Increasing Engagement in Automata Theory with JFLAP ∗

Total Page:16

File Type:pdf, Size:1020Kb

Increasing Engagement in Automata Theory with JFLAP ∗ Increasing Engagement in Automata Theory With JFLAP ∗ Susan H. Rodger Eric Wiebe Kyung Min Lee Duke University NC State University Duke University Durham, NC Raleigh, NC Durham, NC [email protected] eric [email protected] Chris Morgan Kareem Omar Jonathan Su Georgia Tech NC State University Duke University Atlanta, GA Raleigh, NC Durham, NC ABSTRACT applied experience with theoretical concepts. JFLAP allows We describe the results from a two-year study with fourteen one to create and simulate several types of automata, to cre- universities on presenting formal languages in a more visual, ate and parse strings in grammars, and to experiment with interactive and applied manner using JFLAP. In our results proof constructions such as converting a nondeterministic the majority of students felt that having access to JFLAP finite automaton (NFA) to a deterministic finite automaton made learning course concepts easier, made them feel more (DFA) and then to a regular expression or regular grammar. engaged in the course and made the course more enjoyable. In JFLAP one can visualize the finite automaton or parse We also describe changes and additions to JFLAP we have tree in a graph format, interact with the automaton by run- made based on feedback from users. These changes include ning it with different input strings and see applications by new algorithms such as a CYK parser and a user-controlled creating a DFA as part of the SLR parsing process. parser, and new resources that include a JFLAP online tu- Many other tools for experimenting with automata theory torial, a wiki and a listserv. have been developed. Turings World[2] is for experimenting with Turing machines. Forlan[24] and Emulator[26] are for experimenting with regular languages. The tool jFAST[27] Categories and Subject Descriptors allows experimentation with finite automata, pushdown au- F.4.3 [Theory of Computation]: Mathematical Logic and tomata and Turing machines. Grinder[9] focuses on finite Formal Languages Formal Languages; D.1.7 [Software]: Pro- state automata. RegEx[5] allows experimentation with reg- gramming Techniques Visual Programming ular expressions. Taylor[25] explores several types of ma- chines. Ross[7] is developing a hypertextbook for many top- General Terms ics in automata theory. Many of these tools focus on a small set of topics. JFLAP is a software tool under development Theory for over 17 years to incorporate an extensive number of top- ics in automata theory in one tool. Keywords In the last few years, several tools have been developed JFLAP, automata, formal languages, pumping lemma, CYK in Algorithm Visualization for different areas of computer parser science with the majority for algorithms and data struc- tures. Examples of these include Balsa-II [6], XTango [21], Samba [22], AACE [8], Animalscript [19] and JHAVE[13]´ 1. INTRODUCTION for algorithms animation, tools for graph theory such as The formal languages and automata (FLA) course has tra- Guess [1], and tools for discrete mathematics such as Com- ditionally been taught with little engagement or feedback, binatorica [15, 20], SetPlayer [3] and LINK [4]. using pencil and paper exercises limited to small problems. How effective are such tools in the learning process? There We have developed JFLAP[18, 17], educational software are some results in this area, but there is still much research used in this course to provide a more visual, interactive and to be done. A small study using Samba [23] showed that there was a learning advantage for students who interacted ∗The work of all the authors was supported in part by the National Science Foundation through NSF grant DUE- with algorithm animations in a lab. In [10] a metastudy 0442513 of 24 experimental studies on the educational value of al- gorithm visualization is presented. Nine of the studies had no significant differences detected, but the remaining 15 had results such as participants viewing or constructing anima- Permission to make digital or hard copies of all or part of this work for tions scored significantly higher or outperformed in some personal or classroom use is granted without fee provided that copies are way. In [14] an ITICSE Working Group explored the role not made or distributed for profit or commercial advantage and that copies of visualization and engagement in computer science educa- bear this notice and the full citation on the first page. To copy otherwise, to tion and proposed several hypotheses to compare the types republish, to post on servers or to redistribute to lists, requires prior specific of engagement of 1) no viewing, 2) viewing, 3) respond- permission and/or a fee. SIGCSE’09, March 3–7, 2009, Chattanooga, Tennessee, USA. ing, 4) changing, 5)constructing, and 6) presenting, with Copyright 2009 ACM 978-1-60558-183-5/09/03 ...