Convex Analysis of Submodular Set Functions for Machine Learning

Total Page:16

File Type:pdf, Size:1020Kb

Convex Analysis of Submodular Set Functions for Machine Learning Convex Analysis for Minimizing and Learning Submodular Set Functions Thesis by Peter Stobbe In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2013 (Defended May 16, 2013) ii c 2013 Peter Stobbe All Rights Reserved iii To Aura iv Abstract The connections between convexity and submodularity are explored, for purposes of mini- mizing and learning submodular set functions. First, we develop a novel method for minimizing a particular class of submodular functions, which can be expressed as a sum of concave functions composed with modular functions. The basic algorithm uses an accelerated first order method applied to a smoothed version of its convex extension. The smoothing algorithm is particularly novel as it allows us to treat general concave potentials without needing to construct a piecewise linear approximation as with graph-based techniques. Second, we derive the general conditions under which it is possible to find a minimizer of a submodular function via a convex problem. This provides a framework for developing sub- modular minimization algorithms. The framework is then used to develop several algorithms that can be run in a distributed fashion. This is particularly useful for applications where the submodular objective function consists of a sum of many terms, each term dependent on a small part of a large data set. Lastly, we approach the problem of learning set functions from an unorthodox perspective— sparse reconstruction. We demonstrate an explicit connection between the problem of learning set functions from random evaluations and that of sparse signals. Based on the observation that the Fourier transform for set functions satisfies exactly the conditions needed for sparse reconstruction algorithms to work, we examine some different function classes under which uniform reconstruction is possible. v Contents List of Figures vii List of Algorithms viii 1 Introduction1 1.1 Main Contributions....................................3 1.2 Outline of Thesis.....................................4 2 Background of Convex Analysis5 2.1 Basic Concepts.......................................5 2.2 Proximal Operators....................................8 3 Set Functions and Submodularity 12 3.1 Overview.......................................... 12 3.2 General Set Functions.................................. 12 3.2.1 Set Function Derivatives............................ 14 3.2.2 Monotone and Low Order Functions..................... 16 3.2.3 Fourier Analysis of Set Functions....................... 18 3.2.4 Tensor Product Bases of Set Functions.................... 20 3.3 Properties of Submodular Set Functions....................... 22 3.3.1 Convex Analysis of Submodularity...................... 23 3.3.2 Lovász Extension................................. 27 3.3.3 Examples of Base Polytopes.......................... 29 3.4 Submodular Minimization................................ 30 3.4.1 Ellipsoid Method and Polynomial Time Algorithms............ 31 3.4.2 Fujishige’s Minimal Norm Algorithm..................... 33 vi 3.4.3 Special Cases................................... 33 4 Smoothed Gradient Methods for Decomposable Functions 35 4.1 Introduction........................................ 35 4.2 Background on Submodular Function Minimization................ 35 4.3 The Decomposable Submodular Minimization Problem.............. 38 4.4 Classification of Submodular Functions........................ 40 4.4.1 Submodularity of Decomposable Functions................. 40 4.4.2 Set Cover Functions as Threshold Potentials................ 41 4.4.3 Reformulation of a Class of Functions.................... 42 4.4.4 Strict Generality of Threshold Potentials.................. 43 4.5 The SLG Algorithm for Threshold Potentials..................... 44 4.5.1 The Smoothed Extension of a Threshold Potential............ 44 4.5.2 The SLG Algorithm for Minimizing Sums of Threshold Potentials... 46 4.5.3 Early Stopping based on Discrete Certificates of Optimality....... 48 4.6 Extension to General Concave Potentials....................... 50 4.6.1 Formula Derivation............................... 51 4.7 Experiments........................................ 53 4.8 Conclusion......................................... 