There Is One Great Truth on This Planet: Whoever You Are, Or

Total Page:16

File Type:pdf, Size:1020Kb

There Is One Great Truth on This Planet: Whoever You Are, Or To my dearest and beloved one, my daughter Sana ‘ There is one great truth on this planet: whoever you are, or whatever it is that you do, when you really want something, it's because that desire originated in the soul of the universe. The soul of the world is nourished by people's happiness. When you want something, all the universe conspires in helping you to achieve it, And no heart has ever suffered when it goes in search of its dream. ’ Paulo Coelho Promoters: Prof. dr. ir. Marie-Christine Van Labeke Department of Plant Production, Ghent University, Ghent, Belgium Dr. ir. Jan De Riek Institute for Agricultural and Fisheries Research, Unit Plant (ILVO), Melle, Belgium Members of the examination board: Prof. dr. ir. Stefaan De Smet (Chair) Ghent university, Ghent, Belgium Prof. dr. Kevin Folta University of Florida, Gainesville, USA Prof. dr. Els Van Damme Ghent Universty, Ghent, Belgium Prof. dr. ir. Kathy Steppe Ghent Universty, Ghent, Belgium Prof. dr. ir. Wannes Keulemans KULeuven, Leuven, Belgium Dean: Prof. dr. ir. Guido Van Huylenbroeck Rector: Prof. dr. Paul Van Cauwenberge Farzaneh RAZAVI Molecular & Physiological Responses to Drought Stress in Fragaria sp. Thesis submitted in fulfilment of the requirements for the degree of Doctor (PhD) in Applied Biological Sciences Nederlandse vertaling van de titel van dit proefschrift: Moleculaire en Fysiologische Reacties op Droogtestress bij Aardbei Razavi F. (2012). Molecular & Physiological Responses to Drought Stress in Fragaria sp. ISBN-number: 978-90-5989-570-6 The author and the PhD promoters give the authorisation to consult and to copy parts of this work for personal use only. Every other use is subject to the copyright laws. Permission to reproduce any material contained in this work should be obtained from the author ACKNOWLEDGEMENT ‘ The teacher gives not of his wisdom, but rather of his faith and lovingness’ ‘Khalil Gibran’ First of all, I am grateful to my promoter Prof. dr. ir. Marie Chrisitine Van Labeke and I would like to give my sincere thanks to her support and for her great enthusiasm, inspiration, and efforts to support my doctoral research. I acknowledge all that I have learnt from Prof. Van Labeke during my PhD and I deeply thank her for providing many opportunities for my research progress, with her great expertise I could realize the production of my thesis. I would also like to thank my co-promoter, dr. ir. Jan De Riek, who advised my research steps in the best way at ILVO (Plant Science Unit). He provided me with all the facilities that I needed in my molecular research and I am deeply thankful to Jan and his team in this institute for their great expertise and contribution to my research. I am pleased to thank everyone who supported me in ILVO, Dr. ir. Johan Van Huylenbroeck, Dr. ir. Kristiaan Van Laecke, Dr. ir. Ellen De Keyser, Dr. ir. Emmy Dhooghe and Prof. dr. ir. Erik Van Bockstaele. Also I will never forget the help I received from Mrs. Veerle Bouyssens and Mrs. Laurence Desmet for their all technical support in ILVO. I am grateful to all members of my examination committee for the time they spent for the evaluation of my thesis and for their thoughtful comments. I want to take all those who have contributed in any way in my thesis. Thank all my colleagues in the laboratory of In Vitro Biology and Horticulture in the Department of Plant Production in Ghent University. Machteld, Thea, Christophe, Mieke, Patricia, Ellen, ir. Linda Zamariola, ir. Annelies Christiaens, ir. Katrien De Dauw and ir. Lien De Hauwere, thanks to you all not only for your kind helps and support, but also for being so nice and friendly. I would like to express gratitude to Prof. Kevin Folta from The University of Florida for his support during my internship in his lab and thanks to his colleagues for providing a stimulating environment in which to learn. Prof. Folta, you taught me to be a positive and brave researcher. I would also like to show my appreciation to Prof. Wannes Keulemans from KULeuven for his kind support in helping me to fulfil all procedures for starting my education in Belgium, and also allowing access and use of their lab facilities in my pre-doctoral program. I should mention that this PhD could not be accomplished without the financial support of Iranian Ministry of Science and Ministry of Agriculture, BOF and FWO grants from Ghent University. Special thanks to the academic staff of Iranian Ministry of Agriculture, Seed and Plants Improvement Institute (SPII), who supported me, particularly thanks to my colleague Dr. Hamid Abdollahi for all his support and also to all my other colleagues in the research institute of Chahar-Mahal province. And I will never forget to thank my friends : Lina M.A., Maryam H.H., Nasrin G.H., and Sheida K.A., and all my other dear friends in Belgium. Thanks to them all. Above all I would like to highlight that I would not be here without the support of my beloved family. My parents and my sisters, Fereshteh, Samira and Mahsa, I cannot say how much I miss you and how much I wish you were here with me. Thanks to my husband Reza for his patience, support and for encouraging me during the hard moments. And finally I have the most special thanks to my dearest, my daughter Sana. My honey Sana, I am greatly indebted to you and I will do my best to be a great mother with more time for you from now on. Farzaneh RAZAVI Gent, December 2012 TABLE OF CONTENTS List of abbreviations & acronyms…………………………………………………………………..........i Thesis outline.………………………………………………………………………………………….vii CHAPTER 1: Water deficit stress and strawberry (Fragaria) response to drought ...................... 