RNA Sequencing-Based Whole-Transcriptome Analysis of Friesian Cattle Fed with Grape Pomace-Supplemented Diet
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ran Activation Assay Kit
Product Manual Ran Activation Assay Kit Catalog Number STA-409 20 assays FOR RESEARCH USE ONLY Not for use in diagnostic procedures Introduction Small GTP-binding proteins (or GTPases) are a family of proteins that serve as molecular regulators in signaling transduction pathways. Ran, a 25 kDa protein of the Ras superfamily, regulates a variety of biological response pathways that include DNA synthesis, cell cycle progression, and translocation of RNA/proteins through the nuclear pore complex. Like other small GTPases, Ran regulates molecular events by cycling between an inactive GDP-bound form and an active GTP-bound form. In its active (GTP-bound) state, Ran binds specifically to RanBP1 to control downstream signaling cascades. Cell Biolabs’ Ran Activation Assay Kit utilizes RanBP1 Agarose beads to selectively isolate and pull- down the active form of Ran from purified samples or endogenous lysates. Subsequently, the precipitated GTP-Ran is detected by western blot analysis using an anti-Ran antibody. Cell Biolabs’ Ran Activation Assay Kit provides a simple and fast tool to monitor the activation of Ran. The kit includes easily identifiable RanBP1 Agarose beads (see Figure 1), pink in color, and a GTPase Immunoblot Positive Control for quick Ran identification. Each kit provides sufficient quantities to perform 20 assays. Figure 1: RanBP1 Agarose beads, in color, are easy to visualize, minimizing potential loss during washes and aspirations. 2 Assay Principle Related Products 1. STA-400: Pan-Ras Activation Assay Kit 2. STA-400-H: H-Ras Activation Assay Kit 3. STA-400-K: K-Ras Activation Assay Kit 4. STA-400-N: N-Ras Activation Assay Kit 5. -
• Our Bodies Make All the Cholesterol We Need. • 85 % of Our Blood
• Our bodies make all the cholesterol we need. • 85 % of our blood cholesterol level is endogenous • 15 % = dietary from meat, poultry, fish, seafood and dairy products. • It's possible for some people to eat foods high in cholesterol and still have low blood cholesterol levels. • Likewise, it's possible to eat foods low in cholesterol and have a high blood cholesterol level SYNTHESIS OF CHOLESTEROL • LOCATION • All tissues • Liver • Cortex of adrenal gland • Gonads • Smooth endoplasmic reticulum Cholesterol biosynthesis and degradation • Diet: only found in animal fat • Biosynthesis: primarily synthesized in the liver from acetyl-coA; biosynthesis is inhibited by LDL uptake • Degradation: only occurs in the liver • Cholesterol is only synthesized by animals • Although de novo synthesis of cholesterol occurs in/ by almost all tissues in humans, the capacity is greatest in liver, intestine, adrenal cortex, and reproductive tissues, including ovaries, testes, and placenta. • Most de novo synthesis occurs in the liver, where cholesterol is synthesized from acetyl-CoA in the cytoplasm. • Biosynthesis in the liver accounts for approximately 10%, and in the intestines approximately 15%, of the amount produced each day. • Since cholesterol is not synthesized in plants; vegetables & fruits play a major role in low cholesterol diets. • As previously mentioned, cholesterol biosynthesis is necessary for membrane synthesis, and as a precursor for steroid synthesis including steroid hormone and vitamin D production, and bile acid synthesis, in the liver. • Slightly less than half of the cholesterol in the body derives from biosynthesis de novo. • Most cells derive their cholesterol from LDL or HDL, but some cholesterol may be synthesize: de novo. -
Cholesterol Metabolites 25-Hydroxycholesterol and 25-Hydroxycholesterol 3-Sulfate Are Potent Paired Regulators: from Discovery to Clinical Usage
H OH metabolites OH Review Cholesterol Metabolites 25-Hydroxycholesterol and 25-Hydroxycholesterol 3-Sulfate Are Potent Paired Regulators: From Discovery to Clinical Usage Yaping Wang 1, Xiaobo Li 2 and Shunlin Ren 1,* 1 Department of Internal Medicine, McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, VA 23249, USA; [email protected] 2 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; [email protected] * Correspondence: [email protected]; Tel.: +1-(804)-675-5000 (ext. 4973) Abstract: Oxysterols have long been believed to be ligands of nuclear receptors such as liver × recep- tor (LXR), and they play an important role in lipid homeostasis and in the immune system, where they are