Apache Ignite Extensions - Modularization

Total Page:16

File Type:pdf, Size:1020Kb

Apache Ignite Extensions - Modularization Apache Ignite Extensions - Modularization Saikat Maitra Twitter @samaitra Github samaitra Motivation • To keep Apache Ignite core modules and extensions modules to have separate release lifecycles. • Few integrations which are no longer in use can be deprecated. • Help Apache Ignite community to support core and extensions separately (test, release, fix, continue development). 2 Project Structure • Ignite-core • Ignite-modules • Memory-Centric Storage, Native Persistence, RDBMS • Spark Integration Integration (CacheStore for RDBMS) • SpringData and SpringBoot • Key-Value APIs • TensorFlow Integration • SQL Cassandra Integration • Compute Grid • • Service Grid • Machine Learning APIs • Advanced queries -scan, continuous • Transactions • Data Structures and Atomics • Ignite Messaging • Core Streaming APIs such as IgniteDataStreamer • Logging • Metrics & Tracing framework • Command line tools and scripts such as Visor and control.sh • Standard (aka. thick clients) - Java, .Net, C++. • Spring Core - needed for configuration needs. 3 Apache Ignite Extensions • Flink - Ignite Flink Streamer consumes messages from an Apache Flink consumer endpoint and feeds them into an Ignite cache. • Flume - IgniteSink is a Flume sink that extracts events from an associated Flume channel and injects into an Ignite cache. • Twitter - Ignite Twitter Streamer consumes messages from a Twitter Streaming API and inserts them into an Ignite cache. • ZeroMQ - Ignite ZeroMQ Streamer consumes messages from a ZeroMQ consumer endpoint and feeds them into an Ignite cache. • RocketMQ - Ignite RocketMQ Streamer consumes messages from an Apache RocketMQ consumer endpoint and feeds them into an Ignite cache. 4 Apache Ignite Extensions • Storm - Ignite Storm Streamer consumes messages from an Apache Storm consumer endpoint and feeds them into an Ignite cache. • MQTT - Ignite MQTT Streamer consumes messages from a MQTT topic and feeds transformed key-value pairs into an Ignite cache. • Camel - Ignite Camel streamer consumes messages from an Apache Camel consumer endpoint and feeds them into an Ignite cache. • JMS - Ignite JMS Data Streamer consumes messages from JMS brokers and inserts them into Ignite caches. • Kafka - Apache Ignite Kafka Streamer module provides streaming from Kafka to Ignite cache. 5 The release dependencies Ignite Extensions modules 6 The release process Ignite Extensions modules 7 Apache Ignite Extensions release process Ignite Extensions modules 8 Migration Guidelines • An extension can be released separately from Apache Ignite core. • An extension has to be tested with existing testing tools like TeamCity and Travis. • Each extension is validated against every Apache Ignite core release and a new version of extension to be released along with Apache Ignite code if changes are required. • Extensions can continue to have their own specific version release and need not aligned with Apache Ignite core release version. 9 Migration Risks • Modification of existing build pipeline and testing procedures. • Release policies have to be updated to ensure that modules & core versions compatibility matrix is updated regularly 10 Migration Benefits • Faster release cycles for Apache Ignite Extensions. • Less overhead for Release Manager when planning Apache Ignite releases. • Individual extension module can be released independently. • Less scope for validation and quick testing cycles for releases. 11 New Apache Ignite Extensions • Pub-Sub - Pub/Sub module is a streaming connector to inject Pub/Sub data into Ignite cache. • Spring Boot Autoconfigure - Apache Ignite Spring Boot Autoconfigure module provides autoconfiguration capabilities for Spring-boot based applications. • Spring Boot Thin Client Autoconfigure - Apache Ignite Client Spring Boot Autoconfigure module provides autoconfiguration capabilities for Spring-boot based applications. 12 Apache Ignite Extensions - Upgrade Current Maven - POM New Maven - POM <dependency> <dependency> <groupId>org.apache.ignite</groupId> <groupId>org.apache.ignite</groupId> <artifactId>ignite-flink</artifactId> <artifactId>ignite-flink-ext</artifactId> <version>2.8.1</version> <version>1.0.0</version> </dependency> </dependency> 13 Data loading and Streaming • Data streamers publish continuous stream of unbounded set of data into Ignite Nodes Ignite Cluster Ignite Streamers Ignite clients • Data get partitioned and distributed evenly between Ignite nodes. • Streamed data can be processed in parallel. Apache Flink • Ignite clients can also perform concurrent SQL queries in data. 14 More Info • https://cwiki.apache.org/confluence/display/IGNITE/IEP-36:+Modularization 15 Q & A.
