Renxiao Wang, Ph

Total Page:16

File Type:pdf, Size:1020Kb

Renxiao Wang, Ph Department of Cell Biology Harvard Medical School 240 Longwood Ave. Boston, MA 02115 [email protected] Junying Yuan, Ph.D. Tel: 617 432-4170 Research Regulation of apoptosis and inflammation by caspases. Interests Regulation of autophagy. The molecular mechanism of necroptosis, a programmed necrotic cell death pathway. Professional 2000-present: Professor of Cell Biology ,Harvard Medical School Experience 1997-2000:Associate Professor of Cell Biology,Harvard Medical School 1996-1997:Assistant Professor of Cell Biology,Harvard Medical School. 1992-1996:Assistant Professor of Medicine,Harvard Medical School 1990-1991:Instructor in Medicine,Harvard Medical School Education 1989-1996: Ph.D., Harvard University Major: Neuroscience Director: Prof. H. R. Horvitz, Academician Member of the American Academy of Arts and Sciences, The Nobel Prize winner 1982-1989: B.S., Fudan University, Shanghai, China Major: Biochemistry Honors and Fellow of the American Academy of Arts and Sciences (2007) Awards International Cell Death Society Award in Appreciation of Her Contribution to Research in the Field of Cell Death (2006) NIH Director’s Pioneer Award (2005) BBS Mentoring Award, Harvard Medical School(2003) Merit Award, National Institute of Aging (2002) Innovator Award for Breast Cancer Research(2002) SCBA Outstanding Young Investigator Award (1999) American Heart Established Investigator (1996-1999) Wilson S. Stone Memorial Award (1994) Ryan Fellowship(1985-1989) Professional Senior Editor of " Journal of Cell Biology " Associations Reviewing Editor of “Journal of Neuroscience” Associate Editor of " Genes to Cells " Executive Editor of “Chinese Science Bulletin” 1 Latest update: 02/10/2009 Member of the Editorial Board of " Current Biology " Founding Board member of Rosalind Franklin Society. number of American Association for Cancer Research number of Society of Chinese Bioscientists in America number of American Society for Cell Biology number of Society for Neuroscience number of American Society for Biochemistry and Molecular Biology h number of American Association for Advancement of Science Original Articles: Selected 1. Yuan J, Horvitz HR. The C. elegans genes ced-3 and ced-4 act cell-autonomou Publications cause programmed cell death. Dev. Biol. 1990; 138:33-41. 2. Yuan J, Finney M, Kim S, Horvitz HR. Tc4, a C. elegans transposon with an unusual foldback structure. Proc. Natl. Acad. Sci. USA 1991; 88:3334-3338 3. Yuan J, Horvitz HR. The C. elegans cell death gene ced-4 encodes a novel protein and is expressed during the period of extensive programmed cell death. Development 1992; 116:309-320 4. Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1b converting enzyme. Cell 1993; 75: 641-652. 5. Miura M, Zhu H, Hartwieg EA, Rotello R, Yuan J. Induction of apoptosis in fibroblasts by interleukin-1b converting enzyme, a mammalian homolog of C. elegans cell death gene ced-3. Cell 1993; 75: 653-660 6. Gagliardini V, Fernandez PA, Lee RKK, Drexler HCA, Rotello R, Fishman M, Yuan J. Prevention of vertebrate neuronal death by the crmA gene. Science 1994; 263: 826-828. 7. Rotello R, Fernandez PA, Yuan J. Anti-apogens and anti-engulfens: monoclonal antibodies reveal specific antigens on cells undergoing programmed cell death in developing chick embryos. Development 1994; 120: 1421-1431. 8. Fernandez PA, Rotello R, Rangini Z, Doupe A, Yuan J. Expression of a specific marker of avian programmed cell death in both apoptosis and necrosis. Proc. Natl. Acad. Sci. 1994; 91:8641-8645. 9. Wang L, Miura M, Bergeron L, Zhu H, Yuan J. Ich-1, an Ice/Ced-3 related gene, encodes both positive and negative regulators of programmed cell death. Cell 1994; 78:739-750. 