How Information Visualization Novices Construct Visualizations

Total Page:16

File Type:pdf, Size:1020Kb

How Information Visualization Novices Construct Visualizations How Information Visualization Novices Construct Visualizations Lars Grammel, Melanie Tory, and Margaret-Anne Storey Abstract —It remains challenging for information visualization novices to rapidly construct visualizations during exploratory data analysis. We conducted an exploratory laboratory study in which information visualization novices explored fictitious sales data by communicating visualization specifications to a human mediator, who rapidly constructed the visualizations using commercial visualization software. We found that three activities were central to the iterative visualization construction process: data attribute selection, visual template selection, and visual mapping specification. The major barriers faced by the participants were translating questions into data attributes, designing visual mappings, and interpreting the visualizations. Partial specification was common, and the participants used simple heuristics and preferred visualizations they were already familiar with, such as bar, line and pie charts. From our observations, we derived abstract models that describe barriers in the data exploration process and uncovered how information visualization novices think about visualization specifications. Our findings support the need for tools that suggest potential visualizations and support iterative refinement, that provide explanations and help with learning, and that are tightly integrated into tool support for the overall visual analytics process. Index Terms —Empirical study, visualization, visualization construction, visual analytics, visual mapping, novices. 1 INTRODUCTION Information visualization (InfoVis) is becoming a mainstream visualization construction, which common patterns appear, and technology that is being utilized by InfoVis novices – those who are which barriers and problems InfoVis novices encounter. not familiar with information visualization and visual data analysis. Our work makes three primary contributions: first, we empirically Sites such as Many Eyes [37] enable anyone to upload and visualize examine how information visualization novices construct data, and systems that fall under the umbrella of casual InfoVis visualizations; second, we derive abstract models describing barriers provide visualizations in everyday life [30]. Despite this progress, in the data exploration process and how information visualization the vision of InfoVis for and by the masses has not yet been realized novices think about visualization specifications, and finally, we [14, 17]. Part of the reason for this is that constructing perceptually provide implications for tool design based on our findings and effective visualizations, and even interpreting moderately complex models. ones, remains challenging for InfoVis novices. Interacting with visualizations has become easier with recent tools such as Many Eyes, Tableau etc. However, many potential users that 2 RELATED WORK could benefit from these tools lack visualization construction There are several models of information visualization processes that expertise. In particular, it has been noted that users have difficulties describe the different steps users follow in configuring and using deciding how to map data elements to graphic attributes [14]. This is visualizations to gain insights. Card et al.’s reference model for especially problematic because selecting inappropriate visual visualization ([3], see Fig.1) describes how visualizations are mappings can impede analysis and even result in misleading created in four steps and how the user interprets and interacts with conclusions. It is therefore important to provide tool support that visualizations. First, raw data are processed and transformed into enables InfoVis novices to design good visual mappings easily [14]. data tables (data transformations ). Data tables can be further To create such tool support, we need to understand how InfoVis transformed, for example by filtering, adding calculations, and novices think about and express visual mappings, which barriers they merging tables. The resulting data tables are then mapped to visual encounter, and how this impacts the sensemaking process. Once the structures (visual mappings ), which are generic visual representation specific characteristics of visual mapping expression are uncovered, mechanisms such as line charts or maps with their corresponding we can build tools that specifically support this process, for example visual properties. After the data tables are mapped to visual by reducing discovered barriers. Such tools could potentially enable structures, views of the visual structures can be rendered and a larger audience to leverage visual data exploration and analysis for displayed to the user. Different views show different parts of the decision-making and insight generation, both in work and in daily visual structures at varying levels of abstraction from different life. perspectives. View transformations are operations that change those While general models of the visualization process have been views, e.g. zooming on a map can change the visible part of the map proposed (e.g. [3, 5, 35, 38]), it remains unclear how these models and the level of detail, but does not change the visual structure. The apply to visualization construction by InfoVis novices, and exactly user interprets the views with a task in mind, and can interact with how a lack of visualization expertise impacts sensemaking. To the visualization