Recommended publications
  • JSON Processing in Apache Ignite As Cache of RDBMS
    JSON processing in Apache Ignite as cache of RDBMS Lazarev Nikita, Borisenko Oleg ISP RAS Plan ● JSON processing in RDBMS ● Implementing of JSON processing in Apache Ignite ● Apache Ignite as cache to RDBMS ● Testing ● Results This work is funded by the Minobrnauki Russia (grant id RFMEFI60417X0199, grant number 14.604.21.0199) Introduction JSON documents: ● Describes objects with substructure ● Flexible scheme ● Used in WEB ● Supported in some RDBMS ● Not included in SQL standard Introduction 1. SQL tables may contain in the columns JSON type 2. Functions allowing developers generate JSON documents directly in SQL queries 3. Transformation of string data types to JSON and reverse operations 4. CAST-operator both into JSON and out of it 5. Operations to check correctness of the documents 6. Operations to work with documents directly in SQL 7. Indexing of JSON documents Introduction Feature Oracle MySQL MS SQL Server PostgreSQL 1 Stored in strings Yes Stored in strings Yes, Binary storage is possible 2 Incompletely Yes Yes Yes 3 Incompletely Yes Yes Yes 4 Incompletely Yes Incompletely Yes 5 Yes Yes Yes Yes 6 Yes Yes Incompletely Yes 7 Full text search No No For binary representation Introduction PostgreSQL provides: ● json, jsonb data types ● json and jsonb operators: ○ “->”, “->>”, “#>”, “#>>” - get document element as document or text ● jsonb operators: ○ “@>”, “<@” - comparison of documents ○ “?”, “?|”, “?&” - key existence ○ “||”, “-”, “#-” - document modifications ● Addition JSON processing functions ● Aggregate functions ● GIN Index for jsonb Introduction ● The cost of RAM decreases ● Increase of data processing performance ● Horizontal scaling ● CAP-theorem ● Power supply dependency Apache Ignite Apache Ignite is the open source version of GridGain Systems product.
    [Show full text]
  • Java Linksammlung
    JAVA LINKSAMMLUNG LerneProgrammieren.de - 2020 Java einfach lernen (klicke hier) JAVA LINKSAMMLUNG INHALTSVERZEICHNIS Build ........................................................................................................................................................... 4 Caching ....................................................................................................................................................... 4 CLI ............................................................................................................................................................... 4 Cluster-Verwaltung .................................................................................................................................... 5 Code-Analyse ............................................................................................................................................. 5 Code-Generators ........................................................................................................................................ 5 Compiler ..................................................................................................................................................... 6 Konfiguration ............................................................................................................................................. 6 CSV ............................................................................................................................................................. 6 Daten-Strukturen
    [Show full text]
  • Beyond Relational Databases
    EXPERT ANALYSIS BY MARCOS ALBE, SUPPORT ENGINEER, PERCONA Beyond Relational Databases: A Focus on Redis, MongoDB, and ClickHouse Many of us use and love relational databases… until we try and use them for purposes which aren’t their strong point. Queues, caches, catalogs, unstructured data, counters, and many other use cases, can be solved with relational databases, but are better served by alternative options. In this expert analysis, we examine the goals, pros and cons, and the good and bad use cases of the most popular alternatives on the market, and look into some modern open source implementations. Beyond Relational Databases Developers frequently choose the backend store for the applications they produce. Amidst dozens of options, buzzwords, industry preferences, and vendor offers, it’s not always easy to make the right choice… Even with a map! !