56 5 Distributed Submodular Minimization 57 5.1 Introduction........................................ 57 5.2 Submodular Minimization with General Barrier Functions............ 58 5.3 Consensus Algorithms for Submodular Minimization............... 63 5.3.1 Notation...................................... 63 5.3.2 Outline of Algorithms.............................. 64 5.4 Fast Proximal Threshold Potentials.......................... 66 5.4.1 General Plane Intersection Projection.................... 66 5.4.2 Box-Plane Projection Algorithms....................... 67 5.5 Experiments........................................ 69 6 Learning Fourier Sparse Set Functions 75 6.1 Introduction........................................ 75 vii 6.2 Background......................................... 77 6.2.1 The Fourier transform on set functions.................... 77 6.3 Conditions for Recovery................................. 78 6.4 Classes of Set Functions................................. 80 6.4.1 Symmetric functions............................... 81 6.4.2 Low order functions............................... 81 6.4.3 Submodular functions.............................. 82 6.5 Reconstruction Algorithms............................... 85 6.5.1 Exploiting structure in the Fourier domain.................. 86 6.6 Applications and Experiments............................. 86 6.6.1 Sketching graph evolution........................... 86 6.6.2 Approximate submodular optimization................... 88 6.6.3 Synthetic Submodular Recovery....................... 89 6.7 Related Work........................................ 90 6.8 Conclusion......................................... 92 7 Conclusion 94 A Matroid Theory 96 Bibliography 99 viii List of Figures 4.1 Example Regions and Comparision of Submodular Minimization Running Times 54 4.2 Segmentation Experimental Results.......................... 55 5.1 Synthetic Problem..................................... 71 5.2 Parallelization Speedup.................................. 72 5.3 FISTA convergence..................................... 73 5.4 Barzilai–Borwein Convergence.............................. 74 6.1 Graph Reconstruction and Approximate Optimization Results........... 87 6.2 Empirical Study of Submodular Constraints...................... 91 ix List of Algorithms 4.1 SLG: Smoothed Lovász Gradient............................. 48 4.2 Set Generation by Rounding the Continuous Solution............... 48 4.3 Set Optimality Check.................................... 50 4.4 Gradient for General Concave Functions........................ 53 5.1 Projection onto a Box Intersecting a Plane....................... 68 5.2 Piecewise Linear Monotonic Root: Sorted Version.................. 69 5.3 Piecewise Linear Monotonic Root: Unsorted Version................ 70 1 Chapter 1 Introduction There is no doubt that convex optimization has proven to be an invaluable tool throughout all of the applied sciences and engineering. Consider though: the formal definition of convexity is a completely abstract concept, yet somehow has proven to be key in the development of numerical algorithms for countless real-world applications. Given the tremendous track record of such a powerful abstract idea, the mandate of the applied mathematics community must be then to attempt to answer the question: “Can convexity be generalized? Can we discover similar abstract concepts that hold the key for solving new, important problems?” And while one search direction of this quest is to look into the realm of continuous functions for quasiconvex or invex functions as generalizations, the other is to look for discrete analogues of convexity. Indeed, many different such discrete generalizations have been discovered [Mur03], yet none of them could accurately be described as a perfect mirror image of convexity. But we would claim that there is one such concept from discrete optimization that in recent years has proven to be the most similar to convexity, not only in terms of its salient abstract features, but also its empirical problem solving utility: submodularity. Submodularity is a property of set functions—meaning functions of some subset of a finite set of objects. It has numerous equivalent definitions, but perhaps the easiest to parse is the following inequality. It says that the change in value of the set function when adding a particular element must be smaller when adding it to a larger1 set: f (A e ) f (A) f (B e ) f (B), for all elements e and sets A, B such that e = B A. [ f g − ≥ [ f g − 2 ⊇ One amazing property of submodularity is that there are powerful algorithms for both maxi- 1By “larger” we mean a superset, not just any set of greater cardinality! 