by changing data transformations, visual mappings explore this in detail, we designed an exploratory laboratory study and the current view. that investigated which processes novices typically follow during Chi’s Data State Model [6] extends and formalizes Card’s reference model by allowing for multiple pipelines, and by having nodes represent state and directed edges represent single • Lars Grammel is with the University of Victoria, transformations operations. Chi also analyzed different visualization E-Mail: [email protected]. techniques and showed how they fit into the Data State Model [5]. • Melanie Tory is with the University of Victoria, E-Mail: [email protected]. Spence [35] identified selection, encoding, and presentation as the • Margaret-Anne Storey is with the University of Victoria, main steps in the transformation from raw data to visualization. Ware E-Mail: [email protected]. [38] devised a model of the visualization process that explicitly takes data gathering into account, but does not distinguish between data Manuscript received 31 March 2010; accepted 1 August 2010 ; posted online tables, visual structures, and views. Ware’s model contains four 24 October 2010; mailed on 16 October 2010. stages: collection and storage of data, data pre-processing, For information on obtaining reprints of this article, please send construction of image, and the human perceptual and cognitive email to: [email protected]. system. Table 1. Participants. Data Analysis (DA) performed Daily (D), Weekly (W), Monthly (M), Never (N). #VCCS indicates number of visualization construction cycles created by participant (see Section 3.7). Participant ID 1 2 3 4 5 6 7 8 9 Age 22 22 21 23 20 21 24 20 21 Fig.1. Visualization Reference Model by Card et al. [3]. The aspects Gender M F F F F F M F F that were investigated in this study are emphasized. DA D D W M M N W N W Several aspects of these visualization models, such as view interaction (e.g. [19, 34, 40]), individual analytical processes (e.g. # VCCs 13 11 18 18 22 13 29 18 8 [1, 12, 29]), and team level analytics (e.g. [16, 32]), have been dynamic, we argue that elements of the process will be the same, and explored in depth, but an understanding of how users construct visual that by introducing communication with a mediator, we achieved mappings remains limited. Several case studies present how deeper insight into how users think about visualizations, similar to a visualizations are created from a designer’s point of view [31] or as a think-aloud protocol. close interaction between designers and users [39]. These studies found that an iterative process of prototyping visualizations is 3.1 Pilot Studies essential: detours are often unavoidable and can provide valuable knowledge. While these studies provide insights into the The study design was shaped in a series of five pilot studies with visualization construction process, they assume experts create the four participants – the same person participated in the first two visualizations for users, whereas our study focused on how InfoVis pilots. In the first pilot, the participant directly used Tableau Desktop novices create visualizations for their own use. This shifts the focus 4.1. It turned out that the user interface and instructions influenced from facilitating communication and iterative domain understanding the participants’ behaviour, and we could not determine whether to bridging gaps caused by a lack of visualization expertise. Heer et problems occurred because of the interface or lack of understanding al. [14] devised some guidelines on how to support novice users: of how to create visual mappings. After the first pilot, we switched facilitate user-friendly data input, provide automatic selection of to an approach where the participants told a human mediator how visualization type using sensible defaults, and provide contextual they wanted the data to be visualized, and the mediator in turn information that explains which data are displayed and which created the visualizations for the participants. In contrast to Wizard-
Recommended publications
  • Comparing Bar Chart Authoring with Microsoft Excel and Tangible Tiles Tiffany Wun, Jennifer Payne, Samuel Huron, Sheelagh Carpendale
    Comparing Bar Chart Authoring with Microsoft Excel and Tangible Tiles Tiffany Wun, Jennifer Payne, Samuel Huron, Sheelagh Carpendale To cite this version: Tiffany Wun, Jennifer Payne, Samuel Huron, Sheelagh Carpendale. Comparing Bar Chart Authoring with Microsoft Excel and Tangible Tiles. Computer Graphics Forum, Wiley, 2016, Computer Graphics Forum, 35 (3), pp.111 - 120. 10.1111/cgf.12887. hal-01400906 HAL Id: hal-01400906 https://hal-imt.archives-ouvertes.fr/hal-01400906 Submitted on 10 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Eurographics Conference on Visualization (EuroVis) 2016 Volume 35 (2016), Number 3 K.-L. Ma, G. Santucci, and J. van Wijk (Guest Editors) Comparing Bar Chart Authoring with Microsoft Excel and Tangible Tiles Tiffany Wun1, Jennifer Payne1, Samuel Huron1;2, and Sheelagh Carpendale1 1University of Calgary, Canada 2I3-SES, CNRS, Télécom ParisTech, Université Paris-Saclay, 75013, Paris, France Abstract Providing tools that make visualization authoring accessible to visualization non-experts is a major research challenge. Cur- rently the most common approach to generating a visualization is to use software that quickly and automatically produces visualizations based on templates. However, it has recently been suggested that constructing a visualization with tangible tiles may be a more accessible method, especially for people without visualization expertise.
