A Geometric Routing Scheme in Word-Metric Spaces for Data Networks

Total Page:16

File Type:pdf, Size:1020Kb

A Geometric Routing Scheme in Word-Metric Spaces for Data Networks A GEOMETRIC ROUTING SCHEME IN WORD- METRIC SPACES FOR DATA NETWORKS Miguel Hernando Camelo Botero Dipòsit legal: Gi. 1844-2014 http://hdl.handle.net/10803/283749 ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs. ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral. No se autoriza su reproducción u otras formas de explotación efectuadas con fines lucrativos ni su comunicación pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de la tesis como a sus resúmenes e índices. WARNING. Access to the contents of this doctoral thesis and its use must respect the rights of the author. It can be used for reference or private study, as well as research and learning activities or materials in the terms established by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and previous authorization of the author is required for any other uses. In any case, when using its content, full name of the author and title of the thesis must be clearly indicated. Reproduction or other forms of for profit use or public communication from outside TDX service is not allowed. Presentation of its content in a window or frame external to TDX (framing) is not authorized either. These rights affect both the content of the thesis and its abstracts and indexes. DOCTORAL THESIS A GEOMETRIC ROUTING SCHEME IN WORD-METRIC SPACES FOR DATA NETWORKS Miguel Hernando Camelo Botero 2014 DOCTORAL THESIS A GEOMETRIC ROUTING SCHEME IN WORD-METRIC SPACES FOR DATA NETWORKS Miguel Hernando Camelo Botero 2014 DOCTORAL PROGRAM IN TECHNOLOGY Supervisors: Ph.D. Llu´ıs Fabrega` and Ph.D. Pere Vila` This thesis is presented in fulfillment of the requirement for the conferral of the degree of Doctor of Philosophy by the University of Girona Acknowledgments First at all, all the credit of this thesis is to God, who made all this possible. In the last years, many persons have influenced, encouraged, and helped me to the completion of this thesis. I would like to start my list of thanks with my supervisors Llu´ıs Fabrega` and Pere Vila` for the guidance, encouragements, support, patience and also for having faith in me. I also would like to thank Dimitri Papadimitriou, who hosted me at Alcatel Lucent Bell labs (Antwerp, Belgium) and provided rigorous and valuable feedback during all the stages of my research. I thank to Ramon´ Fabregat and Jose´ Lu´ıs Marzo, who gave me the opportunity to work in the Broadband Communication and Distributed Systems (BCDS) research group, and to Yezid Donoso for being always a guidance in all my academical processes. In this list, I can not forget my co-workers (and ex co-workers) at BCDS research group (Silvi, Carlitos, Fer, Nico, Ludy, Juan, Marc), who I had the opportunity of sharing good moments of friendship with them and interesting discussions and support about the work in this dissertation. I would like to include in this list to Oscar, Alejo, Fabis, Jito, Juanda and Isa who have been as my family during all this time in Girona and Alejo (kvi), Luis and Julian, my best friends who always have been there to support me. I am grateful to Montse, Cristina y Anna for sorting out conference trips, research stays and all the paperwork needed during this research work. I appreciate the valuable feedback that the anonymous reviewers of my PhD thesis document and of our papers have provided throughout these years. Finally, I would like to express the most special thank you to my family for all its unconditional love, which brings me the strength to achieve any personal goal, and to my lovely Christine, who now is an important part of my life and who give me the love, support and motivation to complete this process. This thesis is especially dedicated to them. This research work is partially funded by the European Commission (EULER project, FP7 258307), the Spanish Government (RoGER project, TEC 2012-32336), the Generalitat of Catalonia (CSI project, SGR-1202), and the SUR of the Generalitat of Catalonia and the European Social Fund (PhD grant FI-DGR 2011). iii iv List of Acronyms AuS Automatic Structure AS Autonomous