2 mization and minimization with provable guarantees. While both are important, we focus on the latter, as it is in this domain that the connections with convexity are most pronounced. The exact minimum of a submodular function can be found in strongly polynomial time [IFF01]. This is similar to the fact that convex functions are hard to maximize, but easy to minimize (assuming the convex sets which characterize the problem are not too esoteric). This similarity is is not just a coincidence—the connection between submodularity and convexity goes beyond mere
Recommended publications
  • Advances in Interior Point Methods and Column Generation
    Advances in Interior Point Methods and Column Generation Pablo Gonz´alezBrevis Doctor of Philosophy University of Edinburgh 2013 Declaration I declare that this thesis was composed by myself and that the work contained therein is my own, except where explicitly stated otherwise in the text. (Pablo Gonz´alezBrevis) ii To my endless inspiration and angels on earth: Paulina, Crist´obal and Esteban iii Abstract In this thesis we study how to efficiently combine the column generation technique (CG) and interior point methods (IPMs) for solving the relaxation of a selection of integer programming problems. In order to obtain an efficient method a change in the column generation technique and a new reoptimization strategy for a primal-dual interior point method are proposed. It is well-known that the standard column generation technique suffers from un- stable behaviour due to the use of optimal dual solutions that are extreme points of the restricted master problem (RMP). This unstable behaviour slows down column generation so variations of the standard technique which rely on interior points of the dual feasible set of the RMP have been proposed in the literature. Among these tech- niques, there is the primal-dual column generation method (PDCGM) which relies on sub-optimal and well-centred dual solutions. This technique dynamically adjusts the column generation tolerance as the method approaches optimality. Also, it relies on the notion of the symmetric neighbourhood of the central path so sub-optimal and well-centred solutions are obtained. We provide a thorough theoretical analysis that guarantees the convergence of the primal-dual approach even though sub-optimal solu- tions are used in the course of the algorithm.
    [Show full text]
  • Chapter 8 Constrained Optimization 2: Sequential Quadratic Programming, Interior Point and Generalized Reduced Gradient Methods
    Chapter 8: Constrained Optimization 2 CHAPTER 8 CONSTRAINED OPTIMIZATION 2: SEQUENTIAL QUADRATIC PROGRAMMING, INTERIOR POINT AND GENERALIZED REDUCED GRADIENT METHODS 8.1 Introduction In the previous chapter we examined the necessary and sufficient conditions for a constrained optimum. We did not, however, discuss any algorithms for constrained optimization. That is the purpose of this chapter. The three algorithms we will study are three of the most common. Sequential Quadratic Programming (SQP) is a very popular algorithm because of its fast convergence properties. It is available in MATLAB and is widely used. The Interior Point (IP) algorithm has grown in popularity the past 15 years and recently became the default algorithm in MATLAB. It is particularly useful for solving large-scale problems. The Generalized Reduced Gradient method (GRG) has been shown to be effective on highly nonlinear engineering problems and is the algorithm used in Excel. SQP and IP share a common background. Both of these algorithms apply the Newton- Raphson (NR) technique for solving nonlinear equations to the KKT equations for a modified version of the problem. Thus we will begin with a review of the NR method. 8.2 The Newton-Raphson Method for Solving Nonlinear Equations Before we get to the algorithms, there is some background we need to cover first. This includes reviewing the Newton-Raphson (NR) method for solving sets of nonlinear equations. 8.2.1 One equation with One Unknown The NR method is used to find the solution to sets of nonlinear equations. For example, suppose we wish to find the solution to the equation: xe+=2 x We cannot solve for x directly.
