jenny. John = brother (Jenny) [relational identity] 2. Names Definition: Names are individual constants that refer to some fixed individual objects or other. (1) The rule of naming (p. 10) • No empty name. • No multiple references (do not use one name to refer to different objects). • Multiple names: you can name one object by different names. (2) General terms / names: using a predicate, instead of a constant, to represent a general term. For example, John is a student Student (John) [correct] John = student [wrong!!!] 3. Predicates Definition: Predicates are symbols used to denote some property of objects or some relationship between objects. (1) Arity of predicates • Unary predicates--property • Binary predicates Relations • Ternary predicates (2) The predicates used in Tarski’s World: see p. 11. (3) Two rules of predicates: see p.12. 6 Symbolic Logic Study Guide: Class Notes 4. Functions Definition: A function is an individual constant determined by another constant. (1) Comparison with names: • Both refer to some fixed individual objects. -
1 Winnowing Wittgenstein: What's Worth Salvaging from the Wreck Of
Winnowing Wittgenstein: What’s Worth Salvaging from the Wreck of the Tractatus Peter Simons Trinity College Dublin Abstract Wittgenstein’s Tractatus still harbours valuable lessons for contemporary philosophy, but which ones? Wittgenstein’s long list of things we cannot speak about is set aside, but his insistence that the logical constants do not represent is retained, as is the absolute distinction between names and sentences. We preserve his atomism of elementary sentences but discard the atomism of simple objects in states of affairs. The fundamental harmony between language and the world is rejected: it is the source of much that is wrong in the Tractatus. What remains is a clarified role for items in making elementary sentences true. 1 Introduction Kevin Mulligan has maintained throughout his philosophical career a keen and judicious appreciation of the chief figures of that great philosophical explosion centred on Austria in the 19th and early 20th century. Of these figures, the best-known and most widely influential is Ludwig Wittgenstein.1 Kevin has maintained, quite rightly, that it is impossible to appreciate the extent to which Wittgenstein’s contributions to philosophy are as original as his many admirers contend without a great deal more knowledge of the Central European milieu from which Wittgenstein emerged than the majority of these admirers care to or are prepared to investigate. In this respect the more diffuse and ample later philosophy presents a much greater challenge than the early work which culminated in the Logisch-philosophische Abhandlung.2 The modest extent of the Tractatus and its more limited period of genesis, as well as its relatively crisper form and content, render it a more manageable and ultimately less controversial work than the post-Tractarian writings, whose thrust is even today occasionally obscure, despite more than a half century of frenzied exegesis. -
Lecture 1: Tarski on Truth Philosophy of Logic and Language — HT 2016-17
Lecture 1: Tarski on Truth Philosophy of Logic and Language — HT 2016-17 Jonny McIntosh [email protected] Alfred Tarski (1901-1983) was a Polish (and later, American) mathematician, logician, and philosopher.1 In the 1930s, he published two classic papers: ‘The Concept of Truth in Formalized Languages’ (1933) and ‘On the Concept of Logical Consequence’ (1936). He gives a definition of truth for formal languages of logic and mathematics in the first paper, and the essentials of the model-theoretic definition of logical consequence in the second. Over the course of the next few lectures, we’ll look at each of these in turn. 1 Background The notion of truth seems to lie at the centre of a range of other notions that are central to theorising about the formal languages of logic and mathematics: e.g. validity, con- sistency, and completeness. But the notion of truth seems to give rise to contradiction: Let sentence (1) = ‘sentence (1) is not true’. Then: 1. ‘sentence (1) is not true’ is true IFF sentence (1) is not true 2. sentence (1) = ‘sentence (1) is not true’ 3. So, sentence (1) is true IFF sentence (1) is not true 4. So, sentence (1) is true and sentence (1) is not true Tarski is worried that, unless the paradox can be resolved, metatheoretical results in- voking the notion of truth or other notions that depend on it will be remain suspect. But how can it be resolved? The second premise is undeniable, and the first premise is an instance of a schema that seems central to the concept of truth, namely the following: ‘S’ is true IFF S, 1The eventful story of Tarski’s life is told by Anita and Solomon Feferman in their wonderful biography, Alfred Tarski: Life and Logic (CUP, 2004). -
Chapter 1. Sentential Logic