    [Show full text]
  • Lecture 14: Evaluation the Perceptual Scalability of Visualization
    Readings Covered Further Readings Evaluation, Carpendale Evaluating Information Visualizations. Sheelagh Carpendale. Chapter in Task-Centered User Interface Design, Clayton Lewis and John Rieman, thorough survey/discussion, won’t summarize here Information Visualization: Human-Centered Issues and Perspectives, Chapters 0-5. Springer LNCS 4950, 2008, p 19-45. The challenge of information visualization evaluation. Catherine Plaisant. Lecture 14: Evaluation The Perceptual Scalability of Visualization. Beth Yost and Chris North. Proc. Advanced Visual Interfaces (AVI) 2004 Proc. InfoVis 06, published as IEEE TVCG 12(5), Sep 2006, p 837-844. Information Visualization Effectiveness of Animation in Trend Visualization. George G. Robertson, CPSC 533C, Fall 2011 Turning Pictures into Numbers: Extracting and Generating Information Roland Fernandez, Danyel Fisher, Bongshin Lee, and John T. Stasko. from Complex Visualizations. J. Gregory Trafton, Susan S. IEEE TVCG (Proc. InfoVis 2008). 14(6): 1325-1332 (2008) Kirschenbaum, Ted L. Tsui, Robert T. Miyamoto, James A. Ballas, and Artery Visualizations for Heart Disease Diagnosis. Michelle A. Borkin, Tamara Munzner Paula D. Raymond. Intl Journ. Human Computer Studies 53(5), Krzysztof Z. Gajos, Amanda Peters, Dimitrios Mitsouras, Simone 827-850. Melchionna, Frank J. Rybicki, Charles L. Feldman, and Hanspeter Pfister. UBC Computer Science IEEE TVCG (Proc. InfoVis 2011), 17(12):2479-2488. Wed, 2 November 2011 1 / 46 2 / 46 3 / 46 4 / 46 Psychophysics Cognitive Psychology Structural Analysis Comparative User
    [Show full text]
  • Tamara Munzner Department of Computer Science University of British Columbia
    Ch 3: Task Abstraction Paper: Design Study Methodology Tamara Munzner Department of Computer Science University of British Columbia CPSC 547, Information Visualization Day 4: 22 September 2015 http://www.cs.ubc.ca/~tmm/courses/547-15 News • headcount update: 29 registered; 24 Q2, 22 Q3 – signup sheet: anyone here for the first time? • marks for day 2 and day 3 questions/comments sent out by email – see me after class if you didn’t get them – order of marks matches order of questions in email • Q2: avg 83.9, min 26, max 98 • Q3: avg 84.3, min 22, max 98 – if you spot typo in book, let me know if it’s not already in errata list • http://www.cs.ubc.ca/~tmm/vadbook/errata.html • but don’t count it as a question • not useful to tell me about typos in published papers – three questions total required • not three questions per reading (6 total)! not just one! 2 VAD Ch 3: Task Abstraction Why? Actions Targets Analyze All Data Consume Trends Outliers Features Discover Present Enjoy Attributes Produce Annotate Record Derive One Many tag Distribution Dependency Correlation Similarity Extremes Search Target known Target unknown Location Lookup Browse Network Data known Location Locate Explore Topology unknown Query Paths Identify Compare Summarize What? Spatial Data Why? Shape How? [VAD Fig 3.1] 3 High-level actions: Analyze • consume Analyze –discover vs present Consume Discover Present Enjoy • classic split • aka explore vs explain –enjoy • newcomer Produce • aka casual, social Annotate Record Derive tag • produce –annotate, record –derive • crucial
    [Show full text]
  • Constructing Visual Representations: Investigating the Use of Tangible Tokens Samuel Huron, Yvonne Jansen, Sheelagh Carpendale
    Constructing Visual Representations: Investigating the Use of Tangible Tokens Samuel Huron, Yvonne Jansen, Sheelagh Carpendale To cite this version: Samuel Huron, Yvonne Jansen, Sheelagh Carpendale. Constructing Visual Representations: Investigating the Use of Tangible Tokens. IEEE Transactions on Visualization and Computer Graphics, Institute of Electrical and Electronics Engineers (IEEE), 2014, Transactions on Vi- sualization and Computer Graphics, 20 (12), pp.1. <10.1109/TVCG.2014.2346292>. <hal- 01024053> HAL Id: hal-01024053 https://hal.inria.fr/hal-01024053 Submitted on 1 Aug 2014 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. Constructing Visual Representations: Investigating the Use of Tangible Tokens Samuel Huron, Yvonne Jansen, Sheelagh Carpendale Fig. 1. Constructing a visualization with tokens: right hand positions tokens, left hand points to the corresponding data. Abstract—The accessibility of infovis authoring tools to a wide audience has been identified as a major research challenge. A key task in the authoring process is the development of visual mappings. While the infovis community has long been deeply interested in finding effective visual mappings, comparatively little attention has been placed on how people construct visual mappings. In this paper, we present the results of a study designed to shed light on how people transform data into visual representations.