10. Miura M, Friedlander RM, Yuan J. TNF-induced apoptosis is mediated by a CrmA-sensitive cell death pathway. Proc. Natl. Acad. Sci. USA PNAS. 1995; 92: 8318-8322. 11. Takashita N, Homma S, Rottello RJ, Fernandez PA, Yuan J, Oppenheim RW,Yaginuma H. Expression of apogens and engulfens during programmed cell death in the nervous system of the chick embryo. Arch Histol Cytol 1995; 58: 243-248 12. Li W, Fishman MC, Yuan J. Prevention of apoptosis in CNTF-dependent neuron a mutated ICE or viral protein CrmA but not by proto-oncogene Bcl-2. Cell Death Differ. 1996; 3:105-112. 13. Jung YK, Miura M, Yuan J. Suppression of interleukin-1b-converting enzyme-m cell death by insulin-like growth factor. J. Biol. Chem. 1996; 271: 5112-5117. 14. Friedlander RM, Gagliardini V, Rotello RJ, Yuan J. Functional role of endogenous IL-1 in apoptosis mediated by the ICE. J. Exp. Med. 1996; 184:717-724. 15. Wang S, Miura M, Jung YK, Zhu H, Gagliardini V, Shi L, Greenberg AH and 2 Latest update: 02/10/2009 Yuan J. Identification and Characterization of ICH-3, a Member of the ICE/Ced-3 Family and an Upstream Regulator of ICE. J. Biol. Chem. 1996; 271: 20580-20587. 16. Shi L, Chen G, Salvesen G, Quan L, Bergeron L, Miura M, Rotello RR, Miller DK, Li P, Seshadri T, Yuan J, Greenberg AH. Activation of an ICE- dependent apoptosis pathway by granzme B. Proc Natl Acad Sci. 1996; 93:11002-11007. 17. Alnemri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA, Wong WW, Yuan J. Human ICE/CED-3 protease nomenclature. Cell. 1996; 87: 171. 18. Cryns VL, Bergeron L, Zhu H, Li H, and Yuan J. Specific cleavage of - fodrin during Fas- and TNF-induced apoptosis is mediated by an ICE/Ced-3 family protease distinct from the PARP protease. J Biol Chem. 1996; 271:31277-31282. 19. Jung YK, Yuan J. Induction and suppression of ICE induced apoptosis by oncogenes. Oncogene, 1997; 14:1207-1214. 20. Hara H, Friedlander RM, Gagliardini V, Ayata C, Huang Z, Sasamata M, Yuan J and Moskowitz MA. Inhibition of ICE-Ced-3 family of poteases and ischemic/excitotoxic neuronal damage. Proc Natl Acad Sci U S A 1997; 94:2007-2012. 21. Friedlander RM, Gagliardini V, Hara H, MacDonald G, Greenberg AH, Moskowitz MA, and Yuan J. Inhibition of neuronal apoptosis in a transgenic mouse expressing a dominant negative mutant of ICE. J Exp Med. 1997; 185:933-940. 22. Johnson AL, Bridgham JT, Bergeron L, and Yuan J. Characterization of the avian ich-1 cDNA and expression of ich-1 long mRNA in the hen ovary. Gene. 1997; 192: 227-233. 23. Hara H, Fink K, Endres M, Friedlander RM, Gagliardini V, Yuan J, Moskowitz MA. Attenuation of transient focal cerebral ischemic injury in transgenic mice expressing a mutant ICE inhibitory protein. J Cereb Blood Flow Metab. 1997; 17: 370-375. 24. Friedlander RM, Gagliardini V, Wang J, Brown RH, Yuan J. Inhibition of ICE slows ALS in mice. Nature. 1997; 388: 31. 25. Li H, Bergeron L, Cryns V, Pasternack MS, Zhu H, Shi L, Greenberg AH and Yuan J. Activation of caspase-2 in apoptosis. J Biol Chem. 1997; 272: 21010-21017. 26. Haviv R, Lindenboim L, Li H, Yuan J, & Stein R. Need for caspases in apoptosis of trophic factor-deprived PC12 cells. J Neurosci Res. 1997; 50: 69- 80. 27. Cryns, VL, Byun Y, Rana A, Mellor| H, Lustig KL, Parker P, Avruch J, Kirschner MW, Yuan J. Specific Proteolysis of the Kinase PRK2 by Caspase- 3 during Apoptosis: Identification by a novel, small pool expression cloning strategy. J Biol Chem. 1997; 272:29449-29453. 28. Zhang Y, Center DM, Wu DMH, Cruikshank WW, Yuan J, Andrews DW, Kornfeld H. Processing and activation of pro-interleukin-16 by caspase-3. J Biol Chem. 1998; 273:1144-1149. 