Stochastic Models, 23:593–625, 2007 Copyright © Taylor & Francis Group, LLC ISSN: 1532-6349 print/1532-4214 online DOI: 10.1080/15326340701645959 LARGE DEVIATIONS OF POISSON CLUSTER PROCESSES Charles Bordenave INRIA/ENS, Départment d’Informatique, Paris, France Giovanni Luca Torrisi Istituto per le Applicazioni del Calcolo “Mauro Picone” (IAC), Consiglio Nazionale delle Ricerche (CNR), Roma, Italia In this paper we prove scalar and sample path large deviation principles for a large class of Poisson cluster processes. As a consequence, we provide a large deviation principle for ergodic Hawkes point processes. Keywords Hawkes processes; Large deviations; Poisson cluster processes; Poisson processes. Mathematics Subject Classification 60F10; 60G55. 1. INTRODUCTION Poisson cluster processes are one of the most important classes of point process models (see Daley and Vere-Jones[7] and Møller; Waagepetersen[24]). They are natural models for the location of objects in the space, and are widely used in point process studies whether theoretical or applied. Very popular and versatile Poisson cluster processes are the so-called self-exciting or Hawkes processes (Hawkes[12,13]; Hawkes and Oakes[14]). From a theoretical point of view, Hawkes processes combine both a Poisson cluster process representation and a simple stochastic intensity representation. Poisson cluster processes found applications in cosmology, ecology and epidemiology; see, respectively, Neyman and Scott[25], Brix and Chadoeuf[5], and Møller[19,20]. Hawkes processes are particularly appealing for seismological applications. Indeed, they are widely used as statistical models for the standard activity of earthquake series; see the papers by Received October 2006; Accepted August 2007 Address correspondence to Charles Bordenave, INRIA/ENS, Départment d’Informatique, 45 rue d’Ulm, F-75230 Paris Cedex 05, France; E-mail:
[email protected] 594 Bordenave and Torrisi Ogata and Akaike[28], Vere-Jones and Ozaki[32], and Ogata[26,27].