# O# d# "# a# `# @R*7-# @94FA6)6 =F(*I-76#A4+)74/*2(:# ( JA$:+49>)# &-)6+16F-# (M#@E61>-#W6e6# &6EH#;)7-6<+# &6EH# J(7)(:X(78+# !"#$%&'( S-76I6)6#'4+)-:-7# A((E-N# ##@E61>-#;E678# ;)762(# .01.%2%+'.('.$%,3( @E61>-#;(F7# D((9F-#=F(*I## =(:c*-:)U@E61>-#W6e6# @F2+16F-# G*/(F-# @Q;# $%&## @R*7-## A6)6S(77-:)U@E61>-#@E-N# K4E-F4:-A%# A6)6E7(1# %49$:+49>)+# @E61>-#'*1-:-# @E61>-#;6<R6# L&H# A6)6#'68-# $%&#@:6F521+#M(7#@E61>-#;E678# .761F-#;)7-6<#LNEF(7-7# S-76I6)6#=F(*I# A6)6/7418+# @ !"#$%&'( ;H=JO# ;(\X67-#@D# M(7#J6I((E# .761F-#%49#A6)6#=F(*I# @ )*&+',"-.%/( S$%=.#;)7-6<%6+-# =F(*I-76# LF6+21+-671># ;G';)7-6<# LF6+21#[(*:I# @E61>-#;"# @E61>-#;)(7<# H618+E61-# *&'+,"#$%&'$#( .761F-#%49#A6)6#@EEF46:1-#
    [Show full text]
  • Apache Ignitetm In-Memory Data Fabric in Action Fast Data Meets Open Source DMITRIY SETRAKYAN Founder, PMC
    Apache IgniteTM In-Memory Data Fabric In Action Fast Data Meets Open Source DMITRIY SETRAKYAN Founder, PMC https://ignite.apache.org @apacheignite @dsetrakyan Apache®, Apache Ignite, Ignite®, and the Apache Ignite logo are either registered trademarks or trademarks of the Apache Software Foundation in the United States and/or other countries. Coding Examples • Compute Grid • Data Grid • Streaming Grid • Service Grid Apache®, Apache Ignite, Ignite®, and the Apache Ignite logo are either registered trademarks or trademarks of the Apache Software Foundation in the United States and/or other countries. Join Us! Apache®, Apache Ignite, Ignite®, and the Apache Ignite logo are either registered trademarks or trademarks of the Apache Software Foundation in the United States and/or other countries. In-Memory Data Fabric: More Than Data Grid Apache®, Apache Ignite, Ignite®, and the Apache Ignite logo are either registered trademarks or trademarks of the Apache Software Foundation in the United States and/or other countries. Apache Ignite: Complete Cloud Support • Automatic Discovery – Simple Configuration – AWS/EC2/S3 – Google Compute Engine – Other Clouds with JClouds • Docker Support – Automatically Build and Deploy Apache®, Apache Ignite, Ignite®, and the Apache Ignite logo are either registered trademarks or trademarks of the Apache Software Foundation in the United States and/or other countries. In-Memory Compute Grid • MapReduce • ForkJoin • Zero Deployment • Cron-like Task Scheduling • State Checkpoints • Load Balancing • Automatic Failover • Full Cluster Management • Pluggable SPI Design Apache®, Apache Ignite, Ignite®, and the Apache Ignite logo are either registered trademarks or trademarks of the Apache Software Foundation in the United States and/or other countries.
    [Show full text]
  • A Gridgain Systems In-Memory Computing White Paper
    WHITE PAPER A GridGain Systems In-Memory Computing White Paper February 2017 © 2017 GridGain Systems, Inc. All Rights Reserved. GRIDGAIN.COM WHITE PAPER Accelerate MySQL for Demanding OLAP and OLTP Use Cases with Apache Ignite Contents Five Limitations of MySQL ............................................................................................................................. 2 Delivering Hot Data ................................................................................................................................... 2 Dealing with Highly Volatile Data ............................................................................................................. 3 Handling Large Data Volumes ................................................................................................................... 3 Providing Analytics .................................................................................................................................... 4 Powering Full Text Searches ..................................................................................................................... 4 When Two Trends Converge ......................................................................................................................... 4 The Speed and Power of Apache Ignite ........................................................................................................ 5 Apache Ignite Tames a Raging River of Data ...............................................................................................