System FSA Finite State Automata MWP minimum-length word problem AG Automatic Group SAS Shortlex Automatic Structure CG Cayley Graph ERT Equivalent Routing Table IA Index Automaton CRS Confluent Rewriting System WA Word-Acceptor Automaton GM General-Multiplier Automaton WD Word-Differences Automaton DC Data Center CRP Compact Routing Problem GGR Greedy Geometric Routing CR Compact Routing GR Geometric Routing BFS Breadth-First Search SPRT Shortest Path Routing in Trees GPS Global Positioning System v vi GPSR Greedy Perimeter Stateless Routing GOAFR Greedy Other Adaptive Face Routing GPGF Gravity-Pressure Greedy Forwarding GNP Global Network Positioning SWDC Small-World Datacenter APSP All Pairs Shortest Path SP Shortest Path MDST Minimum Diameter Spanning Tree MdST Minimum Degree Spanning Tree AMST Approximated Minimum Spanning Tree DFS Depth-First Search RT Routing Table BGP Border Gateway Protocol IR Internet Router CIDR Classless Inter-Domain Routing IoT Internet of Things SPRT Shortest Path Routing on Trees CDF Cumulative Distribution Function BA Barabasi-Albert preferential attachment WM Word-Metric GRH2 Greedy Geometric Routing in H2 HK Holme-Kim preferential attachment RTR Reducing Table Ratio C-GGR Compact Greedy Geometric Routing GF Greedy Forwarding List of Tables 3.1 State-of-art of Greedy Geometric Routing (GGR) schemes for both general and scale-free graphs............................ 36 3.2 State-of-art of Cayley Graph (CG) Data Center (DC) architectures and their routing scheme properties.......................... 39 4.1 Strategies for distributed computing of a rooted spanning tree from an undirected, unweigthed and connected graph................ 48 4.2 Main properties of some well-known DC topologies based on Cayley Graphs.................................... 52 5.1 Complexity upper bounds of the proposed Compact Greedy Geometric Routing (C-GGR) for scale-free graphs.................... 55 5.2 Properties of the Barabasi-Albert preferential attachment (BA) graphs and the diameter of the computed Breadth-First Search (BFS) tree........ 56 5.3 Mean and 95% CI of the stochastic topological parameters of the BA topologies................................... 57 5.4 Properties of the Holme-Kim preferential attachment (HK) graphs and the diameter of the computed BFS tree...................... 58 5.5 Mean and 95% CI of the stochastic topological parameters of the HK topologies................................... 58 5.6 Graph properties of the evaluated AS topologies.............. 59 5.7 Mean and 95% CI of stretch in the BA topologies.............. 60 5.8 Mean and 95% CI of stretch in the HK topologies.............. 64 5.9 Theoretical vs experimental stretch in the evaluated Internet Router (IR) level topologies................................ 68 5.10 Experimental vs theoretical maximum vertex label size in the evaluated IR level topologies.............................. 68 5.11 Theoretical vs experimental vs Shortest Path Routing Table (RT) size in the evaluated IR level topologies....................... 68 vii LIST OF TABLES viii 5.12 The value of n and the resulting number of vertices for H(k), BF(k), TP(k), BS(k), ST(k) and P(k)........................ 70 List of Figures 1.1 The Internet topology represented at different level: a) Internet Router and b) Autonomous Systems.........................2 1.2 The growth of the Routing Table (RT) between 1994 and 2014.......3 1.3 A Cloud Computing Infrastructure......................4 3.1 The embedding of the 3-cube graph in several metric spaces........ 31 4.1 An example of graph embedding in the Word-Metric (WM) metric space for Greedy Geometric Routing (GGR).................... 45 5.1 Stretch Cumulative Distribution Function (CDF) for WM, Greedy Geometric Routing in H2 (GRH2) and Shortest Path Routing on Trees (SPRT) on a Barabasi-Albert preferential attachment (BA) graph with 1000 nodes..................................... 59 5.2 Stretch as a function of the number of nodes on BA graphs......... 60 5.3 Average path stretch as a function of the number of nodes on BA graphs.. 61 5.4 Stretch CDF for WM GGR scheme in several BA graphs........... 61 5.5 Theoretical upper bound vs experimental vertex label size on BA graphs.
