Elements of Scheduling Collected and Edited by Jan Karel Lenstra and David B

Total Page:16

File Type:pdf, Size:1020Kb

Elements of Scheduling Collected and Edited by Jan Karel Lenstra and David B Elements of Scheduling collected and edited by Jan Karel Lenstra and David B. Shmoys This website presents the fragments of a book on machine scheduling. Work on the book started in 1977 but was never completed. The existing material is now made available for teaching purposes. PRELIMINARIES Chapter 1 Deterministic machine scheduling problems Chapter 2 Tools from algorithms and complexity theory THE SINGLE MACHINE Chapter 3 Minmax criteria Chapter 4 Weighted sum of completion times Chapter 5 Weighted number of late jobs PARALLEL MACHINES Chapter 8 Minsum criteria Chapter 9 Minmax criteria, no preemption Chapter 10 Minmax criteria with preemption MULTI-OPERATION MODELS Chapter 12 Open shops Chapter 13 Flow shops Chapter 14 Job shops MORE SCHEDULING Chapter 15 Stochastic scheduling models Chapter 16 Scheduling in practice BIBLIOGRAPHY Bibliography 1 elements_of_scheduling.pdf January 15, 2020 1 SURVEY PAPERS Graham, Lawler, Lenstra, and Rinnooy Kan [1979] Lawler, Lenstra, Rinnooy Kan, and Shmoys [1993] Lenstra [1998] © Centrum Wiskunde & Informatica — Jan Karel Lenstra Back to top 2 elements_of_scheduling.pdf January 15, 2020 2 About Elements of Scheduling collected and edited by Jan Karel Lenstra and David B. Shmoys This website presents the fragments of a book on machine scheduling. Work on the book started in 1977 but was never completed. The existing material is now made available for teaching purposes. In the winter of 1976, Alexander Rinnooy Kan and Jan Karel Lenstra defended their PhD theses at the University of Amsterdam. Gene Lawler was on their committees. It was a natural idea to turn the theses into a textbook on schedul- ing. They set out to compile a survey with Ron Graham (1979), but progress on the book was hampered by the many research opportunities offered by the field. After David Shmoys joined the team in the mid 1980’s, several chapters were drafted, and the survey was rewritten (1993). Gene passed away in 1994. Colleagues were asked to contribute chapters or to complete existing drafts. However, by the turn of the century the project was losing its momentum, and finite convergence to completion fell beyond our reach. Over the years, several chapters have been used in the classroom. We continue to receive requests from colleagues who look for a text on the elements of scheduling at an advanced undergraduate or early graduate level. What exists is now available on this website. We have made a marginal effort in patching it upat some places but essentially put it up as it was written long ago. We did make an attempt to include most of the citations in the bibliography. We owe many thanks and apologies to our colleagues who contributed chapters that waited years to be published. We hope that the material, in spite of all the gaps and omissions that the reader will encounter, will serve a useful purpose. The help of Michael Guravage (Centrum Wiskunde & Informatica) and Shijiin Rajakrishnan (Cornell University) in formatting the chapters and realizing the website is gratefully acknowledged. Below we review the status of each of the chapters and provide pointers to the pdf files. PRELIMINARIES 1. Deterministic machine scheduling problems Eugene L. Lawler, Jan Karel Lenstra, Alexander H.G. Rinnooy Kan, David B. Shmoys Chapter 1 defines the class of scheduling problems under consideration and introduces the three-field classification. Notes and references are up todate until about 1990. 1 about.pdf January 15, 2020 3 2. Tools from algorithms and complexity theory David P. Williamson Chapter 2 reviews the tools and concepts from combinatorial optimization that are useful in designing scheduling algorithms: linear programming, network flows, dynamic programming, polynomial-time solvability, NP-hardness, and techniques for coping with NP-hardness. Notes and references are up to date until about 1997. THE SINGLE MACHINE 3. Minmax criteria Eugene L. Lawler, Jan Karel Lenstra, David B. Shmoys Chapter 3 considers two optimality criteria in a number of settings. For mini- mizing maximum cost, the focus is on polynomial-time optimization. For min- imizing maximum lateness, the full spectrum of polynomial-time optimization, approximation and branch-and-bound is covered. Notes and references are up to date until 1992. 