29. Wang S, Miura M, Jung Y-K, Zhu H, Li E, Yuan J. Murine caspase-11, an ICE interacting protease, is essential for the activation of ICE. Cell. 1998; 92:501-509. 30. Bergeron L, Perez GI, MacDonald G, Shi L, Sun Y, Jurisicova| A, Varmuza S, Latham KE, Flaws JA, Salter J, Hara H, Moskowitz MA, Li E, Greenberg A, Tilly JL, Yuan J. Defects in regulation of apoptosis in caspase-2-deficient mice. Genes & Dev. 1998; 12:1304-1314. 31. Weng LP, Yuan J, Yu Q. Overexpression of the transmembrane tyrosine phosphatase LAR activates the caspase pathway and induces apoptosis. Curr Biol. 1998; 8: 247-256. 32. Namura S, Zhu J, Fink K, Endres M, Srinivasan A, Tomaselli KJ, Yuan J, 3 Latest update: 02/10/2009 Moskowitz MA. Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. J Neurosci. 1998; 18: 3659-3668. 33. Zhou BB, Li H, Yuan J, Kirschner MW. Caspase-dependent activation of cyclin-dependent kinases during Fas-induced apoptosis in Jurkat cells. Proc Natl Acad Sci U S A. 1998; 95: 6785-6790. 34. Li H, Zhu H, Xu C-J, and Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell. 1998; 94:491- 501. 35. Hilbi H, Moss JE, Hersh D, Chen Y, Arondel J, Banerjee S, Flavell RA, Yuan J, Sansonetti PJ, and Zychlinsky A. Shigella-induced apoptosis is dependent on caspase-1 Which binds to IpaB. J Biol Chem. 1998; 273:32895-32900. 36. Haviv R, Lindenboim L, Yuan J, Stein R. Need for caspase-2 in apoptosis of growth-factor-deprived PC12 cells. J Neurosci Res. 1998; 52:491-497. 37. Juo P, Kuo CJ, Yuan J, Blenis J. Essential requirement for caspase-8/FLICE in the initiation of the Fas-induced apoptotic cascade. Curr Biol. 1998; 8:1001-8 38. Fink K, Zhu J, Namura S, Shimizu-Sasamata M, Endres M, Ma J, Dalkara T, Yuan J, Moskowitz MA. Prolonged therapeutic window for ischemic brain damage caused by delayed caspase activation.
Recommended publications
  • MINI-REVIEW Programmed Cell Death Regulation
    Leukemia (2000) 14, 1340–1344 2000 Macmillan Publishers Ltd All rights reserved 0887-6924/00 $15.00 www.nature.com/leu MINI-REVIEW Programmed cell death regulation: basic mechanisms and therapeutic opportunities DE Johnson Departments of Medicine and Pharmacology, University of Pittsburgh, and the University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA The molecular mechanisms responsible for induction or inhi- pH changes during apoptosis bition of apoptosis signal transduction have been intensively investigated during the past few years. Information gained from mechanistic studies and from structural analysis of apoptosis With respect to regulation of intracellular pH during regulatory proteins has provided considerable insight into the apoptosis, Dr Roberta Gottlieb reported that neutrophils pathways that determine whether a cell will live or die. Many deprived of G-CSF exhibit rapid cytosolic acidification, with of these advances were recently presented at the American cells typically reaching a pH of 6.6. Similar results were seen Association for Cancer Research Special Conference on ‘Pro- in Jurkat T leukemic cells undergoing Fas-mediated grammed Cell Death Regulation: Basic Mechanisms and Thera- apoptosis.1 Acidification was found to be concurrent with peutic Opportunities’. This mini-review will discuss the current state of knowledge regarding apoptosis signaling pathways phosphatidyl serine (PS) externalization, and it was proposed and the function of apoptosis regulatory proteins. Leukemia that the pH sensitivity of the enzyme responsible for flipping (2000) 14, 1340–1344. PS may account for this commonly observed apoptotic event. Keywords: apoptosis; mitochondria; Bcl-2; caspase; IAP; TRAIL Dr Gottlieb also observed that cytoplasmic acidification pre- cedes loss of mitochondrial membrane potential, and can be blocked by expression of Bcl-2.