Recommended publications
  • 18.703 Modern Algebra, Presentations and Groups of Small
    12. Presentations and Groups of small order Definition-Lemma 12.1. Let A be a set. A word in A is a string of 0 elements of A and their inverses. We say that the word w is obtained 0 from w by a reduction, if we can get from w to w by repeatedly applying the following rule, −1 −1 • replace aa (or a a) by the empty string. 0 Given any word w, the reduced word w associated to w is any 0 word obtained from w by reduction, such that w cannot be reduced any further. Given two words w1 and w2 of A, the concatenation of w1 and w2 is the word w = w1w2. The empty word is denoted e. The set of all reduced words is denoted FA. With product defined as the reduced concatenation, this set becomes a group, called the free group with generators A. It is interesting to look at examples. Suppose that A contains one element a. An element of FA = Fa is a reduced word, using only a and a−1 . The word w = aaaa−1 a−1 aaa is a string using a and a−1. Given any such word, we pass to the reduction w0 of w. This means cancelling as much as we can, and replacing strings of a’s by the corresponding power. Thus w = aaa −1 aaa = aaaa = a 4 = w0 ; where equality means up to reduction. Thus the free group on one generator is isomorphic to Z. The free group on two generators is much more complicated and it is not abelian.
    [Show full text]
  • Some Remarks on Semigroup Presentations
    SOME REMARKS ON SEMIGROUP PRESENTATIONS B. H. NEUMANN Dedicated to H. S. M. Coxeter 1. Let a semigroup A be given by generators ai, a2, . , ad and defining relations U\ — V\yu2 = v2, ... , ue = ve between these generators, the uu vt being words in the generators. We then have a presentation of A, and write A = sgp(ai, . , ad, «i = vu . , ue = ve). The same generators with the same relations can also be interpreted as the presentation of a group, for which we write A* = gpOi, . , ad\ «i = vu . , ue = ve). There is a unique homomorphism <£: A—* A* which maps each generator at G A on the same generator at G 4*. This is a monomorphism if, and only if, A is embeddable in a group; and, equally obviously, it is an epimorphism if, and only if, the image A<j> in A* is a group. This is the case in particular if A<j> is finite, as a finite subsemigroup of a group is itself a group. Thus we see that A(j> and A* are both finite (in which case they coincide) or both infinite (in which case they may or may not coincide). If A*, and thus also Acfr, is finite, A may be finite or infinite; but if A*, and thus also A<p, is infinite, then A must be infinite too. It follows in particular that A is infinite if e, the number of defining relations, is strictly less than d, the number of generators. 2. We now assume that d is chosen minimal, so that A cannot be generated by fewer than d elements.
    [Show full text]
  • Knapsack Problems in Groups
    MATHEMATICS OF COMPUTATION Volume 84, Number 292, March 2015, Pages 987–1016 S 0025-5718(2014)02880-9 Article electronically published on July 30, 2014 KNAPSACK PROBLEMS IN GROUPS ALEXEI MYASNIKOV, ANDREY NIKOLAEV, AND ALEXANDER USHAKOV Abstract. We generalize the classical knapsack and subset sum problems to arbitrary groups and study the computational complexity of these new problems. We show that these problems, as well as the bounded submonoid membership problem, are P-time decidable in hyperbolic groups and give var- ious examples of finitely presented groups where the subset sum problem is NP-complete. 1. Introduction 1.1. Motivation. This is the first in a series of papers on non-commutative discrete (combinatorial) optimization. In this series we propose to study complexity of the classical discrete optimization (DO) problems in their most general form — in non- commutative groups. For example, DO problems concerning integers (subset sum, knapsack problem, etc.) make perfect sense when the group of additive integers is replaced by an arbitrary (non-commutative) group G. The classical lattice problems are about subgroups (integer lattices) of the additive groups Zn or Qn, their non- commutative versions deal with arbitrary finitely generated subgroups of a group G. The travelling salesman problem or the Steiner tree problem make sense for arbitrary finite subsets of vertices in a given Cayley graph of a non-commutative infinite group (with the natural graph metric). The Post correspondence problem carries over in a straightforward fashion from a free monoid to an arbitrary group. This list of examples can be easily extended, but the point here is that many classical DO problems have natural and interesting non-commutative versions.