1 1.1 Introduction ................................................................................................................................... 3 1.2 The genus Fragaria ....................................................................................................................... 4 1.3 Economic importance and nutritional value of strawberries ......................................................... 4 1.4 Water deficit and plant responses to drought stress ...................................................................... 5 1.4.1 Introduction ............................................................................................................................ 5 1.4.2 Effect of water deficit on plant physiology, growth characteristics and cellular structure .... 7 1.4.3 Effect of water deficit on plant metabolites............................................................................ 8 1.4.4 Signalling during drought stress ........................................................................................... 17 1.5 Epigenetic control of plant response to drought stress; non-coding RNA (miRNA and siRNA) and plant drought tolerance ......................................................................................................... 33 1.6 Genotype variation in plant response to water deficit ................................................................. 34 1.7 Osmotic stress (dehydration and salt stress) in strawberry (Fragaria spp.): an overview .......... 34 1.8 Recommended genomics and genetics approaches for studying of drought tolerance in Fragaria ....................................................................................................................................... 36 1.8.1 Introduction .......................................................................................................................... 36 1.8.2 Structural and functional genomics ...................................................................................... 37 1.8.3 Functional molecular biology ............................................................................................... 37 1.8.4 Transgenic system and genetic engineering ......................................................................... 38 1.9 Conclusions ................................................................................................................................. 39 CHAPTER 2: Evaluation of chlorophyll fluorescence as a probe for drought stress in strawberry ............................................................................................................................................ 41 2.1 Introduction ................................................................................................................................. 43 2.2 Materials and Methods ................................................................................................................ 44 2.2.1 Plant material, water treatments and environmental conditions ........................................... 44 2.2.2 Leaf water potential .............................................................................................................. 45 2.2.3 Measurement of chlorophyll fluorescence ........................................................................... 45 2.2.4 Measurement of morphological traits ................................................................................... 45 2.2.5 Statistical analysis ................................................................................................................ 46 2.3 Results ......................................................................................................................................... 46 2.3.1 Climatic data......................................................................................................................... 46
Recommended publications
  • Host–Pathogen Interactions Between Xanthomonas Fragariae and Its Host Fragaria × Ananassa Investigated with a Dual RNA-Seq Analysis
    microorganisms Article Host–Pathogen Interactions between Xanthomonas fragariae and Its Host Fragaria × ananassa Investigated with a Dual RNA-Seq Analysis 1, 2 1 1, Michael Gétaz y, Joanna Puławska , Theo H.M. Smits and Joël F. Pothier * 1 Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), CH-8820 Wädenswil, Switzerland; [email protected] (M.G.); [email protected] (T.H.S.) 2 Department of Phytopathology, Research Institute of Horticulture, 96-100 Skierniewice, Poland; [email protected] * Correspondence: [email protected]; Tel.: +41-58-934-53-21 Present address: Illumina Switzerland GmbH, CH-8008 Zurich, Switzerland. y Received: 22 July 2020; Accepted: 14 August 2020; Published: 18 August 2020 Abstract: Strawberry is economically important and widely grown, but susceptible to a large variety of phytopathogenic organisms. Among them, Xanthomonas fragariae is a quarantine bacterial pathogen threatening strawberry productions by causing angular leaf spots. Using whole transcriptome sequencing, the gene expression of both plant and bacteria in planta was analyzed at two time points, 12 and 29 days post inoculation, in order to compare the pathogen and host response between the stages of early visible and of well-developed symptoms. Among 28,588 known genes in strawberry and 4046 known genes in X. fragariae expressed at both time points, a total of 361 plant and 144 bacterial genes were significantly differentially expressed, respectively. The identified higher expressed genes in the plants were pathogen-associated molecular pattern receptors and pathogenesis-related thaumatin encoding genes, whereas the more expressed early genes were related to chloroplast metabolism as well as photosynthesis related coding genes.