    [Show full text]
  • The Caenorhabditis Elegans Cell-Death Protein CED-3 Is a C.Y.Ste!Ne P.Rotease with Substrate Specl[Icltles S M Lar to Those of the Human CPP32 Protease
    Downloaded from genesdev.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press The Caenorhabditis elegans cell-death protein CED-3 is a c.y.ste!ne p.rotease with substrate specl[iCltles s m lar to those of the human CPP32 protease Ding Xue, Shai Shaham, and H. Robert Horvitz Howard Hughes Medical Institute, Department of Biology, 68-425, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 USA The Caenorhabditis elegans cell-death gene ced-3 encodes a protein similar to mammalian interleukin-l[3-converting enzyme (ICE), a cysteine protease implicated in mammalian apoptosis. We show that the full-length CED-3 protein undergoes proteolytic activation to generate a CED-3 cysteine protease and that CED-3 protease activity is required for killing cells by programmed cell death in C. elegans. We developed an easy and general method for the purification of CED-3/ICE-Iike proteases and used this method to facilitate a comparison of the substrate specificities of four different purified cysteine proteases. We found that in its substrate preferences CED-3 was more similar to the mammalian CPP32 protease than to mammalian ICE or NEDD2/ICH-1 protease. Our results suggest that different mammalian CED-3/ICE-Iike proteases may have distinct roles in mammalian apoptosis and that CPP32 is a candidate for being a mammalian functional equivalent of CED-3. [Key Words: Programmed cell death; cysteine proteases; ced-3; C. elegans; substrate specificities] Received February 28, 1996; revised version accepted March 19, 1996. Programmed cell death is a fundamental cellular process tween ICE and CED-3 suggested that CED-3 may act as in the development and homeostasis of both vertebrates a protease to cause programmed cell death in C.
    [Show full text]
  • Mechanisms of Cell Death: Molecular Insights and Therapeutic Perspectives
    Cell Death and Differentiation (2005) 12, 1449–1456 & 2005 Nature Publishing Group All rights reserved 1350-9047/05 $30.00 www.nature.com/cdd Meeting Report Mechanisms of cell death: molecular insights and therapeutic perspectives LF Dı´az1, M Chiong1, AFG Quest*,1, S Lavandero*,1 and A Stutzin*,1 1 Centro FONDAP de Estudios Moleculares de la Ce´lula, Facultades de Medicina y Ciencias Quı´micas y Farmace´uticas, Universidad de Chile, Independencia 1027, Santiago 838-0453, Chile * Corresponding authors: A Stutzin, AFG Quest, S Lavandero, Centro FONDAP de Estudios Moleculares de la Ce´lula, Facultad de Medicina Universidad de Chile, Independencia 1027, Santiago 838-0453, Chile. Tel: þ 56-2-6786494; Fax: þ 56-2-7376240; E-mail: [email protected], [email protected], [email protected] Cell Death and Differentiation (2005) 12, 1449–1456. doi:10.1038/sj.cdd.4401738; published online 29 July 2005 The International Symposium ‘Mechanisms of Cell Death: Molecular Insights and Therapeutic Perspectives’. Conference Town, Ren˜aca, Chile, 13–16 April 2005. The International Symposium ‘Mechanisms of Cell Death: The development of a function-based gene trapping Molecular Insights and Therapeutic Perspectives’, Confer- strategy based on the use of antisense cDNA libraries leads ence Town, Ren˜aca, Chile, 13–16 April 2005, was held at the to the identification of novel death-promoting (DAP) genes. beachside Conference Town resort of Ren˜aca, close to Galit Shohat and Adi Kimchi (Weizmann Institute of Science, Valparaı´so and some 100 km west from the capital city of Rehovot, Israel) discussed the family of DAP kinases (DAPk) Santiago.