    [Show full text]
  • Thesis Artificial Intelligence Method Call Argument Completion Using
    Method Call Argument Completion using Deep Neural Regression Terry van Walen [email protected] August 24, 2018, 40 pages Academic supervisors: dr. C.U. Grelck & dr. M.W. van Someren Host organisation: Info Support B.V., http://infosupport.com Host supervisor: W. Meints Universiteit van Amsterdam Faculteit der Natuurwetenschappen, Wiskunde en Informatica Master Software Engineering http://www.software-engineering-amsterdam.nl Abstract Code completion is extensively used in IDE's. While there has been extensive research into the field of code completion, we identify an unexplored gap. In this thesis we investigate the automatic rec- ommendation of a basic variable to an argument of a method call. We define the set of candidates to recommend as all visible type-compatible variables. To determine which candidate should be recom- mended, we first investigate how code prior to a method call argument can influence a completion. We then identify 45 code features and train a deep neural network to determine how these code features influence the candidate`s likelihood of being the correct argument. After sorting the candidates based on this likelihood value, we recommend the most likely candidate. We compare our approach to the state-of-the-art, a rule-based algorithm implemented in the Parc tool created by Asaduzzaman et al. [ARMS15]. The comparison shows that we outperform Parc, in the percentage of correct recommendations, in 88.7% of tested open source projects. On average our approach recommends 84.9% of arguments correctly while Parc recommends 81.3% correctly. i ii Contents Abstract i 1 Introduction 1 1.1 Previous work........................................
    [Show full text]
  • Apache Ignite and Gridgain Enterprise Data Fabric Training Gridgain Brings Apache Ignite to the Enterprise
    Apache Ignite and GridGain Enterprise Data Fabric Training GridGain brings Apache Ignite to the enterprise. Apache Ignite is a high-performance, integrated and distributed in-memory platform for computing and transacting on large- scale data sets in real-time, orders of magnitude faster than possible with traditional disk- based or flash technologies. C123-401 This training is designed to provide you with the knowledge required to build high throughput, low latency applications for scaling with Apache Ignite and GridGain Enterprise™ Data Fabric. GridGain Enterprise™ consists of Apache Ignite™ plus premium features to enhance functionality for enterprises. By completing this training you will learn and gain experience about GridGain Enterprise and Apache Ignite and what they are used for, Learn where and when to deploy Apache Ignite and GridGain Enterprise, Learn how to build applications that run on Apache Ignite and GridGain Enterprise and take advantage of the benefits and Make the right development decisions while using Apache Ignite and GridGain Enterprise. AUDIENCE Developers Project Managers SI Architects KNOWLEDGE REQUIREMENTS Java working knowledge IntelliJ IDE knowledge is a plus LENGTH 3 Days BONUS Plenty of hands-on lab sessions on modifying the Custom applications SYLLABUS GridGain and Apache Ignite Apache Ignite/GridGain API (Day 2) Apache Ignite/GridGain API (Day 3) Introduction (Day 1) 7. Data Modeling 12. Compute Grid 1. Course Introduction 8. SQL Grid Query 13. Continuous Queries 2. GridGain Introduction 9. SQL Grid DML 14. Service Grid 3. Clustering and Caching 10. Transactions 15. Additional API Concepts 11. Persistence 16. Administration Concerns 4. Order It Demo Application 17.