    [Show full text]
  • Tamara Munzner
    The 2015 Visualization Technical Achievement Award Tamara Munzner The 2015 Visualization Technical Achievement Award goes to Tamara Munzner in recognition of foundational research that has produced a scientific basis for principles and design choices for visualization. The IEEE Visualization & Graphics Technical Community (VGTC) is pleased to award Tamara Munzner the 2015 Visualization Technical Achievement Award. Biography Tamara Munzner Tamara Munzner is a full professor at the University of University of British British Columbia Department of Computer Science, where Columbia she has been since 2002. She was a research scientist from Award Recipient 2015 2000 to 2002 at the Compaq Systems Research Center (the former DEC SRC). She earned her PhD from Stanford between 1995 and 2000, working with Pat Hanrahan. She and prescribe models and methods for visualization design holds a BS from Stanford from 1991, the year she first and the research process itself, including a nested model of attended VIS. design and validation and methodology for design studies. From 1991 to 1995, Tamara was a technical staff Her 2014 book Visualization Analysis and Design provides member at The Geometry Center, based at the University a systematic, comprehensive framework for thinking about of Minnesota. She was one of the architects and imple- visualization in terms of principles and design choices. It mentors of Geomview, the Center’s public domain interac- features a unified approach encompassing information visu- tive 3D visualization system that supported hyperbolic and alization techniques for the abstract data of tables and net- spherical geometry in addition to Euclidean geometry. She works, scientific visualization techniques for spatial data, was co-director and one of the animators of two videos and visual analytics techniques for interweaving data trans- that brought concepts from the cutting edge of geomet- formation and analysis with interactive visual exploration.
    [Show full text]
  • Introduction to Information Visualization.Pdf
    Introduction to Information Visualization Riccardo Mazza Introduction to Information Visualization 123 Riccardo Mazza University of Lugano Switzerland ISBN: 978-1-84800-218-0 e-ISBN: 978-1-84800-219-7 DOI: 10.1007/978-1-84800-219-7 British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Control Number: 2008942431 c Springer-Verlag London Limited 2009 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publish- ers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers. The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant laws and regulations and therefore free for general use. The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made. Printed on acid-free paper Springer Science+Business Media springer.com To Vincenzo and Giulia Preface Imagine having to make a car journey. Perhaps you’re going to a holiday resort that you’re not familiar with.
    [Show full text]
  • Sheelagh Carpendale
    CURRICULUM VITAE Sheelagh Carpendale Full Professor NSERC/SMART Industrial Research Chair: Interactive Technologies Director: Innovations in Visualization (InnoVis) Co-Director: Interactive Experiences Lab (ixLab) Office: TASC1 9233 Lab: ixLab TASC1 9200 School of Computing Science Simon Fraser University 8888 University Drive Burnaby, British Columbia Canada V5A 1S6 Phone: +1 778 782 5415 Email: [email protected] Web: https:// www.cs.sfu.ca/~sheelagh/ TABLE OF CONTENTS 2 Executive Summary 5 Education 6 Awards 11 Research Overview 13 Employment and Appointments 16 Teaching and Supervision 25 Technology Transfer 27 Grants 31 Service 36 Presentations 44 Publications Sheelagh Carpendale Executive Summary Brief Biography (in 3rd person) Sheelagh Carpendale is a Professor at Simon Fraser University (SFU). She directs the InnoVis (Innovations in Visualization) research group and the newly formed ixLab (Interactive Experiences Lab). Her NSERC/SMART Industrial Research Chair in Interactive Technologies is still current. She has been awarded the IEEE VGTC Visualization Career Award (https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8570932 ) and is inducted into both the IEEE Visualization Academy (highest and most prestigious honor in the field of visualization) and the ACM CHI Academy, which is an honorary group of individuals who are the principal leaders of the field having led the research and/or innovation in human-computer interaction (https://sigchi.org/awards/sigchi-award-recipients/2018-sigchi-awards/) Formerly, she was at University