$5.00. the hypothesis that the engagements offer significantly bet- useful tool to design, run and interpret simulations. Specific ter learning outcomes the higher the number associated with questions from the usability survey are combined with year it (with presenting the best outcome). 2 and shown in the next section. How effective is JFLAP in enhancing the learning pro- Selected questions from the software implementation sur- cess and what additional value might JFLAP add to the vey shown below show that the majority of students used FLA course? This paper describes a two-year study of four- JFLAP to study for exams and thought JFLAP helped them teen universities using JFLAP in their FLA course including to get a better grade. feedback from both students and faculty. In Section 2 we give an overview of the study and its Question YES/NO No. % results. In Section 3 we describe changes and additions Did you use JFLAP software YES 20 55% to JFLAP based on feedback from users in our study. In to study for inclass exams? NO 16 45% Section 4 we provide an analysis of the worldwide usage of Did you feel you had time to YES 33 94% JFLAP, and in Section 5 we give concluding remarks. learn how to use the JFLAP NO 2 6% software? 2. JFLAP STUDY Did you feel that using the YES 3 8% software took time away from NO 33 92% 2.1 Overview other study activities? Did the time and effort it took YES 23 64% Our two year JFLAP study was held from Fall 2005 to to use JFLAP help you get NO 13 36% Spring 2007 and included twelve universities the first year a better grade in the course? and an additional two universities the second year. The four- Was it easier to use JFLAP software 30 83% teen schools were Duke University, Emory University, Fayet- software or was it easier to by hand 6 17% teville State University, Norfolk State University, Rensse- draw it out by hand? laer Polytechnic Institute, Rochester Institute of Technol- ogy, San Jose State University, United States Naval Academy, Did you feel you would have YES 18 50% University of California Davis, University of Houston, Uni- done as well in the course NO 13 36% versity of North Carolina, University of Richmond, Vir- if you had not used JFLAP? NA 5 14% ginia State University, and Winston-Salem State University. These schools included a large mix of public and private, The attitudes survey showed that students were confident large and small schools with several HBCU schools to in- in their abilities as one would expect for upper level com- clude a racially diverse population. puter science majors, and enjoy engaging in the work and In the summer of 2005 we held a workshop with 18 partic- problem-solving that is part of their course work. ipants including mostly faculty adopters, three evaluators, The pretest and posttest given at the beginning and end and three student research assistants. A followup workshop of the semester showed that the majority of students learned was held in the summer of 2006 with 17 participants, five of key content in the course. There were too few responses and them new. All fourteen schools participated in at least one no control group this year to statistically gauge the efficacy of the workshops. However, with the nationwide trend of en- of JFLAP for improving learning. rollments dropping in computer science and the automata At the end of each semester, the research team conducted theory course an optional course at some schools, not all structured telephone interviews with faculty adopters and schools were able to participate in the collection of data due at the end of the year a focus group of faculty during the to low enrollments or courses not held every year. second workshop. We give a summary from these faculty Data was collected from students and faculty adopters discussions. through knowledge tests, surveys, structured telephone in- terviews and face-to-face focus groups. • The faculty felt strongly that JFLAP not be used as part of exams. The reason cited in some cases had 2.2 Results of Study - First Year to do with concerns about cheating and/or the tests The first year of the study in 2005-2006 we were able to were all paper and pencil. One instructor did use it collect data from 55 students (pretest) and 33 students( for a test but found that students spent too much time posttest) at the seven schools: Duke University, Norfolk trying to perfect their machines. State University, University of Richmond, University of Hous- ton, Virginia State University, Fayetteville State University • JFLAP was mostly used in homework and some as and University of California Davis. The data collected from part of in class demonstrations. For those who did not students included a pre and post knowledge test, and a sur- use JFLAP as part of the class lecture/demonstration, vey of computer science attitudes, JFLAP implementation their reasons were varied but usually centered around and usability.