    [Show full text]
  • Download Download
    Acta Sci. Pol. Hortorum Cultus, 19(1) 2020, 21–39 https://czasopisma.up.lublin.pl/index.php/asphc ISSN 1644-0692 e-ISSN 2545-1405 DOI: 10.24326/asphc.2020.1.3 ORIGINAL PAPER Accepted: 16.04.2019 ASSESSMENT OF PHYSIOLOGICAL AND MORPHOLOGICAL TRAITS OF PLANTS OF THE GENUS Fragaria UNDER CONDITIONS of water deficit – a study review Marta Rokosa , Małgorzata Mikiciuk West Pomeranian University of Technology in Szczecin Department of Plant Physiology and Biochemistry, Juliusza Słowackiego 17, 70-953 Szczecin, Poland ABSTRACT The genus Fragaria belongs to the Rosaceae family. The most popular representatives of this species are the strawberry (Fragaria × ananassa Duch.) and wild strawberry (Fragaria vesca L.), whose taste and health benefits are appreciated by a huge number of consumers. The cultivation of Fragaria plants is widespread around the world, with particular emphasis on the temperate climate zone. Increasingly occurring weather anomalies, including drought phenomena, cause immense losses in crop cultivation. The Fragaria plant species are very sensitive to drought, due to the shallow root system, large leaf area and the high water content of the fruit. There have been many studies on the influence of water deficit on the morphological, biochemical and physiological features of strawberries and wild strawberries. There is a lack of research summarizing the current state of knowledge regarding of specific species response to water stress. The aim of this study was to combine and compare data from many research carried out and indicate the direction of future research aimed at improving the resistance of Fragaria plants species to stress related to drought.
    [Show full text]
  • Tesis Doctoral
    UNIVERSIDAD DE CÓRDOBA FACULTAD DE CIENCIAS DEPARTAMENTO DE BIOQUÍMICA Y BIOLOGÍA MOLECULAR TESIS DOCTORAL "FUNCTIONAL CHARACTERIZATION OF STRAWBERRY ( FRAGARIA x ANANASSA ) FRUIT- SPECIFIC AND RIPENING-RELATED GENES INVOLVED IN AROMA AND ANTHOCHYANINS BIOSYNTHESIS" Memoria de Tesis Doctoral presentada por Guadalupe Cumplido Laso, Licenciada en Biología, para optar al grado de Doctor por la Universidad de Córdoba con la mención de Doctorado Internacional . Córdoba, Diciembre de 2012 TITULO: FUNCTIONAL CHARACTERIZATION OF STRAWBERRY (FRAGARIA x ANANASSA) FRUIT-SPECIFIC AND RIPENING-RELATED GENES INVOLVED IN AROMA AND ANTHOCHYANINS BIOSYNTHESIS AUTOR: GUADALUPE CUMPLIDO LASO © Edita: Servicio de Publicaciones de la Universidad de Córdoba. Campus de Rabanales Ctra. Nacional IV, Km. 396 A 14071 Córdoba www.uco.es/publicaciones [email protected] TÍTULO DE LA TESIS: “ Functional characterization of strawberry ( Fragaria x ananassa ) fruit-specific and ripening-related genes involved in aroma and anthocyanins biosynthesis ” DOCTORANDO/A: Guadalupe Cumplido Laso INFORME RAZONADO DEL/DE LOS DIRECTOR/ES DE LA TESIS (se hará mención a la evolución y desarrollo de la tesis, así como a trabajos y publicaciones derivados de la misma). La Lda. Guadalupe Cumplido Laso ha desarrollado en el seno del grupo BIO-278 liderado por el Dr. Juan Muñoz Blanco el trabajo de investigación llamado “ Functional characterization of strawberry ( Fragaria x ananassa ) fruit-specific and ripening- related genes involved in aroma and anthocyanins biosynthesis ” que constituye el tema de su tesis doctoral. Este trabajo de investigación ha sido dirigido y supervisado por el Dr. Juan Muñoz Blanco y la Dra. Rosario Blanco Portales, ambos miembros del Departamento de Bioquímica y Biología Molecular de la Universidad de Córdoba.