    [Show full text]
  • Tamara Munzner Department of Computer Science University of British Columbia
    Ch 1/2/3: Intro, Data, Tasks Paper: Design Study Methodology Tamara Munzner Department of Computer Science University of British Columbia CPSC 547, Information Visualization Week 2: 17 September 2019 http://www.cs.ubc.ca/~tmm/courses/547-19 News • Signup sheet round 2: check column (or add yourself) • Canvas comments/question discussion –one question/comment per reading required • everybody got this right, great! –responses to others required • a few of you did not do this • original requirement of 2, considering cutback to just 1: discuss • decision: cut back to just 1 –if you spot typo in book, let me know if it’s not already in errata list • http://www.cs.ubc.ca/~tmm/vadbook/errata.html • (but don’t count it as a question) • not useful to tell me about typos in published papers 2 Ch 1. What’s Vis, and Why Do It? 3 Why have a human in the loop? Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively. Visualization is suitable when there is a need to augment human capabilities rather than replace people with computational decision-making methods. • don’t need vis when fully automatic solution exists and is trusted • many analysis problems ill-specified – don’t know exactly what questions to ask in advance • possibilities – long-term use for end users (e.g. exploratory analysis of scientific data) – presentation of known results – stepping stone to better understanding of requirements before developing models – help developers of automatic solution refine/debug, determine parameters – help end users of automatic solutions verify, build trust 4 Why use an external representation? Computer-based visualization systems provide visual representations of datasets designed to help people carry out tasks more effectively.
    [Show full text]
  • 3. Graphical Perception Tomorrow
    Graphical Perception Nam Wook Kim Mini-Courses — January @ GSAS 2018 What is graphical perception? The visual decoding of information encoded on graphs Why important? “Graphical excellence is that which gives to the viewer the greatest number of ideas in the shortest time with the least ink in the smallest space” — Edward Tufte Goal Understand the role of perception in visualization design Topics • Signal Detection • Magnitude Estimation • Pre-Attentive Processing • Using Multiple Visual Encodings • Gestalt Grouping • Change Blindness Signal Detection Detecting Brightness A Which is brighter? B Detecting Brightness (128,128,128) (144,144,144) A B Detecting Brightness A Which is brighter? B Detecting Brightness (134,134,134) (138,138,138) A B Weber’s Law Just Noticeable Difference (JND) dS dp = k S Weber’s Law Just Noticeable Difference (JND) dS Change of Intensity dp = k S Physical Intensity Weber’s Law Just Noticeable Difference (JND) dS Change of Intensity Perceived Change dp = k S Physical Intensity Weber’s Law Just Noticeable Difference (JND) dS Change of Intensity Perceived Change dp = k S Physical Intensity Most continuous variation in stimuli are perceived in discrete steps Ranking correlation visualizations [Harrison et al 2014] Ranking correlation visualizations Which of the two appeared to be more highly correlated? A B [Harrison et al 2014] Ranking correlation visualizations Which of the two appeared to be more highly correlated? r = 0.7 r = 0.6 Ranking correlation visualizations Which of the two appeared to be more highly correlated? A B Ranking correlation visualizations Which of the two appeared to be more highly correlated? r = 0.7 r = 0.65 Ranking visualizations for depicting correlation Overall, scatterplots are the best for both positive and negative correlations.