Recommended publications
  • Nooj Computational Devices Max Silberztein
    NooJ Computational Devices Max Silberztein To cite this version: Max Silberztein. NooJ Computational Devices. Formalising Natural Languages With NooJ, Jun 2012, Paris, France. hal-02435921 HAL Id: hal-02435921 https://hal.archives-ouvertes.fr/hal-02435921 Submitted on 11 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NOOJ COMPUTATIONAL DEVICES MAX SILBERZTEIN Introduction NooJ’s linguistic development environment provides tools for linguists to construct linguistic resources that formalize 7 types of linguistic phenomena: typography, orthography, inflectional and derivational morphology, local and structural syntax, and semantics. NooJ also provides a set of parsers that can process any linguistic resource for these 7 types, and apply it to any corpus of texts in order to extract examples, annotate matching sequences, perform statistical analyses, etc.1 NooJ’s approach to Linguistics is peculiar in the world of Computational Linguistics: instead of constructing a large single grammar to describe a particular natural language (e.g. “a grammar of English”), NooJ users typically construct, edit, test and maintain a large number of local (small) grammars; for instance, there is a grammar that describes how to conjugate the verb to be, another grammar that describes how to state a date in English, another grammar that describes the heads of Noun Phrases, etc.
    [Show full text]
  • Implementation of Recursively Enumerable Languages Using Universal Turing Machine in JFLAP
    International Journal of Information and Computation Technology. ISSN 0974-2239 Volume 4, Number 1 (2014), pp. 79-84 © International Research Publications House http://www. irphouse.com /ijict.htm Implementation of Recursively Enumerable Languages using Universal Turing Machine in JFLAP Ankur Singh1 and Jainendra Singh2 1Department of Computer Science, IEC College of Engineering, Greater Noida, INDIA. 2 Department of Computer Science, Maharaja Surajmal Institute, C-4, Janakpuri, New Delhi, INDIA. Abstract This paper presents the implementation of recursively enumerable language using Universal Turing machine for JFLAP platform. Automata play a major role in compiler design and parsing. The class of formal languages that work for the most complex problems belongs to the set of Recursively Enumerable Language (REL).RELs are accepted by the type of automata as Turing Machine. Turing Machines are the most powerful computational machines and are the theoretical basis for modern computers. Turing Machine works for all classes of languages including regular language, Context Free Languages as well as Recursive Enumerable Languages. Still it is a tedious task to create and maintain Turing Machines for all problems. The Universal Turing Machine (UTM) is a solution to this problem. A UTM simulates any other TM, thus providing a single model and solution for all the computational problems. Universal Turing Machine is used to implementation of RELs for JFLAP platform. JFLAP is most successful and widely used tool for visualizing and simulating all types of automata. Keywords: Automata; Compiler; Turing Machine; TM; JFLAP; PDA. 1. Introduction An automaton is a mathematical model for a finite state machine (FSM). A FSM is a machine that has a set of input symbols and transitions and jumps through a series of states according to a transition function.