    [Show full text]
  • Caspases: a Decade of Death Research
    Cell Death and Differentiation (1999) 6, 1023 ± 1027 ã 1999 Stockton Press All rights reserved 13509047/99 $15.00 http://www.stockton-press.co.uk/cdd Editorial Caspases: A decade of death research NA Thornberry*,1 the current thinking regarding the roles of these enzymes in cell death, and summarize some of the challenges that 1 Department of Enzymology and Protein Biochemistry, Merck Research remain for future research in this area. Laboratories, R80M-103, PO Box 2000, E. Lincoln Ave., Rahway, New Jersey 07065, USA * Corresponding author: NA Thornberry; Tel: +1 732-594-7120; Caspases and cell death Fax: +1 732-594-3664; E-mail: [email protected] As described in the overview of caspase structure and Edited by G Melino function by Nicholson, there are currently 11 human caspases. The precise biological functions of several of these enzymes remain to be established, but it is clear that they play pivitol and distinct roles in both inflammation and As the end of the millenium approaches, we reflect on the apoptosis, raising intriguing questions as to the evolutionary monumental advances in cell biology that have been relationships between these processes. The structural and in achieved, particularly in the last 50 years. Consider that vitro biochemical properties of these proteases are well proteins were first found to have precise amino acid understood; on several counts, these enzymes are perfectly sequences in 1953 by Sanger, about the same time that engineered to implement the highly coordinated and regulated Watson and Crick deduced the three-dimensional structure of events of apoptosis. DNA. In this context, it seems remarkable that we now have For example, the well ordered and specific cleavages of such an intimate understanding of at least some basic cellular proteins that are required to mediate apoptosis require a mechanisms, thanks largely to relatively recent advances in proteolytic machinery that is highly discriminatory.
    [Show full text]
  • Connections Between Various Trigger Factors and the RIP1/RIP3 Signaling Pathway Involved in Necroptosis
    DOI:http://dx.doi.org/10.7314/APJCP.2013.14.12.7069 Connections Between Various Trigger Factors and the RIP1/RIP3 Signaling Pathway Involved in Necroptosis MINI-REVIEW Connections Between Various Trigger Factors and the RIP1/ RIP3 Signaling Pathway Involved in Necroptosis Yuan-Yuan Zhang, Hao Liu* Abstract Programmed cell death is a basic cellular process that is critical to maintaining tissue homeostasis. In contrast to apoptosis, necrosis was previously regarded as an unregulated and uncontrollable process. However, as research has progressed, necrosis, also known as necroptosis or programmed necrosis, is drawing increasing attention, not least becasu of its possible impications for cancer research. Necroptosis exhibits a unique signaling pathway that requires the involvement of receptor interaction protein kinases 1 and 3 (RIP1 and RIP3), mixed lineage kinase domain-like (MLKL), and phosphoglycerate mutase 5 (PGAM5) and can be specifically inhibited by necrostatins. Not only does necroptosis serve as a backup cell death program when apoptosis is inhibited, but it is now recognized to play a pivotal role in regulating various physiological processes and the pathogenesis of a variety of human diseases such as ischemic brain injury, immune system disorders and cancer. The control of necroptosis by various defined trigger factors and signaling pathways now offers the opportunity to target this cellular process for therapeutic purposes. The purpose of this paper is to review current findings concerning the connections between various trigger factors and the RIP1/RIP3 signaling pathway as it relates to necroptosis. Keywords: Necroptosis - TNFR - Fas - TRAILR - RIP1-RIP3 necrosome - MLKL complex Asian Pac J Cancer Prev, 14 (12), 7069-7074 Introduction necrosis dubbed necroptosis by Junying Yuan’s laboratory (Degterev et al., 2005).