CHAPTER 1. SENTENTIAL LOGIC 1. Introduction In sentential logic we study how given sentences may be combined to form more complicated compound sentences. For example, from the sentences 7 is prime, 7 is odd, 2 is prime, 2 is odd, we can obtain the following sentences: • 7 is prime and 7 is odd • 7 is odd and 2 is odd • 7 is odd or 2 is odd • 7 is not odd • If 2 is odd then 2 is prime Of course, this process can be iterated as often as we want, obtaining also: • If 7 is not odd then 2 is odd • If 7 is odd and 2 is odd then 2 is not prime • (7 is odd and 2 is odd) or 2 is prime We have improved on English in the last example by using parentheses to resolve an ambiguity. And, or, not, if . then (or implies) are called (sentential) connectives. Using them we can define more connectives, for example 2 is prime iff 2 is odd can be defined as (If 2 is prime then 2 is odd) and (if 2 is odd then 2 is prime). The truth value of any compound sentence is determined completely by the truth values of its component parts. For example, assuming 2, 7, odd, prime all have their usual meanings then 7 is odd and 2 is odd is false but (7 is odd and 2 is odd) or 2 is prime is true. We will discuss implication later. In the formal system of sentential logic we study in this Chapter, we do not use English sentences, but build the compound sentences from an infinite collection of symbols which we think of as referring to sentences — since these are not built up from other sentences we refer to them as atomic sentences. -
Conceptual Semantics and Natural Semantic Metalanguage Theory 413
1 Conceptual semantics and natural semantic 2 metalanguage theory have different goals 3 4 5 RAY JACKENDOFF 6 7 8 9 10 11 12 My interview with Istvan Kecskes, ‘‘On Conceptual Semantics (OCS),’’ 13 o¤ers some brief remarks on the relation of my approach to Anna Wierz- 14 bicka’s theory of semantic primitives, Natural Language Metalanguage 15 Theory (NSM). Wierzbicka’s response, ‘‘Theory and Empirical Findings: 16 A Response to Jackendo¤’’ (henceforth TEF) calls for some further 17 commentary. 18 My remarks began, ‘‘Although I think Wierzbicka has o¤ered many in- 19 sightful discussions of word meaning, I do not think that her approach 20 ultimately responds to the goals of Conceptual Semantics.’’ TEF makes 21 it clear that Conceptual Semantics does not respond to the goals of 22 NSM either. That is, the two theories, although they overlap on some 23 issues of word meaning, are ultimately asking di¤erent questions and set- 24 ting di¤erent standards for answers. 25 Conceptual Semantics is concerned not only with encoding word mean- 26 ings but also with accounting for (a) the combination of word meanings 27 into phrase and sentence meanings, (b) the character of inference, both 28 logical and heuristic, and (c) the relation of linguistic meaning to nonlin- 29 guistic understanding of the world, including the aspects of understanding 30 provided through the perceptual systems. Conceptual Semantics in turn 31 is embedded in a theory of the organization of language, the Parallel Ar- 32 chitecture (Jackendo¤ 2002, Culicover and Jackendo¤ 2005), which ad- 33 dresses the relation of semantics to syntax, phonology, and the lexicon. -
Metalanguage of Race”
608 y Symposium: “The Metalanguage of Race” Difference, Power, and Lived Experiences: Revisiting the “Metalanguage of Race” Dayo F. Gore first encountered Evelyn Brooks Higginbotham’s “African-American I Women’s History and the Metalanguage of Race” (1992) as a graduate student in a women’s history course in 1996, and the article has traveled with me ever since. I have assigned the article in at least one of my courses every year, even as I’ve taught across a number of fields, including African American history, feminist theory, and social movement history. Moreover, it has been one of the key theoretical texts I have employed to frame my own research and writing. Although I came to the article after it had been in circulation for four years, it resonated with me as a powerful and much- needed intervention in feminist theory and women’shistory.Indeed,“Meta- language” stands as one of those rare articles that continues to be relevant in ongoing debates about gender, sexuality, and race, and serves as a useful guidepost for my own scholarship. Higginbotham’s article provides an incisive response to debates among a broad spectrum of feminist scholars about how to be attentive to gender across difference and differently lived experiences, and it represented an im- portant addition to the theorization of what would become popularly known as intersectionality. Black feminist legal scholar Kimberlé Crenshaw is most often credited with coining the term “intersectionality” as she details it in two key articles, “Demarginalizing the Intersection of Race and Sex,” pub- lished in 1989, and “Mapping the Margins,” a law review article published in 1991. -
Propositional Calculus