    [Show full text]
  • JFLAP – an Interactive Formal Languages and Automata Package
    JFLAP – An Interactive Formal Languages and Automata Package Susan H. Rodger Thomas W. Finley Duke University Cornell University October 18, 2005 ii To Thomas, Erich, and Markus — S. H. Rodger KYHDKIKINKOIIAGKTIYKD BLGKLGFAROADGINIRJREL MRJHKDIARARATALYMFTKY DRNERKTMATSKHWGOBBKRY RDUNDFFKCKALAAKBUTCIO MIOIAJSAIDMJEWRYRKOKF WFYUSCIYETEGAUDNMULWG NFUCRYJJTYNYHTEOJHMAM NUEWNCCTHKTYMGFDEEFUN AULWSBTYMUAIYKHONJNHJ TRRLLYEMNHBGTRTDGBCMS RYHKTGAIERFYABNCRFCLJ NLFFNKAULONGYTMBYLWLU SRAUEEYWELKCSIBMOUKDW MEHOHUGNIGNEMNLKKHMEH CNUSCNEYNIIOMANWGAWNI MTAUMKAREUSHMTSAWRSNW EWJRWFEEEBAOKGOAEEWAN FHJDWKLAUMEIAOMGIEGBH IEUSNWHISDADCOGTDRWTB WFCSCDOINCNOELTEIUBGL — T. W. Finley Contents Preface ix JFLAP Startup xiv 1 Finite Automata 1 1.1 A Simple Finite Automaton . 1 1.1.1 Create States . 2 1.1.2 Define the Initial State and the Final State . 2 1.1.3 Creating Transitions . 2 1.1.4 Deleting States and Transitions . 3 1.1.5 Attribute Editor Tool . 3 1.2 Simulation of Input . 5 1.2.1 Stepping Simulation . 5 1.2.2 Fast Simulation . 7 1.2.3 Multiple Simulation . 8 1.3 Nondeterminism . 9 1.3.1 Creating Nondeterministic Finite Automata . 9 1.3.2 Simulation . 10 1.4 Simple Analysis Operators . 12 1.4.1 Compare Equivalence . 13 1.4.2 Highlight Nondeterminism . 13 1.4.3 Highlight λ-Transitions . 13 1.5 Alternative Multiple Character Transitions∗ ....................... 13 1.6 Definition of FA in JFLAP . 14 1.7 Summary . 15 1.8 Exercises . 15 2 NFA to DFA to Minimal DFA 19 2.1 NFA to DFA . 19 iii iv CONTENTS 2.1.1 Idea for the Conversion . 19 2.1.2 Conversion Example . 20 2.1.3 Algorithm to Convert NFA M to DFA M 0 .................... 22 2.2 DFA to Minimal DFA . 23 2.2.1 Idea for the Conversion . 23 2.2.2 Conversion Example .
    [Show full text]
  • Animating the Conversion of Nondeterministic Finite State
    ANIMATING THE CONVERSION OF NONDETERMINISTIC FINITE STATE AUTOMATA TO DETERMINISTIC FINITE STATE AUTOMATA by William Patrick Merryman A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Computer Science MONTANA STATE UNIVERSITY Bozeman, Montana January 2007 ©COPYRIGHT by William Patrick Merryman 2007 All Rights Reserved ii APPROVAL of a thesis submitted by William Patrick Merryman This thesis has been read by each member of the thesis committee and has been found to be satisfactory regarding content, English usage, format, citations, bibliographic content, and consistency, and is ready for submission to the Division of Graduate Education. Dr. Rockford Ross Approved for the Department of Computer Science Dr. Michael Oudshoorn Approved for the Division of Graduate Education Dr. Carl A. Fox iii STATEMENT OF PERMISSION TO USE In presenting this thesis in partial fulfillment of the requirements for a Master’s degree at Montana State University, I agree that the Library shall make it available to borrowers under rules of the Library. If I have indicated my intention to copyright this thesis by including a copyright notice page, copying is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for permission for extended quotation from or reproduction of this thesis in whole or in parts may be granted only by the copyright holder. William Patrick Merryman January, 2007 iv TABLE OF CONTENTS 1. INTRODUCTION ........................................................................................