involved in both transcriptional and posttranscriptional mechanisms. However, they are increas- ingly associated with a wide variety of other, sometimes surprising, cell functions. Oxysterols have also been implicated in several diseases such as metabolic syndrome. Oxysterols can be sulfated, and the sulfated oxysterols act in different directions: they decrease lipid biosynthesis, suppress inflammatory responses, and promote cell survival. Our recent reports have shown that oxysterol and oxysterol sulfates are paired epigenetic regulators, agonists, and antagonists of DNA methyl- transferases, indicating that their function of global regulation is through epigenetic modification. In this review, we explore our latest research of 25-hydroxycholesterol and 25-hydroxycholesterol 3-sulfate in a novel regulatory mechanism and evaluate the current evidence for these roles. Citation: Wang, Y.; Li, X.; Ren, S. Keywords: oxysterol sulfates; oxysterol sulfation; epigenetic regulators; 25-hydroxysterol; Cholesterol Metabolites 25-hydroxycholesterol 3-sulfate; 25-hydroxycholesterol 3,25-disulfate 25-Hydroxycholesterol and 25-Hydroxycholesterol 3-Sulfate Are Potent Paired Regulators: From Discovery to Clinical Usage. -
Rhob Controls Endothelial Barrier Recovery by Inhibiting Rac1 Trafficking to the Cell Border
JCB: Article RhoB controls endothelial barrier recovery by inhibiting Rac1 trafficking to the cell border Beatriz Marcos‑Ramiro,1 Diego García‑Weber,1 Susana Barroso,1 Jorge Feito,2 María C. Ortega,1 Eva Cernuda‑Morollón,3 Natalia Reglero‑Real,1 Laura Fernández‑Martín,1 Maria C. Durán,4 Miguel A. Alonso,1 Isabel Correas,1 Susan Cox,5 Anne J. Ridley,5 and Jaime Millán1 1Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid, 28049 Madrid, Spain 2Servicio de Anatomía Patológica, Hospital Universitario de Salamanca, 37007 Salamanca, Spain 3Neurology Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain 4Biomedicine, Biotechnology and Public Health Department, University of Cadiz, 11519 Cadiz, Spain 5Randall Division of Cell and Molecular Biophysics, King’s College London, SE1 1UL London, England, UK Endothelial barrier dysfunction underlies chronic inflammatory diseases. In searching for new proteins essential to the human endothelial inflammatory response, we have found that the endosomal GTPase RhoB is up-regulated in response to inflammatory cytokines and expressed in the endothelium of some chronically inflamed tissues. We show that al- though RhoB and the related RhoA and RhoC play additive and redundant roles in various aspects of endothelial barrier function, RhoB specifically inhibits barrier restoration after acute cell contraction by preventing plasma membrane ex- tension. During barrier restoration, RhoB trafficking is induced between vesicles containing RhoB nanoclusters and plasma membrane protrusions. The Rho GTPase Rac1 controls membrane spreading and stabilizes endothelial barriers. We show that RhoB colocalizes with Rac1 in endosomes and inhibits Rac1 activity and trafficking to the cell border during barrier recovery. -
Genetic Deletion of Abcc6 Disturbs Cholesterol Homeostasis in Mice Bettina Ibold1, Janina Tiemann1, Isabel Faust1, Uta Ceglarek2, Julia Dittrich2, Theo G
www.nature.com/scientificreports OPEN Genetic deletion of Abcc6 disturbs cholesterol homeostasis in mice Bettina Ibold1, Janina Tiemann1, Isabel Faust1, Uta Ceglarek2, Julia Dittrich2, Theo G. M. F. Gorgels3,4, Arthur A. B. Bergen4,5, Olivier Vanakker6, Matthias Van Gils6, Cornelius Knabbe1 & Doris Hendig1* Genetic studies link adenosine triphosphate-binding cassette transporter C6 (ABCC6) mutations to pseudoxanthoma elasticum (PXE). ABCC6 sequence variations are correlated with altered HDL cholesterol levels and an elevated risk of coronary artery diseases. However, the role of ABCC6 in cholesterol homeostasis is not widely known. Here, we report reduced serum cholesterol and phytosterol levels in Abcc6-defcient mice, indicating an impaired sterol absorption. Ratios of cholesterol precursors to cholesterol were increased, confrmed by upregulation of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase (Hmgcr) expression, suggesting activation of cholesterol biosynthesis in Abcc6−/− mice. We found that cholesterol depletion was accompanied by a substantial decrease in HDL cholesterol mediated by lowered ApoA-I and ApoA-II protein levels and not by inhibited lecithin-cholesterol transferase activity. Additionally, higher proprotein convertase subtilisin/kexin type 9 (Pcsk9) serum levels in Abcc6−/− mice and PXE patients and elevated ApoB level in knockout mice were observed, suggesting a potentially altered very low-density lipoprotein synthesis. Our results underline the role of Abcc6 in cholesterol homeostasis and indicate impaired cholesterol metabolism as an important pathomechanism involved in PXE manifestation. Mutations in the adenosine triphosphate-binding cassette transporter C6 (ABCC6) gene are responsible for pseudoxanthoma elasticum (PXE), a metabolic disease, hallmarked by a progressive elastic fber calcifcation of the skin, eyes and cardiovascular system. -