    [Show full text]
  • Session 2 Tamara Munzner Department of Computer Science University of British Columbia
    Visualization Analysis & Design Full-Day Tutorial Session 2 Tamara Munzner Department of Computer Science University of British Columbia Sanger Institute / European Bioinformatics Institute June 2014, Cambridge UK http://www.cs.ubc.ca/~tmm/talks.html#minicourse14 Outline • Visualization Analysis Framework • Idiom Design Choices Session 1 9:30-10:45am Session 2 11:00am-12:15pm – Introduction: Definitions – Arrange Tables – Analysis: What, Why, How – Arrange Spatial Data – Marks and Channels – Arrange Networks and Trees – Map Color • Idiom Design Choices, Part 2 • Guidelines and Examples Session 3 1:15pm-2:45pm Session 4 3-4:30pm – Manipulate: Change, Select, Navigate – Rules of Thumb – Facet: Juxtapose, Partition, Superimpose – Validation – Reduce: Filter, Aggregate, Embed – BioVis Analysis Example http://www.cs.ubc.ca/~tmm/talks.html#minicourse14 2 How? EncodeEncode Manipulate Manipulate Facet Facet ReduReducece Arrange Map Change Juxtapose Filter Express Separate from categorical and ordered attributes Color Hue Saturation Order Align Luminance Select Partition Aggregate Size, Angle, Curvature, ... Use Navigate Superimpose Embed Shape Motion Direction, Rate, Frequency, ... 3 Arrange space Encode Arrange Express Separate Order Align Use 4 Arrange tables Express Values Axis Orientation Rectilinear Parallel Radial Separate, Order, Align Regions Separate Order Layout Density Dense Space-Filling Align 1 Key 2 Keys 3 Keys Many Keys List Matrix Volume Recursive Subdivision 5 Keys and values Tables • key Attributes (columns) Items – independent
    [Show full text]
  • Data Visualization by Nils Gehlenborg
    Data Visualization Nils Gehlenborg ([email protected]) Center for Biomedical Informatics / Harvard Medical School Cancer Program / Broad Institute of MIT and Harvard ISMB/ECCB 2011 http://www.biovis.net Flyers at ISCB booth! Data Visualization / ISMB/ECCB 2011 / Nils Gehlenborg A good sketch is better than a long speech. Napoleon Bonaparte Data Visualization / ISMB/ECCB 2011 / Nils Gehlenborg Minard 1869 Napoleon’s March on Moscow Data Visualization / ISMB/ECCB 2011 / Nils Gehlenborg 4 I believe when I see it. Unknown Data Visualization / ISMB/ECCB 2011 / Nils Gehlenborg Anscombe 1973, The American Statistician Anscombe’s Quartet mean(X) = 9, var(X) = 11, mean(Y) = 7.5, var(Y) = 4.12, cor(X,Y) = 0.816, linear regression line Y = 3 + 0.5*X Data Visualization / ISMB/ECCB 2011 / Nils Gehlenborg 6 Anscombe 1973, The American Statistician Anscombe’s Quartet Data Visualization / ISMB/ECCB 2011 / Nils Gehlenborg 7 Exploration: Hypothesis Generation trends gaps outliers clusters - A large data set is given and the goal is to learn something about it. - Visualization is employed to perform pattern detection using the human visual system. - The goal is to generate hypotheses that can be tested with statistical methods or follow-up experiments. Data Visualization / ISMB/ECCB 2011 / Nils Gehlenborg 8 Visualization Use Cases Presentation Confirmation Exploration Data Visualization / ISMB/ECCB 2011 / Nils Gehlenborg 9 Definition The use of computer-supported, interactive, visual representations of data to amplify cognition. Stu Card, Jock Mackinlay & Ben Shneiderman Computer-based visualization systems provide visual representations of datasets intended to help people carry out some task more effectively.effectively.
    [Show full text]
  • Vislink: Revealing Relationships Amongst Visualizations
    University of Calgary PRISM: University of Calgary's Digital Repository Science Science Research & Publications 2007-05-17 VisLink: Revealing Relationships Amongst Visualizations Collins, Christopher; Carpendale, Sheelagh http://hdl.handle.net/1880/45783 unknown Downloaded from PRISM: https://prism.ucalgary.ca VisLink: Revealing Relationships Amongst Visualizations Christopher Collins1, Sheelagh Carpendale2 1Department of Computer Science, University of Toronto 2Department of Computer Science, University of Calgary Abstract We present VisLink, a method by which visualizations and the relationships be- tween them can be interactively explored. VisLink readily generalizes to support mul- tiple visualizations, empowers inter-representational queries, and enables the reuse of the spatial variables, thus supporting efficient information encoding and providing for powerful visualization bridging. Our approach uses multiple 2D layouts, drawing each one in its own plane. These planes can then be placed and re-positioned at will, side by side, in parallel, or in chosen placements that provide favoured views. Relationships, connections and patterns between visualizations can be revealed. 1 Introduction As information visualizations continue to play a more frequent role in information analysis, the complexity of the queries for which we would like, or even expect, visual explanations also continues to grow. For example, while creating visualizations of multi-variate data re- mains a familiar challenge, the visual portrayal of two set of relationships, one primary and one secondary, within a given visualization is relatively new (e. g. [6, 14, 8]). With VisLink, we extend this latter direction, making it possible reveal relationships between one or more primary visualizations. This enables new types of questions. For example, consider a lin- guistic question such as whether the formal hierarchical structure as expressed through the IS-A relationships in WordNet [13] is reflected by actual semantic similarity from usage statistics.
    [Show full text]