    [Show full text]
  • Using Jflap in Academics to Understand Automata Theory in a Better Way
    International Journal of Advances in Electronics and Computer Science, ISSN: 2393-2835 Volume-5, Issue-5, May.-2018 http://iraj.in USING JFLAP IN ACADEMICS TO UNDERSTAND AUTOMATA THEORY IN A BETTER WAY KAVITA TEWANI Assistant Professor, Institute of Technology, Nirma University E-mail: [email protected] Abstract - As it is been observed that the things get much easier once we visualize it and hence this paper is just a step towards it. Usually many subjects in computer engineering curriculum like algorithms, data structures, and theory of computation are taught theoretically however it lacks the visualization that may help students to understand the concepts in a better way. The paper shows some of the practices on tool called JFLAP (Java Formal Languages and Automata Package) and the statistics on how it affected the students to learn the concepts easily. The diagrammatic representation is used to help the theory mentioned. Keywords - Automata, JFLAP, Grammar, Chomsky Heirarchy , Turing Machine, DFA, NFA I. INTRODUCTION visualization and interaction in the course is enhanced through the popular software tools[6,7]. The proper The theory of computation is a basic course in use of JFLAP and instructions are provided in the computer engineering discipline. It is the subject manual “JFLAP activities for Formal Languages and which is been taught theoretically and hands-on Automata” by Peter Linz and Susan Rodger. It problems are given to the students to enhance the includes the theoretical approach and their understanding but it lacks the programming implementation in JFLAP. [10] assignment. However the subject is the base for creation of compilers and therefore should be given III.
    [Show full text]
  • Using JFLAP to Interact with Theorems in Automata Theory
    Usi ng JFL AP to Interact wi th Theorems in Automata Theory Eric Gra mond and Susan H. Ro dger Duke Uni versity, Durham, NC ro dger@cs. duke. edu ract Abst son is that students do not receive immediate feedback when working problems using pencil and paper. Weaker students An automata theory course can be taught in an interactive, especially need to work additional problems to understand hands-on manner using a computer. At Duke we have been concepts, and need to know if their solutions are correct. using the software tool JFLAP to provide interaction and The notation in the automata theory course is needed to feedback in CPS 140, our automata theory course. JFLAP describe theoretical representations of languages (automata is a tool for designing and running nondeterministic ver- and grammars). Tools such as JFLAP provide students an sions of finite automata, pushdown automata, and Turing alternative visual representation and a chance to create and machines. Recently, we have enhanced JFLAP to allow one simulate these representations. As students interact and re- to study the proofs of several theorems that focus on conver- ceive feedback on concepts with the visual representations sions of languages, from one form to another, such as con- provided in JFLAP, they may become more comfortable with verting an NFA to a DFA and then to a minimum state DFA. the mathematical notation used in the formal representation. In addition, our enhancements combined with other tools al- Recently we have extended JFLAP to allow one to in- low one to interactively study LL and LR parsing methods.
    [Show full text]
  • Implementation of Unrestricted Grammar in to the Recursively Enumerable Language Using Turing Machine