Expression Signatures of the Lipid-Based Akt Inhibitors Phosphatidylinositol Ether Lipid Analogues in NSCLC Cells
Published OnlineFirst May 6, 2011; DOI: 10.1158/1535-7163.MCT-10-1028 Molecular Cancer Therapeutic Discovery Therapeutics Expression Signatures of the Lipid-Based Akt Inhibitors Phosphatidylinositol Ether Lipid Analogues in NSCLC Cells Chunyu Zhang1, Abdel G. Elkahloun2, Hongling Liao3, Shannon Delaney1, Barbara Saber1, Betsy Morrow1, George C. Prendergast4, M. Christine Hollander1, Joell J. Gills1, and Phillip A. Dennis1 Abstract Activation of the serine/threonine kinase Akt contributes to the formation, maintenance, and therapeutic resistance of cancer, which is driving development of compounds that inhibit Akt. Phosphatidylinositol ether lipid analogues (PIA) are analogues of the products of phosphoinositide-3-kinase (PI3K) that inhibit Akt activation, translocation, and the proliferation of a broad spectrum of cancer cell types. To gain insight into the mechanism of PIAs, time-dependent transcriptional profiling of five active PIAs and the PI3K inhibitor LY294002 (LY) was conducted in non–small cell lung carcinoma cells using high-density oligonucleotide arrays. Gene ontology analysis revealed that genes involved in apoptosis, wounding response, and angiogen- esis were upregulated by PIAs, whereas genes involved in DNA replication, repair, and mitosis were suppressed. Genes that exhibited early differential expression were partitioned into three groups; those induced by PIAs only (DUSP1, KLF6, CENTD2, BHLHB2, and PREX1), those commonly induced by PIAs and LY (TRIB1, KLF2, RHOB, and CDKN1A), and those commonly suppressed by PIAs and LY (IGFBP3, PCNA, PRIM1, MCM3, and HSPA1B). Increased expression of the tumor suppressors RHOB (RhoB), KLF6 (COPEB), and CDKN1A (p21Cip1/Waf1) was validated as an Akt-independent effect that contributed to PIA-induced cytotoxicity. Despite some overlap with LY, active PIAs have a distinct expression signature that contributes to their enhanced cytotoxicity. -
4 Understanding the Role of GNA13 Deregulation in Lymphomagenesis
Integrative Genomics Reveals a Role for GNA13 in Lymphomagenesis by Adrienne Greenough University Program in Genetics and Genomics Duke University Approved: ___________________________ Sandeep Dave, Supervisor ___________________________ Fred Dietrich ___________________________ Jack Keene ___________________________ Yuan Zhuang Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the University Program in Genetics and Genomics in the Graduate School of Duke University 2014 i v ABSTRACT Integrative Genomics Reveals a Role for GNA13 in Lymphomagenesis by Adrienne Greenough University Program in Genetics and Genomics Duke University Approved: ___________________________ Sandeep Dave, Supervisor ___________________________ Fred Dietrich ___________________________ Jack Keene ___________________________ Yuan Zhuang An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the University Program in Genetics and Genomics in the Graduate School of Duke University 2014 Copyright by Adrienne Greenough 2014 Abstract Lymphomas comprise a diverse group of malignancies derived from immune cells. High throughput sequencing has recently emerged as a powerful and versatile method for analysis of the cancer genome and transcriptome. As these data continue to emerge, the crucial work lies in sorting through the wealth of information to hone in on the critical aspects that will give us a better understanding of biology and new insight for how to treat disease. Finding the important signals within these large data sets is one of the major challenges of next generation sequencing. In this dissertation, I have developed several complementary strategies to describe the genetic underpinnings of lymphomas. I begin with developing a better method for RNA sequencing that enables strand-specific total RNA sequencing and alternative splicing profiling in the same analysis. -