    [Show full text]
  • Comparative Transcriptome Analysis Uncovers the Regulatory Functions Of
    Bai et al. Horticulture Research (2019) 6:42 Horticulture Research https://doi.org/10.1038/s41438-019-0128-4 www.nature.com/hortres ARTICLE Open Access Comparative transcriptome analysis uncovers the regulatory functions of long noncoding RNAs in fruit development and color changes of Fragaria pentaphylla Lijun Bai1,2, Qing Chen 1,LeiyuJiang1,YuanxiuLin1,YuntianYe1,PengLiu2, Xiaorong Wang1 and Haoru Tang1 Abstract To investigate the molecular mechanism underlying fruit development and color change, comparative transcriptome analysis was employed to generate transcriptome profiles of two typical wild varieties of Fragaria pentaphylla at three fruit developmental stages (green fruit stage, turning stage, and ripe fruit stage). We identified 25,699 long noncoding RNAs (lncRNAs) derived from 25,107 loci in the F. pentaphylla fruit transcriptome, which showed distinct stage- and genotype-specific expression patterns. Time course analysis detected a large number of differentially expressed protein-coding genes and lncRNAs associated with fruit development and ripening in both of the F. pentaphylla varieties. The target genes downregulated in the late stages were enriched in terms of photosynthesis and cell wall organization or biogenesis, suggesting that lncRNAs may act as negative regulators to suppress photosynthesis and cell wall organization or biogenesis during fruit development and ripening of F. pentaphylla. Pairwise comparisons of two varieties at three developmental stages identified 365 differentially expressed lncRNAs in total. Functional 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; annotation of target genes suggested that lncRNAs in F. pentaphylla may play roles in fruit color formation by regulating the expression of structural genes or regulatory factors. Construction of the regulatory network further revealed that the low expression of Fra a and CHS may be the main cause of colorless fruit in F.
    [Show full text]
  • Genotyping-By-Sequencing in an Orphan Plant Species Physocarpus Opulifolius Helps Identify the Evolutionary Origins of the Genus
    Buti et al. BMC Res Notes (2016) 9:268 DOI 10.1186/s13104-016-2069-4 BMC Research Notes SHORT REPORT Open Access Genotyping‑by‑sequencing in an orphan plant species Physocarpus opulifolius helps identify the evolutionary origins of the genus Prunus Matteo Buti1*, Daniel J. Sargent1,3, Khethani G. Mhelembe2, Pietro Delfino1, Kenneth R. Tobutt2 and Riccardo Velasco1 Abstract Background: The Rosaceae family encompasses numerous genera exhibiting morphological diversification in fruit types and plant habit as well as a wide variety of chromosome numbers. Comparative genomics between various Rosaceous genera has led to the hypothesis that the ancestral genome of the family contained nine chromosomes, however, the synteny studies performed in the Rosaceae to date encompass species with base chromosome num- bers x 7 (Fragaria), x 8 (Prunus), and x 17 (Malus), and no study has included species from one of the many Rosaceous= genera containing= a base chromosome= number of x 9. = Results: A genetic linkage map of the species Physocarpus opulifolius (x 9) was populated with sequence char- acterised SNP markers using genotyping by sequencing. This allowed for= the first time, the extent of the genome diversification of a Rosaceous genus with a base chromosome number of x 9 to be performed. Orthologous loci distributed throughout the nine chromosomes of Physocarpus and the eight= chromosomes of Prunus were identified which permitted a meaningful comparison of the genomes of these two genera to be made. Conclusions: The study revealed a high level of macro-synteny between the two genomes, and relatively few chro- mosomal rearrangements, as has been observed in studies of other Rosaceous genomes, lending further support for a relatively simple model of genomic evolution in Rosaceae.