4. Weighted sum of completion times Eugene L. Lawler, Maurice Queyranne, Andreas S. Schulz, David B. Shmoys Chapter 4 centers around Smith’s ratio rule. It follows two threads of work: the extension of the rule to other objective functions and various kinds of precedence constraints, and the design of approximation algorithms for NP-hard variants with general precedence constraints or release dates. Notes and references cover work up to 2006. 5. Weighted number of late jobs Eugene L. Lawler Chapter 5 deals with various problems with the objective of minimizing the unweighted or weighted number of late jobs, with dynamic programming as a leitmotiv. Notes and references are up to date until about 1990. 6. Total tardiness and beyond A draft describing the branch-and-bound methods of the 1970’s was made ob- solete by later developments and never rewritten. 7. Nonmonotonic and multiple criteria This is another blank spot. PARALLEL MACHINES 8. Minsum criteria Eugene L. Lawler Chapter 8 is a fragmented text, focusing on polynomial-time and pseudopolynomial- time optimization and providing pointers to results on NP-hardness, approxi- mation and branch-and bound. Notes and references are up to date until about 1990. 2 about.pdf January 15, 2020 4 9. Minmax criteria, no preemption David B. Shmoys, Jan Karel Lenstra Chapter 9 is about the design and performance analysis of approximation algo- rithms, including impossibility results and a brief excursion into probabilistic analysis. Notes and references are up to date until 1992. 10. Minmax criteria with preemption Eugene L. Lawler, Charles U. Martel Chapter 10 again focuses on polynomial-time optimization, using techniques ranging from the wrap-around rule to linear programming. Notes and references are up to date until 1990. 11. Precedence constraints This is the most glaring omission. MULTI-OPERATION MODELS 12. Open shops Gerhard J. Woeginger Chapter 12 is based on a paper that was written for the 35th Symposium on Theoretical Aspects of Computer Science (2018). It deals with the minimization of makespan in nonpreemptive open shops. A pivotal role is played by a vector sum theorem of Steinitz (1913). Many open problems are listed. References are up to date until 2018. 13. Flow shops Jan Karel Lenstra, David B. Shmoys Chapter 13 discusses the design of approximation algorithms using Johnson’s 2-machine flow shop algorithm and the vector sum theorem, and briefly reviews the empirical performance of heuristics. The literature on branch-and-bound and on flow shops with no wait in process or limited buffers is not covered. Notes and references cover work up to 1990. 14. Job shops Johann L. Hurink, Jan Karel Lenstra, David B. Shmoys Chapter 14 consists of three sections, presenting the disjunctive graph model, heuristics based on schedule construction and local search, and an approxima- tion result based on the vector sum theorem. The many detailed complexity results for special cases and the advances in branch-and-bound are not covered. References are up to date until 2001. MORE SCHEDULING 15. Stochastic scheduling models Michael L. Pinedo Chapter 15 gives an overview of stochastic counterparts of the models considered in Chapters 3–14. Notes and references are missing. 3 about.pdf January 15, 2020 5 16. Scheduling in practice Michael L. Pinedo Chapter 16 describes a diversity of practical applications of machine schedul- ing and discusses various aspects of scheduling systems. Figures, notes and references are missing. BIBLIOGRAPHY The bibliography consists of the literature cited in the 1993 survey, supple- mented with the references in Chapters 1–5, 810, 1214. Citations are collected in bibliographic notes at the end of each chapter, with the exception of Chapters 12 and 14, where they occur in the main text. The reader can download the surveys by Graham, Lawler, Lenstra, and Rinnooy Kan [1979] and Lawler, Lenstra, Rinnooy Kan, and Shmoys[1993], and a paper in memory of Gene Lawler by Lenstra [1998]. © Centrum Wiskunde & Informatica — Jan Karel Lenstra Back to top 4 about.pdf January 15, 2020 6 Contents 1. Deterministic Machine Scheduling Problems 1 Eugene L. Lawler, Jan Karel Lenstra, Alexander H.G. Rinnooy Kan, David B. Shmoys 1.1. Machines, jobs, and schedules 2 1.2. Single machines and parallel machines 3 1.3. Release dates, deadlines, and precedence constraints 5 1.4. Preemption 9 1.5. Optimality criteria 10 1.6. Multi-operation models 13 1.7. Problem classification 14 i Ch01.pdf January 15, 2020 7 1 Deterministic Machine Scheduling Problems Eugene L. Lawler University of California, Berkeley Jan Karel Lenstra Centrum Wiskunde & Informatica Alexander H.G. Rinnooy Kan University of Amsterdam David B. Shmoys Cornell University Scheduling theory is something of a jungle, encompassing a bewildering variety of problem types. In this book we shall be concerned with only a limited variety of the animals in this jungle, namely those which are deterministic machine scheduling problems. With the right techniques, some of these animals are easily domesticated. But others are quite intractable and submit to the taming techniques of combinatorial optimization with great difficulty. Before learning how to train these animals, we must be able to identify them and describe them. That is the purpose of this chapter. 