    [Show full text]
  • Combinatorial Group Theory
    Combinatorial Group Theory Charles F. Miller III March 5, 2002 Abstract These notes were prepared for use by the participants in the Workshop on Algebra, Geometry and Topology held at the Australian National University, 22 January to 9 February, 1996. They have subsequently been updated for use by students in the subject 620-421 Combinatorial Group Theory at the University of Melbourne. Copyright 1996-2002 by C. F. Miller. Contents 1 Free groups and presentations 3 1.1 Free groups . 3 1.2 Presentations by generators and relations . 7 1.3 Dehn’s fundamental problems . 9 1.4 Homomorphisms . 10 1.5 Presentations and fundamental groups . 12 1.6 Tietze transformations . 14 1.7 Extraction principles . 15 2 Construction of new groups 17 2.1 Direct products . 17 2.2 Free products . 19 2.3 Free products with amalgamation . 21 2.4 HNN extensions . 24 3 Properties, embeddings and examples 27 3.1 Countable groups embed in 2-generator groups . 27 3.2 Non-finite presentability of subgroups . 29 3.3 Hopfian and residually finite groups . 31 4 Subgroup Theory 35 4.1 Subgroups of Free Groups . 35 4.1.1 The general case . 35 4.1.2 Finitely generated subgroups of free groups . 35 4.2 Subgroups of presented groups . 41 4.3 Subgroups of free products . 43 4.4 Groups acting on trees . 44 5 Decision Problems 45 5.1 The word and conjugacy problems . 45 5.2 Higman’s embedding theorem . 51 1 5.3 The isomorphism problem and recognizing properties . 52 2 Chapter 1 Free groups and presentations In introductory courses on abstract algebra one is likely to encounter the dihedral group D3 consisting of the rigid motions of an equilateral triangle onto itself.
    [Show full text]
  • Deforming Discrete Groups Into Lie Groups
    Deforming discrete groups into Lie groups March 18, 2019 2 General motivation The framework of the course is the following: we start with a semisimple Lie group G. We will come back to the precise definition. For the moment, one can think of the following examples: • The group SL(n; R) n × n matrices of determinent 1, n • The group Isom(H ) of isometries of the n-dimensional hyperbolic space. Such a group can be seen as the transformation group of certain homoge- neous spaces, meaning that G acts transitively on some manifold X. A pair (G; X) is what Klein defines as “a geometry” in its famous Erlangen program [Kle72]. For instance: n n • SL(n; R) acts transitively on the space P(R ) of lines inR , n n • The group Isom(H ) obviously acts on H by isometries, but also on n n−1 @1H ' S by conformal transformations. On the other side, we consider a group Γ, preferably of finite type (i.e. admitting a finite generating set). Γ may for instance be the fundamental group of a compact manifold (possibly with boundary). We will be interested in representations (i.e. homomorphisms) from Γ to G, and in particular those representations for which the intrinsic geometry of Γ and that of G interact well. Such representations may not exist. Indeed, there are groups of finite type for which every linear representation is trivial ! This groups won’t be of much interest for us here. We will often start with a group of which we know at least one “geometric” representation.
    [Show full text]
  • Combinatorial Group Theory
    Combinatorial Group Theory Charles F. Miller III 7 March, 2004 Abstract An early version of these notes was prepared for use by the participants in the Workshop on Algebra, Geometry and Topology held at the Australian National University, 22 January to 9 February, 1996. They have subsequently been updated and expanded many times for use by students in the subject 620-421 Combinatorial Group Theory at the University of Melbourne. Copyright 1996-2004 by C. F. Miller III. Contents 1 Preliminaries 3 1.1 About groups . 3 1.2 About fundamental groups and covering spaces . 5 2 Free groups and presentations 11 2.1 Free groups . 12 2.2 Presentations by generators and relations . 16 2.3 Dehn’s fundamental problems . 19 2.4 Homomorphisms . 20 2.5 Presentations and fundamental groups . 22 2.6 Tietze transformations . 24 2.7 Extraction principles . 27 3 Construction of new groups 30 3.1 Direct products . 30 3.2 Free products . 32 3.3 Free products with amalgamation . 36 3.4 HNN extensions . 43 3.5 HNN related to amalgams . 48 3.6 Semi-direct products and wreath products . 50 4 Properties, embeddings and examples 53 4.1 Countable groups embed in 2-generator groups . 53 4.2 Non-finite presentability of subgroups . 56 4.3 Hopfian and residually finite groups . 58 4.4 Local and poly properties . 61 4.5 Finitely presented coherent by cyclic groups . 63 1 5 Subgroup Theory 68 5.1 Subgroups of Free Groups . 68 5.1.1 The general case . 68 5.1.2 Finitely generated subgroups of free groups .