    The International Journal Of Engineering And Science (IJES) ||Volume||2 ||Issue|| 3 ||Pages|| 56-59 ||2013|| ISSN: 2319 – 1813 ISBN: 2319 – 1805 Implementation of Unrestricted Grammar in To the Recursively Enumerable Language Using Turing Machine 1,Jainendra Singh, 2, Dr. S.K. Saxena 1,Department of Computer Science, Maharaja Surajmal Institute 2,Department of Computer Engineering, Delhi Technological University -------------------------------------------------------Abstract------------------------------------------------------- This paper presents the implementation of the unrestricted grammar in to recursively enumerable language for JFLAP platform. Automata play a major role in compiler design and parsing. The class of formal languages that work for the most complex problems belongs to the set of Recursively Enumerable Language (REL).RELs are accepted by the type of automata as Turing Machine. Turing Machines are the most powerful computational machines and are the theoretical basis for modern computers. Turing Machine works for all classes of languages including regular language, CFL as well as Recursive Enumerable Languages. Unrestricted grammar are much more powerful than restricted forms like the regular and context free grammars. In facts, unrestricted grammars corresponds to the largest family of languages so we can hope to recognize by mechanical means; that is unrestricted grammars generates exactly the family of recursively enumerable languages. Turing Machine is used to implementation of unrestricted grammar & RELs for JFLAP
    [Show full text]
  • Theory of Computation
    Theory of Computation Todd Gaugler December 14, 2011 2 Contents 1 Mathematical Background 5 1.1 Overview . .5 1.2 Number System . .5 1.3 Functions . .6 1.4 Relations . .6 1.5 Recursive Definitions . .8 1.6 Mathematical Induction . .9 2 Languages and Context-Free Grammars 11 2.1 Languages . 11 2.2 Counting the Rational Numbers . 13 2.3 Grammars . 14 2.4 Regular Grammar . 15 3 Normal Forms and Finite Automata 17 3.1 Review of Grammars . 17 3.2 Normal Forms . 18 3.3 Machines . 20 3.3.1 An NFA λ ..................................... 22 4 Regular Languages 23 4.1 Computation . 24 4.2 The Extended Transition Function . 24 4.3 Algorithms . 26 4.3.1 Removing Non-Determinism . 26 4.3.2 State Minimization . 26 4.3.3 Expression Graph . 26 4.4 The Relationship between a Regular Grammar and the Finite Automaton . 26 4.4.1 Building an NFA corresponding to a Regular Grammar . 27 4.4.2 Closure . 27 4.5 Review for the First Exam . 28 4.6 The Pumping Lemma . 28 5 Pushdown Automata and Context-Free Languages 31 5.1 Pushdown Automata . 31 5.2 Variations on the PDA Theme . 34 5.3 Acceptance of Context-Free Languages . 36 3 CONTENTS CONTENTS 5.4 The Pumping Lemma for Context-Free Languages . 36 5.5 Closure Properties of Context- Free Languages . 37 6 Turing Machines 39 6.1 The Standard Turing Machine . 39 6.2 Turing Machines as Language Acceptors . 40 6.3 Alternative Acceptance Criteria . 41 6.4 Multitrack Machines . 42 6.5 Two-Way Tape Machines .
    [Show full text]
  • Duke University Department of Computer Science
    Duke University Department of Computer Science Department of Computer Science Box 90129 Duke University Durham, NC 27708-0129 jfl[email protected] July 11, 2007 2007 Premier Award Greetings: Enclosed is a submission of JFLAP, a software tool for formal languages and automata theory in computer science, and a tutorial on JFLAP for consideration for the 2007 NEEDS Premier Award. Included are 15 copies of the submission packet. JFLAP was submitted to NEEDS last year. The newest version of JFLAP, Version 6.1, is available for downloading from www.jflap.org. The web tutorial on JFLAP is also available from this same page. I am the sole faculty member who has developed JFLAP and related tools over the past 17 years, supervising many students. I’m including several former and current Duke students I’ve contacted who worked on the current version of JFLAP and its tutorial: Thomas Fin- ley ([email protected]) (now at Cornell University), Stephen Reading ([email protected]), Bartlett Bressler ([email protected]), Ryan Cavalcante ([email protected]) (now at Microsoft), Jinghui Lim ([email protected]), Chris Morgan ([email protected]) and Kyung Min (Jason) Lee ([email protected]). I am authorized to submit the software for the Premier competition. My contact information is above. I hold the copyright on JFLAP. Susan Rodger authorizes NEEDS to become a non-exclusive distributor of the JFLAP software as submitted. JFLAP is software for experimenting with formal languages and automata theory and can be used with a course in Formal Languages, Discrete Mathematics, or Compilers. With JFLAP one can create and test automata, pushdown automata, multi-tape Turing machines, regular grammars, context-free grammars, unrestricted grammars and L-systems.