    [Show full text]
  • Fast Semidifferential-Based Submodular Function Optimization
    Fast Semidifferential-based Submodular Function Optimization: Extended Version Rishabh Iyer [email protected] University of Washington, Seattle, WA 98195, USA Stefanie Jegelka [email protected] University of California, Berkeley, CA 94720, USA Jeff Bilmes [email protected] University of Washington, Seattle, WA 98195, USA Abstract family of feasible solution sets. The set C could express, We present a practical and powerful new for example, that solutions must be an independent set framework for both unconstrained and con- in a matroid, a limited budget knapsack, or a cut (or strained submodular function optimization spanning tree, path, or matching) in a graph. Without based on discrete semidifferentials (sub- and making any further assumptions about f, the above super-differentials). The resulting algorithms, problems are trivially worst-case exponential time and which repeatedly compute and then efficiently moreover inapproximable. optimize submodular semigradients, offer new If we assume that f is submodular, however, then in and generalize many old methods for sub- many cases the above problems can be approximated modular optimization. Our approach, more- and in some cases solved exactly in polynomial time. A over, takes steps towards providing a unifying function f : 2V ! R is said to be submodular (Fujishige, paradigm applicable to both submodular min- 2005) if for all subsets S; T ⊆ V , it holds that f(S) + imization and maximization, problems that f(T ) ≥ f(S [ T ) + f(S \ T ). Defining f(jjS) , f(S [ historically have been treated quite distinctly. j) − f(S) as the gain of j 2 V with respect to S ⊆ V , The practicality of our algorithms is impor- then f is submodular if and only if f(jjS) ≥ f(jjT ) tant since interest in submodularity, owing to for all S ⊆ T and j2 = T .
    [Show full text]
  • Cancer Treatment Optimization
    CANCER TREATMENT OPTIMIZATION A Thesis Presented to The Academic Faculty by Kyungduck Cha In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute of Technology April 2008 CANCER TREATMENT OPTIMIZATION Approved by: Professor Eva K. Lee, Advisor Professor Renato D.C. Monteiro H. Milton Stewart School of Industrial H. Milton Stewart School of Industrial and Systems Engineering and Systems Engineering Georgia Institute of Technology Georgia Institute of Technology Professor Earl R. Barnes Professor Nolan E. Hertel H. Milton Stewart School of Industrial G. W. Woodruff School of Mechanical and Systems Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Professor Ellis L. Johnson Date Approved: March 28, 2008 H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute of Technology To my parents, wife, and son. iii ACKNOWLEDGEMENTS First of all, I would like to express my sincere appreciation to my advisor, Dr. Eva Lee for her invaluable guidance, financial support, and understanding throughout my Ph.D program of study. Her inspiration provided me many ideas in tackling with my thesis problems and her enthusiasm encouraged me to produce better works. I would also like to thank Dr. Earl Barnes, Dr. Ellis Johnson, Dr. Renato D.C. Monteiro, and Dr. Nolan Hertel for their willingness to serve on my dissertation committee and for their valuable feedbacks. I also thank my friends, faculty, and staff, at Georgia Tech, who have contributed to this thesis in various ways. Specially, thank you to the members at the Center for Operations Research in Medicine and HealthCare for their friendship.
    [Show full text]
  • The Central Curve in Linear Programming
    THE CENTRAL CURVE IN LINEAR PROGRAMMING JESUS´ A. DE LOERA, BERND STURMFELS, AND CYNTHIA VINZANT Abstract. The central curve of a linear program is an algebraic curve specified by linear and quadratic constraints arising from complementary slackness. It is the union of the various central paths for minimizing or maximizing the cost function over any region in the associated hyperplane arrangement. We determine the degree, arithmetic genus and defining prime ideal of the central curve, thereby answering a question of Bayer and Lagarias. These invariants, along with the degree of the Gauss image of the curve, are expressed in terms of the matroid of the input matrix. Extending work of Dedieu, Malajovich and Shub, this yields an instance-specific bound on the total curvature of the central path, a quantity relevant for interior point methods. The global geometry of central curves is studied in detail. 1. Introduction We consider the standard linear programming problem in its primal and dual formulation: (1) Maximize cT x subject to Ax = b and x ≥ 0; (2) Minimize bT y subject to AT y − s = c and s ≥ 0: Here A is a fixed matrix of rank d having n columns. The vectors c 2 Rn and b 2 image(A) may vary. In most of our results we assume that b and c are generic. This implies that both the primal optimal solution and the dual optimal solution are unique. We also assume that the problem (1) is bounded and both problems (1) and (2) are strictly feasible. Before describing our contributions, we review some basics from the theory of linear pro- gramming [26,33].