    [Show full text]
  • The History of Genome Mapping in Fragaria Spp
    Journal of Horticultural Research 2014, vol. 22(2): 93-103 DOI: 10.2478/johr-2014-0026 _______________________________________________________________________________________________________ THE HISTORY OF GENOME MAPPING IN FRAGARIA SPP. Abdel-Rahman Moustafa Abdel-Wahab MOHAMED1, Tomasz JĘCZ2, Małgorzata KORBIN2* 1Department of Horticulture, Faculty of Agriculture, University of Minia, Egypt 2Department of Horticultural Plant Breeding, Laboratory of Unconventional Breeding Methods Research Institute of Horticulture, Skierniewice, Poland Received: November 25, 2014; Accepted: December 12, 2014 ABSTRACT This overview summarizes the research programs devoted to mapping the genomes within Fragaria genus. A few genetic linkage maps of diploid and octoploid Fragaria species as well as impressive physical map of F. vesca were developed in the last decade and resulted in the collection of data useful for further fundamental and applied studies. The information concerning the rules for proper preparation of mapping population, the choice of markers useful for generating linkage map, the saturation of existing maps with new markers linked to economically important traits, as well as problems faced during mapping process are presented in this paper. Key words: woodland strawberry, cultivated strawberry, linkage, physical map INTRODUCTION artificial chromosome (YAC) cloning vectors. In comparison to a genetic map, providing insights Genome maps, displaying the position of into the relative position of loci on chromosomes, genes along chromosomes within the genome of an the physical map is more “accurate” representation organism, are classified as genetic and physical maps of the genome (Brown 2002). (Brown 2002). In theory, both maps should provide Regardless of the strategy used, the essence of the same information concerning chromosomal as- all mapping approaches is to localise a collection of signment, and the order of loci.
    [Show full text]
  • The History of Genome Mapping in Fragaria Spp
    Journal of Horticultural Research 2014, vol. 22(2): 93-103 DOI: 10.2478/johr-2014-0026 _______________________________________________________________________________________________________ THE HISTORY OF GENOME MAPPING IN FRAGARIA SPP. Abdel-Rahman Moustafa Abdel-Wahab MOHAMED1, Tomasz JĘCZ2, Małgorzata KORBIN2* 1Department of Horticulture, Faculty of Agriculture, University of Minia, Egypt 2Department of Horticultural Plant Breeding, Laboratory of Unconventional Breeding Methods Research Institute of Horticulture, Skierniewice, Poland Received: November 25, 2014; Accepted: December 12, 2014 ABSTRACT This overview summarizes the research programs devoted to mapping the genomes within Fragaria genus. A few genetic linkage maps of diploid and octoploid Fragaria species as well as impressive physical map of F. vesca were developed in the last decade and resulted in the collection of data useful for further fundamental and applied studies. The information concerning the rules for proper preparation of mapping population, the choice of markers useful for generating linkage map, the saturation of existing maps with new markers linked to economically important traits, as well as problems faced during mapping process are presented in this paper. Key words: woodland strawberry, cultivated strawberry, linkage, physical map INTRODUCTION artificial chromosome (YAC) cloning vectors. In comparison to a genetic map, providing insights Genome maps, displaying the position of into the relative position of loci on chromosomes, genes along chromosomes within the genome of an the physical map is more “accurate” representation organism, are classified as genetic and physical maps of the genome (Brown 2002). (Brown 2002). In theory, both maps should provide Regardless of the strategy used, the essence of the same information concerning chromosomal as- all mapping approaches is to localise a collection of signment, and the order of loci.