1 Ch01.pdf January 15, 2020 8 2 1. Deterministic Machine Scheduling Problems 1.1. Machines, jobs, and schedules The number of pans to be heated in the preparation of a gourmet dinner exceeds the number of burners available. More ships are in a harbor than there are quays for unloading them. Tasks assigned to a multiprogrammed computer system compete for processing on a timesharing basis.
Recommended publications
  • Modeling Ddos Attacks by Generalized Minimum Cut Problems
    Modeling DDoS Attacks by Generalized Minimum Cut Problems Qi Duan, Haadi Jafarian and Ehab Al-Shaer Jinhui Xu Department of Software and Information Systems Department of Computer Science and Engineering University of North Carolina at Charlotte State University of New York at Buffalo Charlotte, NC, USA Buffalo, NY, USA Abstract—Distributed Denial of Service (DDoS) attack is one applications in many different areas [24]–[26], [32]. In this of the most preeminent threats in Internet. Despite considerable paper, we investigate two important generalizations of the progress on this problem in recent years, a remaining challenge minimum cut problem and their applications in link/node cut is to determine its hardness by adopting proper mathematical models. In this paper, we propose to use generalized minimum based DDoS attacks. The first generalization is denoted as cut as basic tools to model various types of DDoS attacks. the Connectivity Preserving Minimum Cut (CPMC) problem, Particularly, we study two important extensions of the classical which is to find the minimum cut that separates a pair (or pairs) minimum cut problem, called Connectivity Preserving Minimum of source and destination nodes and meanwhile preserve the Cut (CPMC) and Threshold Minimum Cut (TMC), to model large- connectivity between the source and its partner node(s). The scale DDoS attacks. In the CPMC problem, a minimum cut is sought to separate a source node from a destination node second generalization is denoted as the Threshold Minimum and meanwhile preserve the connectivity between the source Cut (TMC) problem in which a minimum cut is sought to and its partner node(s).
    [Show full text]
  • Thesis and Analysis of Probabilistic Models
    Diagnosis, Synthesis and Analysis of Probabilistic Models Tingting Han Graduation committee: prof. dr. ir. L. van Wijngaarden University of Twente, The Netherlands (chairman) prof. dr. ir. J.-P. Katoen RWTH Aachen University / University of Twente, (promotor) Germany / The Netherlands prof. dr. P. R. D’Argenio Universidad Nacional de C´ordoba, Argentina prof. dr. ir. B. R. Haverkort University of Twente, The Netherlands prof. dr. S. Leue University of Konstanz, Germany prof. dr. J. C. van de Pol University of Twente, The Netherlands prof. dr. R. J. Wieringa University of Twente, The Netherlands prof. dr. F. W. Vaandrager Radboud University Nijmegen, The Netherlands IPA Dissertation Series 2009-21. CTIT Ph.D.-Thesis Series No. 09-149, ISSN 1381-3617. ISBN: 978-90-365-2858-0. The research reported in this dissertation has been carried out under the auspices of the Institute for Programming Research and Algorithmics (IPA) and within the context of the Center for Telematics and Information Technology (CTIT). The research funding was provided by the NWO Grant through the project: Verifying Quantitative Properties of Embedded Software (QUPES). Translation of the Dutch abstract: Viet Yen Nguyen. Translation of the German abstract: Martin R. Neuh¨außer. Typeset by LATEX. Cover design: Tingting Han. Picture from www.vladstudio.com. Publisher: W¨ohrmann Printing Service - www.wps.nl. Copyright c 2009 by Tingting Han, Aachen, Germany. DIAGNOSIS, SYNTHESIS AND ANALYSIS OF PROBABILISTIC MODELS PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit Twente, op gezag van de rector magnificus prof. dr. H. Brinksma, volgens besluit van het College voor Promoties, in het openbaar te verdedigen op vrijdag 25 september 2009 om 13:15 uur door Tingting Han geboren op 27 december 1980 te Hangzhou, Volksrepubliek China Dit proefschrift is goedgekeurd door de promotor, prof.