CSC 438F/2404F Notes Winter, 2014 S. Cook REFERENCES The first two references have especially influenced these notes and are cited from time to time: [Buss] Samuel Buss: Chapter I: An introduction to proof theory, in Handbook of Proof Theory, Samuel Buss Ed., Elsevier, 1998, pp1-78. [B&M] John Bell and Moshe Machover: A Course in Mathematical Logic. North- Holland, 1977. Other logic texts: The first is more elementary and readable. [Enderton] Herbert Enderton: A Mathematical Introduction to Logic. Academic Press, 1972. [Mendelson] E. Mendelson: Introduction to Mathematical Logic. Wadsworth & Brooks/Cole, 1987. Computability text: [Sipser] Michael Sipser: Introduction to the Theory of Computation. PWS, 1997. [DSW] M. Davis, R. Sigal, and E. Weyuker: Computability, Complexity and Lan- guages: Fundamentals of Theoretical Computer Science. Academic Press, 1994. Propositional Calculus Throughout our treatment of formal logic it is important to distinguish between syntax and semantics. Syntax is concerned with the structure of strings of symbols (e.g. formulas and formal proofs), and rules for manipulating them, without regard to their meaning. Semantics is concerned with their meaning. 1 Syntax Formulas are certain strings of symbols as specified below. In this chapter we use formula to mean propositional formula. Later the meaning of formula will be extended to first-order formula. (Propositional) formulas are built from atoms P1;P2;P3;:::, the unary connective :, the binary connectives ^; _; and parentheses (,). (The symbols :; ^ and _ are read \not", \and" and \or", respectively.) We use P; Q; R; ::: to stand for atoms. Formulas are defined recursively as follows: Definition of Propositional Formula 1) Any atom P is a formula. -
Carnap's Contribution to Tarski's Truth
JOURNAL FOR THE HISTORY OF ANALYTICAL PHILOSOPHY CARNAP’S CONTRIBUTION TO TARSKI’S TRUTH VOLUME 3, NUMBER 10 MONIKA GrUBER EDITOR IN CHIEF KEVIN C. KLEMENt, UnIVERSITY OF MASSACHUSETTS In his seminal work “The Concept of Truth in Formalized Lan- guages” (1933), Alfred Tarski showed how to construct a for- EDITORIAL BOARD mally correct and materially adequate definition of true sentence GaRY EBBS, INDIANA UnIVERSITY BLOOMINGTON for certain formalized languages. These results have, eventu- GrEG FROSt-ARNOLD, HOBART AND WILLIAM SMITH COLLEGES ally, been accepted and applauded by philosophers and logi- HENRY JACKMAN, YORK UnIVERSITY cians nearly in unison. Its Postscript, written two years later, SANDRA LaPOINte, MCMASTER UnIVERSITY however, has given rise to a considerable amount of contro- LyDIA PATTON, VIRGINIA TECH versy. There is an ongoing debate on what Tarski really said MARCUS ROSSBERG, UnIVERSITY OF CONNECTICUT in the postscript. These discussions often regard Tarski as pu- MARK TEXTOR, KING’S COLLEGE LonDON tatively changing his logical framework from type theory to set AUDREY YAP, UnIVERSITY OF VICTORIA theory. RICHARD ZACH, UnIVERSITY OF CALGARY In what follows, we will compare the original results with those REVIEW EDITORS presented two years later. After a brief outline of Carnap’s pro- JULIET FLOYD, BOSTON UnIVERSITY gram in The Logical Syntax of Language we will determine its sig- CHRIS PINCOCK, OHIO STATE UnIVERSITY nificance for Tarski’s final results. ASSISTANT REVIEW EDITOR SEAN MORRIS, METROPOLITAN STATE UnIVERSITY OF DenVER DESIGN DaNIEL HARRIS, HUNTER COLLEGE C 2015 MONIKA GrUBER CARNAP’S CONTRIBUTION TO TARSKI’S TRUTH couple of years ago. In particular, in addition to the previously studied languages, he decides to investigate the languages the MONIKA GrUBER structure of which cannot be brought into harmony with the principles of the theory of semantical categories. -
Symbolic Logic: Grammar, Semantics, Syntax
Symbolic Logic: Grammar, Semantics, Syntax Logic aims to give a precise method or recipe for determining what follows from a given set of sentences. So we need precise definitions of `sentence' and `follows from.' 1. Grammar: What's a sentence? What are the rules that determine whether a string of symbols is a sentence, and when it is not? These rules are known as the grammar of a particular language. We have actually been operating with two different but very closely related grammars this term: a grammar for propositional logic and a grammar for first-order logic. The grammar for propositional logic (thus far) is simple: 1. There are an indefinite number of propositional variables, which we have been symbolizing as A; B; ::: and P; Q; :::; each of these is a sen- tence. ? is also a sentence. 2. If A; B are sentences, then: •:A is a sentence, • A ^ B is a sentence, and • A _ B is a sentence. 3. Nothing else is a sentence: anything that is neither a member of 1, nor constructable via successive applications of 2 to the members of 1, is not a sentence. The grammar for first-order logic (thus far) is more complex. 2 and 3 remain exactly the same as above, but 1 must be replaced by some- thing more complex. First, a list of all predicates (e.g. Tet or SameShape) and proper names (e.g. max; b) of a particular language L must be specified. Then we can define: 1F OL. A series of symbols s is an atomic sentence = s is an n-place predicate followed by an ordered sequence of n proper names.