    [Show full text]
  • Interacting Protein Kinase 1 (RIPK1) As a Therapeutic Target
    REVIEWS Receptor- interacting protein kinase 1 (RIPK1) as a therapeutic target Lauren Mifflin 1, Dimitry Ofengeim2 and Junying Yuan 1 ✉ Abstract | Receptor-interacting serine/threonine- protein kinase 1 (RIPK1) is a key mediator of cell death and inflammation. The unique hydrophobic pocket in the allosteric regulatory domain of RIPK1 has enabled the development of highly selective small-molecule inhibitors of its kinase activity, which have demonstrated safety in preclinical models and clinical trials. Potential applications of these RIPK1 inhibitors for the treatment of monogenic and polygenic autoimmune, inflammatory, neurodegenerative, ischaemic and acute conditions, such as sepsis, are emerging. This article reviews RIPK1 biology and disease- associated mutations in RIPK1 signalling pathways, highlighting clinical trials of RIPK1 inhibitors and potential strategies to mitigate development challenges. NF-κ B Receptor-interacting serine/threonine-protein kinase 1 peripherally restricted GSK′772 is being developed for (Nuclear factor κ light chain (RIPK1) is a master regulator of the cellular decision peripheral autoimmune diseases, including psoriasis, enhancer of activated B cells). between pro- survival NF- κB signalling and death in rheumatoid arthritis (RA) and ulcerative colitis12–14. A protein complex whose response to a broad set of inflammatory and pro-death The brain- penetrant DNL747 is in human clinical trial pathway, which can be 1,2 15,16 activated in response to stimuli in human diseases . RIPK1 kinase activation phase Ib/IIa for amyotrophic lateral sclerosis (ALS) . cytokines, free radicals, viral or has been demonstrated in post- mortem human patho- These trials have laid the groundwork for advancing bacterial antigens and other logical samples of autoimmune and neurodegenerative clinical applications of RIPK1 inhibitors.
    [Show full text]
  • Mediated Activation of Caspase-1 and Caspase-3 in a Mouse Model of Amyotrophic Lateral Sclerosis
    The Journal of Neuroscience, July 2, 2003 • 23(13):5455–5460 • 5455 Brief Communication Dissociation between Neurodegeneration and Caspase-11- Mediated Activation of Caspase-1 and Caspase-3 in a Mouse Model of Amyotrophic Lateral Sclerosis Shin Jung Kang, Ivelisse Sanchez, Naisen Jing, and Junying Yuan Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 Caspase-11 is a key regulator of caspase-1 and caspase-3 activation under pathological conditions. We show here that the expression of caspase-11 is upregulated in the spinal cord of superoxide dismutase 1 (SOD1) G93A transgenic mice, a mouse model of amyotrophic lateral sclerosis (ALS), before the onset of motor dysfunction and remains at the high levels throughout the course of disease. The caspase-1-andcaspase-3-likeactivities,aswellasthelevelofinterleukin-1␤,weresignificantlyreducedinthespinalcordofsymptomatic caspase-11Ϫ/Ϫ;SOD1 G93A mice compared with that of caspase-11ϩ/Ϫ; SOD1 G93A mice. However, neurodegeneration, inflammatory responses, and the disease onset and progression in SOD1 G93A transgenic mice were not altered by the ablation ofcaspase-11 gene. Thus, although caspases may contribute to certain aspects of pathology in this mouse model of ALS, their inhibition is not sufficient to prevent neurodegeneration. Our study urges caution when considering the inhibition of caspases as a direct therapeutic method for the treatment of chronic neurodegenerative diseases. Key words: ALS; motor neuron degeneration; neurodegeneration; SOD1; caspase; apoptosis Introduction mouse model at end stage of the disease has been also reported Amyotrophic lateral sclerosis (ALS) is a fatal neurological disor- (Gue´gan et al., 2001, 2002). Moreover, inhibition of caspase(s) der characterized by selective degeneration of upper and lower with peptide inhibitors or by introducing a dominant-negative motor neurons, leading to paralysis and death at ϳ1–5 years after mutant of caspase-1 delayed the onset and progression of the the onset (Cleveland and Rothstein, 2001).