    [Show full text]
  • Implementation of Recursively Enumerable Languages in Universal Turing Machine
    International Journal of Computer Theory and Engineering, Vol.3, No.1, February, 2011 1793-8201 Implementation of Recursively Enumerable Languages in Universal Turing Machine Sumitha C.H, Member, ICMLC and Krupa Ophelia Geddam called a Universal Turing Machine (UTM, or simply a Abstract—This paper presents the design and working of a universal machine) [4]. Universal Turing Machine (UTM) for the JFLAP platform. A UTM is the abstract model for all computational models. Automata play a major role in compiler design and parsing. A UTM T is an automaton that, given as input the The class of formal languages that work for the most complex U description of any Turing Machine T and a string w, can problems belong to the set of Recursively Enumerable M Languages (REL). RELs are accepted by the type of automata simulate the computation of M on w [6]. JFLAP represents a known as Turing Machines. Turing Machines are the most Turing Machine as a directed graph. JFLAP is extremely powerful computational machines and are the theoretical basis useful in constructing UTMs as the Turing Machine for modern computers. Still it is a tedious task to create and transducers can run with multiple inputs. Complex Turing maintain Turing Machines for all the problems. To solve this machines can also be built by using other Turing Machines as Universal Turing Machine (UTM) is designed in this paper. The components or building blocks for the same [2]. UTM works for all classes of languages including regular languages, Context Free Languages as well as Recursively Enumerable Languages. A UTM simulates any other TM, thus providing a single model and solution for all the computational II.
    [Show full text]
  • Using Jflap in Academics to Understand Automata Theory in a Better Way
    USING JFLAP IN ACADEMICS TO UNDERSTAND AUTOMATA THEORY IN A BETTER WAY KAVITA TEWANI Assistant Professor, Institute of Technology, Nirma University E-mail: [email protected] Abstract - As it is been observed that the things get much easier once we visualize it and hence this paper is just a step towards it. Usually many subjects in computer engineering curriculum like algorithms, data structures, and theory of computation are taught theoretically however it lacks the visualization that may help students to understand the concepts in a better way. The paper shows some of the practices on tool called JFLAP (Java Formal Languages and Automata Package) and the statistics on how it affected the students to learn the concepts easily. The diagrammatic representation is used to help the theory mentioned. Keywords - Automata, JFLAP, Grammar, Chomsky Heirarchy , Turing Machine, DFA, NFA I. INTRODUCTION visualization and interaction in the course is enhanced through the popular software tools[6,7]. The proper The theory of computation is a basic course in use of JFLAP and instructions are provided in the computer engineering discipline. It is the subject manual “JFLAP activities for Formal Languages and which is been taught theoretically and hands-on Automata” by Peter Linz and Susan Rodger. It problems are given to the students to enhance the includes the theoretical approach and their understanding but it lacks the programming implementation in JFLAP. [10] assignment. However the subject is the base for creation of compilers and therefore should be given III. ABOUT JFLAP much more emphasis not just on paper problems but also in simulations.
    [Show full text]
  • Chapter 3 Context-Free Languages
    Chapter 3 Context-free Languages In the previous chapter, we discussed the class of regular languages and its corresponding fi- nite automata. We know that many languages are regular, but some are not. In this chapter, we study another important class of languages, the context-free languages, and the corresponding automata, the push- down automata. Context-free languages are very important to us, as almost (?) all the programming lan- guages that we have been using, including C, Java, Python, belong to this class. Question: Is a program P grammatically cor- rect in terms of L? / This is the very first step of what a compiler would do. We will see that this acceptance problem is decidable when L is context free. , 1 Still remember grammar? The following is an example of a (context-free) grammar, G1, A → 0A1 A → B B → ] Generally speaking, a grammar consists of a set of substitution rules, each of which com- prises a variable on the left and a string of variables and other symbols, called terminals, on the right. Variables are often represented by capital let- ters, while terminals represented by lowercase letters, numbers and other symbols. One of the variables is designated as the start symbol, where everything starts... 2 From a grammar... A grammar describes a language by generating each string of that language in the following way: 1. Write down the start variable. 2. Find a variable that is written down and a rule that starts with that variable. Replace the variable with the right-hand side of that rule. 3.
    [Show full text]