Figure S1. HAEC ROS Production and ML090 NOX5-Inhibition
Figure S1. HAEC ROS production and ML090 NOX5-inhibition. (a) Extracellular H2O2 production in HAEC treated with ML090 at different concentrations and 24 h after being infected with GFP and NOX5-β adenoviruses (MOI 100). **p< 0.01, and ****p< 0.0001 vs control NOX5-β-infected cells (ML090, 0 nM). Results expressed as mean ± SEM. Fold increase vs GFP-infected cells with 0 nM of ML090. n= 6. (b) NOX5-β overexpression and DHE oxidation in HAEC. Representative images from three experiments are shown. Intracellular superoxide anion production of HAEC 24 h after infection with GFP and NOX5-β adenoviruses at different MOIs treated or not with ML090 (10 nM). MOI: Multiplicity of infection. Figure S2. Ontology analysis of HAEC infected with NOX5-β. Ontology analysis shows that the response to unfolded protein is the most relevant. Figure S3. UPR mRNA expression in heart of infarcted transgenic mice. n= 12-13. Results expressed as mean ± SEM. Table S1: Altered gene expression due to NOX5-β expression at 12 h (bold, highlighted in yellow). N12hvsG12h N18hvsG18h N24hvsG24h GeneName GeneDescription TranscriptID logFC p-value logFC p-value logFC p-value family with sequence similarity NM_052966 1.45 1.20E-17 2.44 3.27E-19 2.96 6.24E-21 FAM129A 129. member A DnaJ (Hsp40) homolog. NM_001130182 2.19 9.83E-20 2.94 2.90E-19 3.01 1.68E-19 DNAJA4 subfamily A. member 4 phorbol-12-myristate-13-acetate- NM_021127 0.93 1.84E-12 2.41 1.32E-17 2.69 1.43E-18 PMAIP1 induced protein 1 E2F7 E2F transcription factor 7 NM_203394 0.71 8.35E-11 2.20 2.21E-17 2.48 1.84E-18 DnaJ (Hsp40) homolog. -
Vitamin D Receptor Promotes Healthy Microbial Metabolites
www.nature.com/scientificreports OPEN Vitamin D receptor promotes healthy microbial metabolites and microbiome Ishita Chatterjee1, Rong Lu1, Yongguo Zhang1, Jilei Zhang1, Yang Dai 2, Yinglin Xia1 ✉ & Jun Sun 1 ✉ Microbiota derived metabolites act as chemical messengers that elicit a profound impact on host physiology. Vitamin D receptor (VDR) is a key genetic factor for shaping the host microbiome. However, it remains unclear how microbial metabolites are altered in the absence of VDR. We investigated metabolites from mice with tissue-specifc deletion of VDR in intestinal epithelial cells or myeloid cells. Conditional VDR deletion severely changed metabolites specifcally produced from carbohydrate, protein, lipid, and bile acid metabolism. Eighty-four out of 765 biochemicals were signifcantly altered due to the Vdr status, and 530 signifcant changes were due to the high-fat diet intervention. The impact of diet was more prominent due to loss of VDR as indicated by the diferences in metabolites generated from energy expenditure, tri-carboxylic acid cycle, tocopherol, polyamine metabolism, and bile acids. The efect of HFD was more pronounced in female mice after VDR deletion. Interestingly, the expression levels of farnesoid X receptor in liver and intestine were signifcantly increased after intestinal epithelial VDR deletion and were further increased by the high-fat diet. Our study highlights the gender diferences, tissue specifcity, and potential gut-liver-microbiome axis mediated by VDR that might trigger downstream metabolic disorders. Metabolites are the language between microbiome and host1. To understand how host factors modulate the microbiome and consequently alter molecular and physiological processes, we need to understand the metabo- lome — the collection of interacting metabolites from the microbiome and host. -
The Metabolism of Desmosterol in Human Subjects During Triparanol Administration
THE METABOLISM OF DESMOSTEROL IN HUMAN SUBJECTS DURING TRIPARANOL ADMINISTRATION DeWitt S. Goodman, … , Joel Avigan, Hildegard Wilson J Clin Invest. 1962;41(5):962-971. https://doi.org/10.1172/JCI104575. Research Article Find the latest version: https://jci.me/104575/pdf Journal of Clinical Investigation Vol. 41, No. 5, 1962 THE METABOLISM OF DESMOSTEROL IN HUMAN SUBJECTS DURING TRIPARANOL ADMINISTRATION * BY DEWITT S. GOODMAN, JOEL AVIGAN AND HILDEGARD WILSON (From the Section on Metabolism, National Heart Institute, and the National Institute of Arthritis and Metabolic Diseases, Bethesda, Md.) (Submitted for publication October 25, 1961; accepted January 25, 1962) Recent studies with triparanol (1-[p-,3-diethyl- Patient G.B. was a 55 year old man with known arterio- aminoethoxyphenyl ]-1- (p-tolyl) -2- (p-chloro- sclerotic heart