    [Show full text]
  • IMPROVED PARTICLE SWARM OPTIMIZATION for NON-LINEAR PROGRAMMING PROBLEM with BARRIER METHOD Raju Prajapati1 1University of Engineering & Management, Kolkata, W.B
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Gyandhara International Academic Publication (GIAP): Journals International Journal of Students’ Research in Technology & Management eISSN: 2321-2543, Vol 5, No 4, 2017, pp 72-80 https://doi.org/10.18510/ijsrtm.2017.5410 IMPROVED PARTICLE SWARM OPTIMIZATION FOR NON-LINEAR PROGRAMMING PROBLEM WITH BARRIER METHOD Raju Prajapati1 1University Of Engineering & Management, Kolkata, W.B. India Om Prakash Dubey2, Randhir Kumar3 2,3Bengal College Of Engineering & Technology, Durgapur, W.B. India email: [email protected] Article History: Submitted on 10th September, Revised on 07th November, Published on 30th November 2017 Abstract: The Non-Linear Programming Problems (NLPP) are computationally hard to solve as compared to the Linear Programming Problems (LPP). To solve NLPP, the available methods are Lagrangian Multipliers, Sub gradient method, Karush-Kuhn-Tucker conditions, Penalty and Barrier method etc. In this paper, we are applying Barrier method to convert the NLPP with equality constraint to an NLPP without constraint. We use the improved version of famous Particle Swarm Optimization (PSO) method to obtain the solution of NLPP without constraint. SCILAB programming language is used to evaluate the solution on sample problems. The results of sample problems are compared on Improved PSO and general PSO. Keywords. Non-Linear Programming Problem, Barrier Method, Particle Swarm Optimization, Equality and Inequality Constraints. INTRODUCTION A large number of algorithms are available to solve optimization problems, inspired by evolutionary process in nature. e.g. Genetic Algorithm, Particle Swarm Optimization, Ant Colony Optimization, Bee Colony Optimization, Memetic Algorithm, etc.
    [Show full text]
  • Approximate Submodularity and Its Applications: Subset Selection, Sparse Approximation and Dictionary Selection∗
    Journal of Machine Learning Research 19 (2018) 1{34 Submitted 10/16; Revised 8/18; Published 8/18 Approximate Submodularity and its Applications: Subset Selection, Sparse Approximation and Dictionary Selection∗ Abhimanyu Dasy [email protected] Google David Kempez [email protected] Department of Computer Science University of Southern California Editor: Jeff Bilmes Abstract We introduce the submodularity ratio as a measure of how \close" to submodular a set function f is. We show that when f has submodularity ratio γ, the greedy algorithm for maximizing f provides a (1 − e−γ )-approximation. Furthermore, when γ is bounded away from 0, the greedy algorithm for minimum submodular cover also provides essentially an O(log n) approximation for a universe of n elements. As a main application of this framework, we study the problem of selecting a subset of k random variables from a large set, in order to obtain the best linear prediction of another variable of interest. We analyze the performance of widely used greedy heuristics; in particular, by showing that the submodularity ratio is lower-bounded by the smallest 2k- sparse eigenvalue of the covariance matrix, we obtain the strongest known approximation guarantees for the Forward Regression and Orthogonal Matching Pursuit algorithms. As a second application, we analyze greedy algorithms for the dictionary selection prob- lem, and significantly improve the previously known guarantees. Our theoretical analysis is complemented by experiments on real-world and synthetic data sets; in particular, we focus on an analysis of how tight various spectral parameters and the submodularity ratio are in terms of predicting the performance of the greedy algorithms.