    [Show full text]
  • H. Robert Horvitz
    WORMS, LIFE AND DEATH Nobel Lecture, December 8, 2002 by H. ROBERT HORVITZ Howard Hughes Medical Institute, McGovern Institute for Brain Research, Department of Biology, Massachusetts Institute of Technology, 77 Massachus- etts Ave., Cambridge, MA 02139, U.S.A. I never expected to spend most of my life studying worms. However, when it came time for me to choose an area for my postdoctoral research, I was in- trigued both with the problems of neurobiology and with the approaches of genetics. Having heard that a new “genetic organism” with a remarkably sim- ple nervous system was being explored by Sydney Brenner – the microscopic soil nematode Caenorhabditis elegans – I decided to join Sydney in his efforts. THE CELL LINEAGE After arriving at the Medical Research Council Laboratory of Molecular Biology (the “LMB”) in Cambridge, England, in November, 1974, I began my studies of C. elegans (Figure 1) as a collaboration with John Sulston. John, Figure 1. Caenorhabditis elegans adults. Hermaphrodite above, male below. John Sulston took these photographs, and I drew the diagrams. Bar, 20 microns. From (2). 320 Figur 2. John White. trained as an organic chemist, had become a Staff Scientist in Sydney’s group five years earlier. John’s aim was to use his chemistry background to analyze the neurochemistry of the nematode. By the time I arrived, John had turned his attention to the problem of cell lineage, the pattern of cell divisions and cell fates that occurs as a fertilized egg generates a complex multicellular or- ganism. John could place a newly hatched C. elegans larva on a glass micro- scope slide dabbed with a sample of the bacterium Escherichia coli (nematode food) and, using Nomarski differential interference contrast optics, observe individual cells within the living animal.
    [Show full text]
  • Solution Structure of Apaf-1 CARD and Its Interaction with Caspase-9 CARD: a Structural Basis for Specific Adaptor͞caspase Interaction
    Proc. Natl. Acad. Sci. USA Vol. 96, pp. 11265–11270, September 1999 Biophysics Solution structure of Apaf-1 CARD and its interaction with caspase-9 CARD: A structural basis for specific adaptor͞caspase interaction PEI ZHOU*, JAMES CHOU*, ROBERTO SANCHEZ OLEA†,JUNYING YUAN†, AND GERHARD WAGNER*‡ *Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115; and †Department of Cell Biology, Harvard Medical School, Boston, MA 02115 Communicated by Marc W. Kirschner, Harvard Medical School, Boston, MA, July 28, 1999 (received for review June 16, 1999) ABSTRACT Direct recruitment and activation of cently, crosstalk between the two pathways has been estab- caspase-9 by Apaf-1 through the homophilic CARD͞CARD lished through caspase-8 activation of BID (BH3 Interacting (Caspase Recruitment Domain) interaction is critical for the Domain Death agonist) (16, 17), indicating that apoptotic activation of caspases downstream of mitochondrial damage signals originating from Fas͞tumor necrosis factor receptor 1 in apoptosis. Here we report the solution structure of the can be amplified by the mitochondrial pathway. Consistent Apaf-1 CARD domain and its surface of interaction with with this finding, the ability of caspase-8 to activate down- caspase-9 CARD. Apaf-1 CARD consists of six tightly packed stream caspases was shown to depend on the presence of amphipathic ␣-helices and is topologically similar to the mitochondria in cell-free Xenopus egg extracts (18). In egg RAIDD CARD, with the exception of a kink observed in the extracts devoid of the mitochondria, a significantly higher level middle of the N-terminal helix. By using chemical shift of caspase-8 was required to activate downstream caspases, perturbation data, the homophilic interaction was mapped to whereas in the presence of mitochondria, the effective the acidic surface of Apaf-1 CARD centered around helices 2 activation of downstream caspases from low concentration of and 3.
    [Show full text]
  • At the Frontiers of Neuroscience 36 May - June 2002 by PATRICIA THOMAS Reprinted from Harvard Magazine
    Brainy Women At the frontiers of neuroscience 36 May - June 2002 by PATRICIA THOMAS Reprinted from Harvard Magazine. For copyright and reprint information, contact Harvard Magazine, Inc. at www.harvardmagazine.com human brain rests in cupped hands as easily as a cantaloupe. It is softer and spongier to the touch, of course, and its surface is more deeply ridged and wrinkled than the melon’s skin. Since the time of Hippocrates, physicians and scientists have contemplated the brain and wondered not only how it gives rise to everything we feel, know, accomplish, and create, but also how all this can be stolen by injury or disease. It wasn’t until the invention of the microscope, in the seven- teenth century, that scientists were able to examine nerves in any detail. By the early nine- teenth century, pioneering physiologists had traced those fibers to the brain and made Asome observations that hold true today. They figured out, for example, that pulling back from a hot stove was a reflex, not a conscious action. They also learned that di≠erent re- gions of the brain govern distinct functions, knowledge that enabled doc- Carla J. Shatz (opposite), chair tors to examine a head injury and predict—at least in a crude way— of the neurobiol- ogy department whether it was more likely to leave the patient crippled or sightless. at Harvard Med- ical School, maps In 2002, these insights seem primitive, dwarfed by the twentieth-cen- neural transmis- sions in her labo- tury revolution in neuroscience and its clinical partner, neurology. Mod- ratory.