    [Show full text]
  • Developmental Variation in Fruit Polyphenol Content and Related Gene Expression of a Red-Fruited Versus a White-Fruited Fragaria Vesca Genotype
    horticulturae Article Developmental Variation in Fruit Polyphenol Content and Related Gene Expression of a Red-Fruited versus a White-Fruited Fragaria vesca Genotype Sutapa Roy *, Sanjay Singh and Douglas D. Archbold Department of Horticulture, University of Kentucky, Lexington, KY 40546, USA; [email protected] (S.S.); [email protected] (D.D.A.) * Correspondence: [email protected]; Tel.: +1-859-257-3352 Received: 31 July 2018; Accepted: 25 September 2018; Published: 1 October 2018 Abstract: Two cultivars of F. vesca, red-fruited Baron Solemacher (BS) and white-fruited Pineapple Crush (PC), were studied to compare and contrast the quantitative accumulation of major polyphenols and related biosynthetic pathway gene expression patterns during fruit development and ripening. Developing PC fruit showed higher levels of hydroxycinnamic acids in green stages and a greater accumulation of ellagitannins in ripe fruit in comparison to BS. In addition to anthocyanin, red BS fruit had greater levels of flavan-3-ols when ripe than PC. Expression patterns of key structural genes and transcription factors of the phenylpropanoid/flavonoid biosynthetic pathway, an abscisic acid (ABA) biosynthetic gene, and a putative ABA receptor gene that may regulate the pathway, were also analyzed during fruit development and ripening to determine which genes exhibited differences in expression and when such differences were first evident. Expression of all pathway genes differed between the red BS and white PC at one or more times during development, most notably at ripening when phenylalanine ammonia lyase 1 (PAL1), chalcone synthase (CHS), flavanone-30-hydroxylase (F30H), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS), and UDP:flavonoid-O-glucosyltransferase 1 (UFGT1) were significantly upregulated in the red BS fruit.
    [Show full text]
  • Molecular Phylogenetics and Evolution 66 (2013) 17–29
    Molecular Phylogenetics and Evolution 66 (2013) 17–29 Contents lists available at SciVerse ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Insights into phylogeny, sex function and age of Fragaria based on whole chloroplast genome sequencing ⇑ Wambui Njuguna a, , Aaron Liston b, Richard Cronn c, Tia-Lynn Ashman d, Nahla Bassil e a Department of Horticulture, Oregon State University, ALS 4017, Corvallis, OR 97331, USA b Department of Botany and Plant Pathology, Oregon State University, Cordley Hall 2082, Corvallis, OR 97331, USA c Pacific Northwest Research Station, United States Forest Service, 3200 SW Jefferson Way, Corvallis, OR 97331, USA d Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA e United States Department of Agriculture, Agricultural Research Service, National Clonal Germplasm Repository, Corvallis, OR 97333, USA article info abstract Article history: The cultivated strawberry is one of the youngest domesticated plants, developed in France in the 1700s Received 13 February 2012 from chance hybridization between two western hemisphere octoploid species. However, little is known Revised 20 August 2012 about the evolution of the species that gave rise to this important fruit crop. Phylogenetic analysis of Accepted 30 August 2012 chloroplast genome sequences of 21 Fragaria species and subspecies resolves the western North Ameri- Available online 14 September 2012 can diploid F. vesca subsp. bracteata as sister to the clade of octoploid/decaploid species. No extant tetrap- loids or hexaploids are directly involved in the maternal ancestry of the octoploids. Keywords: There is strong geographic segregation of chloroplast haplotypes in subsp. bracteata, and the gynodioe- Plastome cious Pacific Coast populations are implicated as both the maternal lineage and the source of male-ste- Polyploidy Self-compatibility rility in the octoploid strawberries.