    [Show full text]
  • Fast and Private Submodular and K-Submodular Functions
    Fast and Private Submodular and k-Submodular Functions Maximization with Matroid Constraints Akbar Rafiey 1 Yuichi Yoshida 2 Abstract The problem of maximizing nonnegative monotone submodular functions under a certain constraint has been in- tensively studied in the last decade, and a wide range of efficient approximation algorithms have been developed for this problem. Many machine learning problems, including data summarization and influence maximization, can be naturally modeled as the problem of maximizing monotone submodular functions. However, when such applications involve sensitive data about individuals, their privacy concerns should be addressed. In this paper, we study the problem of maximizing monotone submodular functions subject to matroid constraints in the frame- 1 work of differential privacy. We provide (1 e )-approximation algorithm which improves upon the previous results in terms of approximation guarantee.− This is done with an almost cubic number of function evaluations in our algorithm. 1 Moreover, we study k-submodularity, a natural generalization of submodularity. We give the first 2 - approximation algorithm that preserves differential privacy for maximizing monotone k-submodular functions subject to matroid constraints. The approximation ratio is asymptotically tight and is obtained with an almost linear number of function evaluations. 1. Introduction A set function F : 2E R is submodular if for any S T E and e E T it holds that F (S e ) F (S) F (T e ) F (T ).→The theory of submodular maximization⊆ ⊆ provides∈
    [Show full text]
  • Barrier Method
    Barrier Method Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: Newton's method Consider the problem min f(x) x n for f convex, twice differentiable, with dom(f) = R . Newton's (0) n method: choose initial x R , repeat 2 (k) (k−1) 2 (k−1) −1 (k−1) x = x tk f(x ) f(x ); k = 1; 2; 3;::: − r r Step sizes tk chosen by backtracking line search If f Lipschitz, f strongly convex, 2f Lipschitz, then Newton's r r method has a local convergence rate O(log log(1/)) Downsides: Requires solving systems in Hessian quasi-Newton • Can only handle equality constraints this lecture • 2 Hierarchy of second-order methods Assuming all problems are convex, you can think of the following hierarchy that we've worked through: Quadratic problems are the easiest: closed-form solution • Equality-constrained quadratic problems are still easy: we use • KKT conditions to derive closed-form solution Equality-constrained smooth problems are next: use Newton's • method to reduce this to a sequence of equality-constrained quadratic problems Inequality- and equality-constrained smooth problems are • what we cover now: use interior-point methods to reduce this to a sequence of equality-constrained smooth problems 3 Log barrier function Consider the convex optimization problem min f(x) x subject to hi(x) 0; i = 1; : : : m ≤ Ax = b We will assume that f, h1; : : : hm are convex, twice differentiable, n each with domain R . The function m φ(x) = log( hi(x)) − − i=1 X is called the log barrier for the above problem.
    [Show full text]
  • Electrical Networks, Hyperplane Arrangements and Matroids By
    Electrical Networks, Hyperplane Arrangements and Matroids by Robert P. Lutz A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mathematics) in The University of Michigan 2019 Doctoral Committee: Professor Jeffrey Lagarias, Chair Professor Alexander Barvinok Associate Professor Chris Peikert Professor Karen Smith Professor David Speyer Robert P. Lutz a.k.a. Bob Lutz [email protected] orcid.org/0000-0002-5407-7041 c Robert P. Lutz 2019 Dedication This dissertation is dedicated to my parents. ii Acknowledgments I thank Trevor Hyde, Thomas Zaslavsky, and anonymous referees for helpful com- ments on individual chapters of this thesis. I thank Alexander Barvinok for his careful reading of an early version of the thesis, and many useful comments. Finally I thank my advisor, Jeffrey Lagarias, for his extensive comments on the thesis, for his keen advice and moral support, and for many helpful conversations throughout my experience as a graduate student. This work was partially supported by NSF grants DMS-1401224 and DMS-1701576. iii Table of Contents Dedication ii Acknowledgments iii List of Figures vii Abstract ix Chapter 1: Introduction 1 Chapter 2: Background 4 2.1 Electrical networks . 4 2.2 Hyperplane arrangements . 10 2.2.1 Supersolvable arrangements . 13 2.2.2 Graphic arrangements . 14 2.3 Matroids . 15 2.3.1 Graphic matroids . 17 2.3.2 Complete principal truncations . 17 Chapter 3: Electrical networks and hyperplane arrangements 19 3.1 Main definition and examples . 19 3.2 Main results . 24 3.3 Combinatorics of Dirichlet arrangements . 26 3.3.1 Intersection poset and connected partitions .