    [Show full text]
  • Evaluation of SQL Benchmark for Distributed In-Memory Database Management Systems
    IJCSNS International Journal of Computer Science and Network Security, VOL.18 No.10, October 2018 59 Evaluation of SQL benchmark for distributed in-memory Database Management Systems Oleg Borisenko† and David Badalyan†† Ivannikov Institute for System Programming of the RAS, Moscow, Russia Summary Requirements for modern DBMS in terms of speed are growing every day. As an alternative to traditional relational DBMS 2. Overview distributed, in-memory DBMS are proposed. In this paper, we investigate capabilities of Apache Ignite and VoltDB from the This chapter discusses the features of Apache Ignite and point of view of relational operations and compare them to VoltDB. Both DBMS support data replication in distributed PostgreSQL using our implementation of TPC-H like workload. mode. However, the paper will consider only the case of Key words: data distribution without replication. Apache Ignite, VoltDB, PostgreSQL, In-memory Computing, distributed systems. 2.1 Apache Ignite 1. Introduction Apache Ignite is a distributed in-memory DBMS [3] [4] written in the Java programming language. It is a caching Today, most applications have to handle large amounts of and data processing platform designed for managing large data. Architects of complex systems face a problem of amounts of data using large number of compute nodes. choosing a DBMS corresponding to reliability, scalability Despite original key-value nature of the system, the and usability requirements. Traditionally used RDBMS developers declare ACID compliance and full support for have several advantages, such as integrity control, data the SQL:1999 standard. consistency, matureness. However, the centralized data H2 Database is used as a subsystem to process SQL queries.
    [Show full text]
  • TIBCO® MDM Cloud Deployment Guide Version 9.3.0 December 2020 Document Updated: March 2021
    TIBCO® MDM Cloud Deployment Guide Version 9.3.0 December 2020 Document Updated: March 2021 Copyright © 1999-2020. TIBCO Software Inc. All Rights Reserved. 2 | Contents Contents Contents 2 TIBCO MDM on Container Platforms 3 TIBCO MDM All-in-one Container 3 Building and Running Docker Image for the TIBCO MDM All-in-one Container 4 TIBCO MDM Cluster 6 Build Docker Image for TIBCO MDM Cluster Container 8 TIBCO MDM Cluster Container Components YAML Files 9 Configuring Kubernetes Containers for TIBCO MDM 11 ConfigMap Parameters 13 Configuring Memory of Docker Container 15 Configure Memory and CPU for Kubernetes Pod 16 Configuration for Persistent Volume Types 16 Setting up Helm 18 TIBCO MDM Cluster on the Cloud 19 Tag and Push the Docker Image for Cloud Platforms 32 Deploying TIBCO MDM Cluster on Kubernetes by Using YAML Files 34 Deploying Kubernetes Dashboard (Optional) 35 Deploying TIBCO MDM Cluster by Using Helm 36 Access TIBCO MDM Cluster UI 37 TIBCO Documentation and Support Services 39 Legal and Third-Party Notices 41 TIBCO® MDM Cloud Deployment Guide 3 | TIBCO MDM on Container Platforms TIBCO MDM on Container Platforms You can containerize TIBCO MDM and run it in a Docker or Kubernetes environment. To containerize TIBCO MDM, you must build and run the Docker images using the bundled Docker ZIP file. The Dockerfiles are delivered as a ZIP file on the TIBCO eDelivery website. Download the TIB_mdm_9.3.0_container.zip file and extract its content to a separate directory. In the directory, locate the ready-to-use Dockerfile and other scripts required to build the images.
    [Show full text]
  • A Gridgain Systems In-Memory Computing White Paper
    WHITE PAPER d A GridGain Systems In-Memory Computing White Paper May 2017 © 2017 GridGain Systems, Inc. All Rights Reserved. GRIDGAIN.COM WHITE PAPER Choosing the Right In-Memory Computing Solution Contents Wh IMC Is Right for Toda’s Fast-Data and Big-Data Applications ............................................................. 2 Dispelling Myths About IMC ......................................................................................................................... 3 IMC Product Categories ................................................................................................................................ 4 Table of IMC Product Categories .............................................................................................................. 8 Sberbank case study: In-Memory Computing in Action ............................................................................... 9 GridGain Systems: A Leader in In-Memory Computing ................................................................................ 9 Making the Choice ...................................................................................................................................... 10 Contact GridGain Systems .......................................................................................................................... 11 About GridGain Systems ............................................................................................................................. 11 © 2017 GridGain Systems, Inc. All Rights Reserved.