    [Show full text]
  • Population Genetic Analysis of a Global Collection of Fragaria Vesca Using Microsatellite Markers
    RESEARCH ARTICLE Population genetic analysis of a global collection of Fragaria vesca using microsatellite markers Hrannar SmaÂri Hilmarsson1, Timo HytoÈ nen2,3, Sachiko Isobe4, Magnus GoÈ ransson1,5, Tuomas Toivainen2, Jo n Hallsteinn Hallsson1* 1 Faculty of Agricultural and Environmental Sciences, Agricultural University of Iceland, Keldnaholt, Reykjavik, Iceland, 2 Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland, 3 Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland, 4 Kazusa DNA Research Institute (KDRI), Kisarazu, Chiba, Japan, 5 Department of Plant Sciences, a1111111111 Norwegian University of Life Sciences, Ås, Norway a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract The woodland strawberry, Fragaria vesca, holds great promise as a model organism. It not only represents the important Rosaceae family that includes economically important species OPEN ACCESS such as apples, pears, peaches and roses, but it also complements the well-known model Citation: Hilmarsson HS, HytoÈnen T, Isobe S, organism Arabidopsis thaliana in key areas such as perennial life cycle and the development GoÈransson M, Toivainen T, Hallsson JH (2017) of fleshy fruit. Analysis of wild populations of A. thaliana has shed light on several important Population genetic analysis of a global collection of developmental pathways controlling, for example, flowering time and plant growth, suggest- Fragaria vesca using microsatellite markers. PLoS ONE 12(8): e0183384. https://doi.org/10.1371/ ing that a similar approach using F. vesca might add to our understanding on the develop- journal.pone.0183384 ment of rosaceous species and perennials in general. As a first step, 298 F. vesca plants Editor: David D Fang, USDA-ARS Southern were analyzed using microsatellite markers with the primary aim of analyzing population Regional Research Center, UNITED STATES structure and distribution of genetic diversity.
    [Show full text]
  • The Genus Fragaria in Croatia
    Erwerbs-Obstbau DOI 10.1007/s10341-017-0318-x ORIGINAL ARTICLE The Genus Fragaria in Croatia Dubravka Dujmovic´ Purgar1 · Boris Duralija1 · Aleš Vokurka1 · Marija Todoric´1 · Vesna Židovec1 Received: 12 July 2016 / Accepted: 11 November 2016 © Springer-Verlag Berlin Heidelberg 2017 Abstract Only three native species of genus Fragaria Introduction (F. moschata, F. vesca and F. v irid is) are recorded in three regions of Croatia. These species as well as many of their Croatia is one of the richest European countries in terms of hybrids, are, or once were, cultivated for their edible fruits. biological diversity. Croatian flora, with 5593 species and The majority of cultivated strawberries in Europe belong to subspecies is characterized by a markedly high level of di- garden strawberries F. x ananassa (hybrids of F. chiloensis versity per unit of surface (Nikolic´ 2006). The forests and and F. virginiana). The most expanded wild strawberry their marginal areas are rich in numerous varieties of self- species in Croatia is a woodland strawberry (F. vesca) grown fruits, representing a valuable asset. Important com- whose berries are gathered seasonally as wild edible fruits. ponents of biodiversity are the wild edible fruit species, They often contain higher amount of nutrients and bioac- such as strawberries. Strawberry, genus Fragaria L., be- tive compounds in comparison to cultivated varieties. The longs to the family Rosaceae (Nikolic´ 2015), subfamily research on the genus Fragaria species distribution in Croa- Rosoideae (Mägdefrau and Ehrendorfer 1997). tia has not been carried out, and so is the case with many The genus Fragaria comprises a relatively small num- others wild growing fruit species in Croatia.
    [Show full text]
  • A STREAMLINED Synthetlc OCTOPLOID SYSTEM THAT
    A STREAMLINED SYNTHETlC OCTOPLOID SYSTEM THAT EMPHASIZES FRAGARIA VESCA AS A BRIDGE SPEClES A Thesis Presented to The Faculty of Graduate Studies of The University of Guelph by ROBERT HAROLD BORS In partial fuifilment of requirements for the degree of Doctor of Philosophy Robert Bors O June, 2000 National Library Bibliothèque nationale l*m of Canada du Canada Acquisitions and Acquisitions et Bibliographie Services services bibliographiques 395 Wellington Street 395, nie Wellington OttawaON KIAON4 Ottawa ON K1 A ON4 Canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or sel1 reproduire, prêter, distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/film, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. ABSTRACT A STREAMLINEO SYNTHETIC OCTOPLOID SYSTEM T HAT EMPHASIZES FRAGAR~AVESCA AS A BRIDGE SPECIES Robert Harold Bors Advisor: 3. A. Sullivan University of Guelph. 2000 The synthetic octoploid (SO) system is a method of combining diploid, tetraploid and hexaploid Fragaha species into hybrid octoploids for introgression into octoploid strawberry cultivars of F.x ananassa.
    [Show full text]