    [Show full text]
  • Problem Set 7 Convex Optimization (Winter 2018)
    Problem set 7 Convex Optimization (Winter 2018) Due Friday, February 23rd at 5pm • Upload both a pdf writeup of your work and a zip file containing any supplemental files to Canvas by the due date. Submissions without a non-zipped pdf writeup won’t be graded. • Late homeworks will be penalized 25% per day and will not be accepted after the next Monday at 5pm unless you have made arrangements with us well before the due date. We strongly encourage you to typeset your solutions. • You may collaborate with other students to complete this assignment, but all submitted work should be yours. When you go to write down your solutions, please do so on your own. Description In this assignment, you will experiment with the log-barrier method. Partiallly completed Python code is included with the assignment. Areas that you need to fill in are marked with “TODO” comments. You should turn in an archive containing all of your source code, and a separate pdf document containing all plots and answers to underlined questions. 1 Log-Barrier Function Most of the functions in the file “algorithms.py” are the same as in previous programming as- signments (but filled-in this time). The objective log barrier function in “algorithms.py” takes as parameters an objective function f0, a constraint function φ (which has the same calling convention as the objective function), a vector x, and a scaling parameter t, and returns the value, gradient and Hessian of the log-barrier objective: f(x; t) = tf0(x) + φ(x) 1 1.1 Implementation The function quadratic log barrier in “functions.py” is supposed to compute the value, gradient, and Hessian of: 1 X f(x; t) = t x>Qx + v>x − log (a x + b ) 2 i;: i i This is the log-barrier objective function f(x; t) = tf0(x) + φ(x) for a quadratic objective f0, log-barrier function φ, and linear constraints Ax + b ≥ 0.
    [Show full text]
  • Price-Based Distributed Optimization in Large-Scale Networked Systems
    Price-Based Distributed Optimization in Large-Scale Networked Systems Dissertation document submitted to the Division of Research and Advanced Studies of the University of Cincinnati in partial fulfillment of the requirements of degree of Doctor of Philosophy in the School of Dynamic Systems College of Engineering and Applied Sciences by Baisravan HomChaudhuri Summer 2013 MS, University of Cincinnati, 2010 BE, Jadavpur University, 2007 Committee Chair: Dr. Manish Kumar c 2013 Baisravan HomChaudhuri, All Rights Reserved Abstract This work is intended towards the development of distributed optimization methods for large-scale complex networked systems. The advancement in tech- nological fields such as networking, communication and computing has facili- tated the development of networks which are massively large-scale in nature. The examples of such systems include power grid, communication network, Internet, large manufacturing plants, and cloud computing clusters. One of the important challenges in these networked systems is the evaluation of the optimal point of operation of the system. Most of the centralized optimiza- tion algorithms suffer from the curse of dimensionality that raises the issue of scalability of algorithms for large-scale systems. The problem is essentially challenging not only due to high-dimensionality of the problem, but also due to distributed nature of resources, lack of global information and uncertain and dynamic nature of operation of most of these systems. The inadequacies of the traditional centralized optimization
    [Show full text]