    [Show full text]
  • G-Protein-Coupled Receptors Regulate Autophagy by ZBTB16-Mediated Ubiquitination and Proteasomal Degradation of Atg14l
    RESEARCH ARTICLE elifesciences.org G-protein-coupled receptors regulate autophagy by ZBTB16-mediated ubiquitination and proteasomal degradation of Atg14L Tao Zhang1, Kangyun Dong1†‡, Wei Liang1†‡, Daichao Xu1†‡, Hongguang Xia2†‡, Jiefei Geng2, Ayaz Najafov2, Min Liu1, Yanxia Li1, Xiaoran Han3, Juan Xiao1, Zhenzhen Jin4, Ting Peng4, Yang Gao4, Yu Cai1, Chunting Qi5, Qing Zhang5, Anyang Sun1, Marta Lipinski2§, Hong Zhu2, Yue Xiong6, Pier Paolo Pandolfi7,HeLi4, Qiang Yu5, Junying Yuan1,2* 1Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; 2Department of Cell Biology, Harvard Medical School, Boston, United States; 3Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Fudan University, Shanghai, China; 4Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; 5Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; 6Lineberger Comprehensive *For correspondence: jyuan@ Cancer Center, Department of Biochemistry and Biophysics, University of North hms.harvard.edu Carolina at Chapel Hill, Chapel Hill, United States; 7Cancer Research Institute, Beth †These authors contributed Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel equally to this work Deaconess Medical Center, Harvard Medical School, Boston, United States ‡These authors are co-second authors to this work Present address: §Department of Abstract Autophagy is an important intracellular catabolic mechanism involved in the removal of Anesthesiology, University of misfolded proteins. Atg14L, the mammalian ortholog of Atg14 in yeast and a critical regulator of Maryland School of Medicine, autophagy, mediates the production PtdIns3P to initiate the formation of autophagosomes. Baltimore, United States However, it is not clear how Atg14L is regulated.
    [Show full text]
  • Honoring Contributions of Richard a Lockshin to the Field of Cell Death
    Cell Death and Differentiation (2008) 15, 1087–1088 & 2008 Nature Publishing Group All rights reserved 1350-9047/08 $30.00 www.nature.com/cdd Editorial Honoring contributions of Richard A Lockshin to the field of cell death Z Zakeri*,1 Cell Death and Differentiation (2008) 15, 1087–1088; doi:10.1038/cdd.2008.35 On 10 December 2007, a scientific symposium was organized cell death;10 and to emphasize that not all deaths were by at The Rockefeller University by Zahra Zakeri and Hermann classical apoptosis.11 Steller to honor Dr. Richard Lockshin for his contributions to He continued to work on cell death and development, with a the field of cell death. Over 300 scientists attended this brief excursion into embryology, where he was among the first meeting. The speakers and chairs included distinguished to initiate studies on gene activity in early embryos12 as a scientists in the field, from 20 countries, who have contributed postdoctoral fellow at the University of Edinburgh until 1965. to this special issue. Richard Lockshin is one of the pioneers in Upon his return to the United States, he took the position of the field of cell death contributing to the field for over the past Assistant Professor at the University of Rochester School of 40 years and still remains one of the field’s primary scientists. Medicine and Dentistry. He moved to St. John’s University in Rick was born in Columbus, Ohio in December 1937. His 1975 as an associate professor, becoming a professor 1 year fascination and interest in the natural sciences from an early later, and served for 9 years as the chair of the department.
    [Show full text]