    [Show full text]
  • Chapter 1 GENERAL STRUCTURE and PROPERTIES
    Chapter 1 GENERAL STRUCTURE AND PROPERTIES 1.1 Introduction In this Chapter we would like to introduce the main de¯nitions and describe the main properties of groups, providing examples to illustrate them. The detailed discussion of representations is however demanded to later Chapters, and so is the treatment of Lie groups based on their relation with Lie algebras. We would also like to introduce several explicit groups, or classes of groups, which are often encountered in Physics (and not only). On the one hand, these \applications" should motivate the more abstract study of the general properties of groups; on the other hand, the knowledge of the more important and common explicit instances of groups is essential for developing an e®ective understanding of the subject beyond the purely formal level. 1.2 Some basic de¯nitions In this Section we give some essential de¯nitions, illustrating them with simple examples. 1.2.1 De¯nition of a group A group G is a set equipped with a binary operation , the group product, such that1 ¢ (i) the group product is associative, namely a; b; c G ; a (b c) = (a b) c ; (1.2.1) 8 2 ¢ ¢ ¢ ¢ (ii) there is in G an identity element e: e G such that a e = e a = a a G ; (1.2.2) 9 2 ¢ ¢ 8 2 (iii) each element a admits an inverse, which is usually denoted as a¡1: a G a¡1 G such that a a¡1 = a¡1 a = e : (1.2.3) 8 2 9 2 ¢ ¢ 1 Notice that the axioms (ii) and (iii) above are in fact redundant.
    [Show full text]
  • Preserving Torsion Orders When Embedding Into Groups Withsmall
    Preserving torsion orders when embedding into groups with ‘small’ finite presentations Maurice Chiodo, Michael E. Hill September 9, 2018 Abstract We give a complete survey of a construction by Boone and Collins [3] for em- bedding any finitely presented group into one with 8 generators and 26 relations. We show that this embedding preserves the set of orders of torsion elements, and in particular torsion-freeness. We combine this with a result of Belegradek [2] and Chiodo [6] to prove that there is an 8-generator 26-relator universal finitely pre- sented torsion-free group (one into which all finitely presented torsion-free groups embed). 1 Introduction One famous consequence of the Higman Embedding Theorem [11] is the fact that there is a universal finitely presented (f.p.) group; that is, a finitely presented group into which all finitely presented groups embed. Later work was done to give upper bounds for the number of generators and relations required. In [14] Valiev gave a construction for embedding any given f.p. group into a group with 14 generators and 42 relations. In [3] Boone and Collins improved this to 8 generators and 26 relations. Later in [15] Valiev further showed that 21 relations was possible. In particular we can apply any of these constructions to a universal f.p. group to get a new one with only a few generators and relations. More recently Belegradek in [2] and Chiodo in [6] independently showed that there exists a universal f.p. torsion-free group; that is, an f.p. torsion-free group into which all f.p.
    [Show full text]
  • The Compressed Word Problem for Groups
    Markus Lohrey The Compressed Word Problem for Groups – Monograph – April 3, 2014 Springer Dedicated to Lynda, Andrew, and Ewan. Preface The study of computational problems in combinatorial group theory goes back more than 100 years. In a seminal paper from 1911, Max Dehn posed three decision prob- lems [46]: The word problem (called Identitatsproblem¨ by Dehn), the conjugacy problem (called Transformationsproblem by Dehn), and the isomorphism problem. The first two problems assume a finitely generated group G (although Dehn in his paper requires a finitely presented group). For the word problem, the input con- sists of a finite sequence w of generators of G (also known as a finite word), and the goal is to check whether w represents the identity element of G. For the con- jugacy problem, the input consists of two finite words u and v over the generators and the question is whether the group elements represented by u and v are conju- gated. Finally, the isomorphism problem asks, whether two given finitely presented groups are isomorphic.1 Dehns motivation for studying these abstract group theo- retical problems came from topology. In a previous paper from 1910, Dehn studied the problem of deciding whether two knots are equivalent [45], and he realized that this problem is a special case of the isomorphism problem (whereas the question of whether a given knot can be unknotted is a special case of the word problem). In his paper from 1912 [47], Dehn gave an algorithm that solves the word problem for fundamental groups of orientable closed 2-dimensional manifolds.