    [Show full text]
  • Apache Ignitetm Distributed In-Memory SQL Queries
    Apache IgniteTM Distributed In-Memory SQL Queries Denis Magda GridGain Product Manager Apache Ignite PMC http://ignite.apache.org #apacheignite Apache®, Apache Ignite, Ignite®, and the Apache Ignite logo are either registered trademarks or trademarks of the Apache Software Foundation in the United States and/or other countries. Agenda • Apache Ignite Overview • Apache Ignite SQL Engine • Internals • Query Execution Flow • SQL API • Tips and Tricks • Apache Ignite SQL Engine Of Tomorrow • Demo Apache®, Apache Ignite, Ignite®, and the Apache Ignite logo are either registered trademarks or trademarks of the Apache Software Foundation in the United States and/or other countries. Apache Ignite Overview Apache®, Apache Ignite, Ignite®, and the Apache Ignite logo are either registered trademarks or trademarks of the Apache Software Foundation in the United States and/or other countries. Apache IgniteTM In-Memory Data Fabric: Strategic Approach to IMC • Supports Applications of various types and languages • Open Source – Apache 2.0 • Simple Java APIs • 1 JAR Dependency • High Performance & Scale • Automatic Fault Tolerance • Management/Monitoring • Runs on Commodity Hardware • Supports existing & new data sources • No need to rip & replace Apache®, Apache Ignite, Ignite®, and the Apache Ignite logo are either registered trademarks or trademarks of the Apache Software Foundation in the United States and/or other countries. In-Memory Data Grid • Distributed Key-Value Data Store • Data Reliability • High-Availability – Active replicas, automatic failover • Data Consistency – ACID distributed transactions • Distributed SQL – Advanced indexing Apache®, Apache Ignite, Ignite®, and the Apache Ignite logo are either registered trademarks or trademarks of the Apache Software Foundation in the United States and/or other countries.
    [Show full text]
  • Code Smell Prediction Employing Machine Learning Meets Emerging Java Language Constructs"
    Appendix to the paper "Code smell prediction employing machine learning meets emerging Java language constructs" Hanna Grodzicka, Michał Kawa, Zofia Łakomiak, Arkadiusz Ziobrowski, Lech Madeyski (B) The Appendix includes two tables containing the dataset used in the paper "Code smell prediction employing machine learning meets emerging Java lan- guage constructs". The first table contains information about 792 projects selected for R package reproducer [Madeyski and Kitchenham(2019)]. Projects were the base dataset for cre- ating the dataset used in the study (Table I). The second table contains information about 281 projects filtered by Java version from build tool Maven (Table II) which were directly used in the paper. TABLE I: Base projects used to create the new dataset # Orgasation Project name GitHub link Commit hash Build tool Java version 1 adobe aem-core-wcm- www.github.com/adobe/ 1d1f1d70844c9e07cd694f028e87f85d926aba94 other or lack of unknown components aem-core-wcm-components 2 adobe S3Mock www.github.com/adobe/ 5aa299c2b6d0f0fd00f8d03fda560502270afb82 MAVEN 8 S3Mock 3 alexa alexa-skills- www.github.com/alexa/ bf1e9ccc50d1f3f8408f887f70197ee288fd4bd9 MAVEN 8 kit-sdk-for- alexa-skills-kit-sdk- java for-java 4 alibaba ARouter www.github.com/alibaba/ 93b328569bbdbf75e4aa87f0ecf48c69600591b2 GRADLE unknown ARouter 5 alibaba atlas www.github.com/alibaba/ e8c7b3f1ff14b2a1df64321c6992b796cae7d732 GRADLE unknown atlas 6 alibaba canal www.github.com/alibaba/ 08167c95c767fd3c9879584c0230820a8476a7a7 MAVEN 7 canal 7 alibaba cobar www.github.com/alibaba/
    [Show full text]