disease and mild hypercholesterolemia; phenyl)ethanol) have demonstrated that this com- since 1957 he had maintained a satisfactory and stable cardiac status. At the time of the present study he had pound inhibits cholesterol biosynthesis by blocking been taking 250 mg triparanol daily for 4 weeks, and had the reduction of 24-dehydrocholesterol (desmos- a total serum sterol level in the high normal range. terol) to cholesterol (2-4). Administration of Patient F.A. was a 40 year old man with a 4- to 5-year triparanol to laboratory animals and to man re- history of gout and essential hyperlipemia. At the time sults in of of this study he had been on an isocaloric low purine diet the accumulation desmosterol in the for several weeks, and both the gout and hyperlipemia plasma and tissues, usually with some concom- were in remission. -
Supplemental Digital Content (Sdc) Sdc, Materials
SUPPLEMENTAL DIGITAL CONTENT (SDC) SDC, MATERIALS AND METHODS Animals This study used 9-12 week old male C57BL/6 mice (Jackson Laboratory, Bar Harbor, ME). This study conformed to the National Institutes of Health guidelines and was conducted under animal protocols approved by the University of Virginia’s Institutional Animal Care and Use Committee. Murine DCD Lung Procedure Mice were anesthetized by isoflurane inhalation and euthanized by cervical dislocation followed by a 60-minute period of “no-touch” warm ischemia. Mice then underwent extended median sternotomy and midline cervical exposure followed by intubation for the initiation of mechanical ventilation at 120 strokes/minute with room air. The left atrium was vented via an atriotomy followed by infusion of the lungs with 3 mL 4°C Perfadex® solution (Vitrolife Inc., Denver, CO) supplemented with THAM Solution (Vitrolife, Kungsbacka, Sweden), estimating weight-based volume recommendations for pulmonary artery perfusion (140mL/kg) (1). The chest was then packed with ice and the trachea occluded by silk-suture tie at tidal volume (7µL/g body weight) prior to cold static preservation (CSP) for 60 minutes at 4°C. Mice were then randomized into three experimental groups: 1) CSP alone with no EVLP, 2) EVLP with Steen solution and 3) EVLP with Steen solution supplemented with the highly selective A2AR agonist, ATL1223 (30nM, Lewis and Clark Pharmaceuticals, Charlottesville, VA). Mice treated with ATL1223 during EVLP also received ATL1223 treatment (30nM) during the Perfadex flush prior to CSP whereas the EVLP group received vehicle (DMSO) during the flush. CSP lungs, which did not undergo EVLP, underwent immediate functional assessment after re-intubation as described below. -
Downloading the Available Data Sets, AGO2- Sity
Dong et al. J Transl Med (2021) 19:226 https://doi.org/10.1186/s12967-021-02903-5 Journal of Translational Medicine RESEARCH Open Access Identifcation of circRNA–miRNA–mRNA networks contributes to explore underlying pathogenesis and therapy strategy of gastric cancer Zhijie Dong†, Zhaoyu Liu†, Min Liang†, Jinhui Pan, Mingzhen Lin, Hai Lin, Yuanwei Luo, Xinke Zhou* and Wenxia Yao* Abstract Background: Circular RNAs (circRNAs) are a new class of noncoding RNAs that have gained increased attention in human tumor research. However, the identifcation and function of circRNAs are largely unknown in the context of gastric cancer (GC). This study aims to identify novel circRNAs and determine their action networks in GC. Methods: A comprehensive strategy of data mining, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and computational biology were conducted to discover novel circRNAs and to explore their potential mechanisms in GC. Promising therapeutic drugs for GC were determined by connectivity map (CMap) analysis. Results: Six overlapped diferentially expressed circRNAs (DECs) were screened from selected microarray and RNA-Seq datasets of GC, and the six DECs were then validated by sanger sequencing and RNase R treatment. Sub- sequent RT-qPCR analysis of GC samples confrmed decreased expressions of the six DECs (hsa_circ_0000390, hsa_circ_0000615, hsa_circ_0001438, hsa_circ_0002190, hsa_circ_0002449 and hsa_circ_0003120), all of which accumulated preferentially in the cytoplasm. MiRNA binding sites and AGO2 occupation of the six circRNAs were predicted using online databases, and circRNA–miRNA interactions including the six circRNAs and 33 miRNAs were determined. Then, 5320 target genes of the above 33 miRNAs and 1492 diferently expressed genes (DEGs) from The Cancer Genome Atlas (TCGA) database were identifed.