    [Show full text]
  • Finitely Presented Groups 1
    Finitely presented groups 1 Max Neunhöffer LMS Short Course on Computational Group Theory 29 July – 2 August 2013 Max Neunhöffer (University of St Andrews) Finitely presented groups 1 29 July 2013 1 / 12 is the cyclic group of order k. − − A; B j ABA 1B 1 is the integral lattice Z2 with addition. “Definition” G := hX j R1; R2;:::; Rk i is the “largest” group that has X as generating system, such that the relations R1;:::; Rk hold. Every group with a generating system X, for which the relations R1;:::; Rk hold, is a quotient of G. P; Q j Pn; Q2; PQPQ is the dihedral group of order 2n. S; T j S3; T 2 is the modular group PSL(2; Z). D; E; F j DEFED; EFD; D2EF is the trivial group f1g. Finitely presented groups Introduction and definition C j Ck = 1 Max Neunhöffer (University of St Andrews) Finitely presented groups 1 29 July 2013 2 / 12 − − A; B j ABA 1B 1 is the integral lattice Z2 with addition. “Definition” G := hX j R1; R2;:::; Rk i is the “largest” group that has X as generating system, such that the relations R1;:::; Rk hold. Every group with a generating system X, for which the relations R1;:::; Rk hold, is a quotient of G. P; Q j Pn; Q2; PQPQ is the dihedral group of order 2n. S; T j S3; T 2 is the modular group PSL(2; Z). D; E; F j DEFED; EFD; D2EF is the trivial group f1g. Finitely presented groups Introduction and definition C j Ck = 1 is the cyclic group of order k.
    [Show full text]
  • Topics in Combinatorial Group Theory
    Topics in Combinatorial Group Theory Preface I gave a course on Combinatorial Group Theory at ETH, Zurich, in the Winter term of 1987/88. The notes of that course have been reproduced here, essentially without change. I have made no attempt to improve on those notes, nor have I made any real attempt to provide a complete list of references. I have, however, included some general references which should make it possible for the interested reader to obtain easy access to any one of the topics treated here. In notes of this kind, it may happen that an idea or a theorem that is due to someone other than the author, has inadvertently been improperly acknowledged, if at all. If indeed that is the case here, I trust that I will be forgiven in view of the informal nature of these notes. Acknowledgements I would like to thank R. Suter for taking notes of the course and for his many comments and corrections and M. Schunemann for a superb job of “TEX-ing” the manuscript. I would also like to acknowledge the help and insightful comments of Urs Stammbach. In addition, I would like to take this opportunity to express my thanks and appreciation to him and his wife Irene, for their friendship and their hospitality over many years, and to him, in particular, for all of the work that he has done on my behalf, making it possible for me to spend so many pleasurable months in Zurich. Combinatorial Group Theory iii CONTENTS Chapter I History 1. Introduction ..................................................................1 2.
    [Show full text]
  • Distributed Computation of Virtual Coordinates for Greedy Routing in Sensor Networks
    Discrete Applied Mathematics ( ) – Contents lists available at ScienceDirect Discrete Applied Mathematics journal homepage: www.elsevier.com/locate/dam Distributed computation of virtual coordinates for greedy routing in sensor networks Mirela Ben Chen a, Steven J. Gortler b, Craig Gotsman a,∗, Camille Wormser c a Technion, Haifa, Israel b Harvard University, United States c INRIA, France article info a b s t r a c t Article history: Sensor networks are emerging as a paradigm for future computing, but pose a number Available online xxxx of challenges in the fields of networking and distributed computation. One challenge is to devise a greedy routing protocol—one that routes messages through the network using Keywords: only information available at a node or its neighbors. Modeling the connectivity graph Sensor network of a sensor network as a 3-connected planar graph, we describe how to compute on the Routing network in a distributed and local manner a special geometric embedding of the graph. Graph embedding This embedding supports a geometric routing protocol called ``greedy routing'' based on the ``virtual'' coordinates of the nodes derived from the embedding. ' 2010 Elsevier B.V. All rights reserved. 1. Introduction Sensor networks are a collection of (usually miniature) devices, each with limited computing and wireless communica- tion capabilities, distributed over a physical area. The sensor network collects data from its environment and should be able to integrate it and answer queries related to this data. Sensor networks are becoming more and more attractive in many application domains. The advent of sensor networks has posed a number of research challenges to the networking and distributed computation communities.
    [Show full text]