    [Show full text]
  • Scheduling on Uniform and Unrelated Machines with Bipartite Incompatibility Graphs Tytus Pikies ! Dept
    Scheduling on uniform and unrelated machines with bipartite incompatibility graphs Tytus Pikies ! Dept. of Algorithims and System Modelling, ETI Faculty, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland Hanna Furmańczyk ! Institute of Informatics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, 57 Wita Stwosza Street, 80-309 Gdańsk, Poland Abstract In this paper the problem of scheduling of jobs on parallel machines under incompatibility relation is considered. In this model a binary relation between jobs is given and no two jobs that are in the relation can be scheduled on the same machine. In particular, we consider job scheduling under incompatibility relation forming bipartite graphs, under makespan optimality criterion, on uniform and unrelated machines. We show that no algorithm can achieve a good approximation ratio for uniform machines, even for a case of unit time jobs, under P ≠ NP. We also provide an approximation algorithm that achieves the best possible approximation ratio, even for the case of jobs of arbitrary lengths pj , under the same assumption. Precisely, we present an O(n1/2−ϵ) inapproximability bound, for any pP ϵ > 0; and pj -approximation algorithm, respectively. To enrich the analysis, bipartite graphs generated randomly according to Gilbert’s model Gn,n,p(n) are considered. For a broad class of p(n) functions we show that there exists an algorithm producing a schedule with makespan almost surely at most twice the optimum. Due to our knowledge, this is the first study of randomly generated graphs in the context of scheduling in the considered model.
    [Show full text]
  • Approximation Algorithms for 2-Stage Stochastic Optimization Problems
    Algorithms Column: Approximation Algorithms for 2-Stage Stochastic Optimization Problems Chaitanya Swamy∗ David B. Shmoys† February 5, 2006 1 Column editor’s note This issue’s column is written by guest columnists, David Shmoys and Chaitanya Swamy. I am delighted that they agreed to write this timely column on the topic related to stochastic optimization that has received much attention recently. Their column introduces the reader to several recent results and provides references for further readings. Samir Khuller 2 Introduction Uncertainty is a facet of many decision environments and might arise for various reasons, such as unpredictable information revealed in the future, or inherent fluctuations caused by noise. Stochastic optimization provides a means to handle uncertainty by modeling it by a probability distribution over possible realizations of the actual data, called scenarios. The field of stochastic optimization, or stochastic programming, has its roots in the work of Dantzig [4] and Beale [1] in the 1950s, and has since increasingly found application in a wide variety of areas, including transportation models, logistics, financial instruments, and network design. An important and widely-used model in stochastic programming is the 2- stage recourse model: first, given only distributional information about (some of) the data, one commits on initial (first-stage) actions. Then, once the actual data is realized according to the distribution, further recourse actions can be taken (in the second stage) to augment the earlier solution and satisfy the revealed requirements. The aim is to choose the initial actions so as to minimize the expected total cost incurred. The recourse actions typically entail making decisions in rapid reaction to the observed scenario, and are therefore more costly than decisions made ahead of time.
    [Show full text]
  • Approximation Algorithms
    In Introduction to Optimization, Decision Support and Search Methodologies, Burke and Kendall (Eds.), Kluwer, 2005. (Invited Survey.) Chapter 18 APPROXIMATION ALGORITHMS Carla P. Gomes Department of Computer Science Cornell University Ithaca, NY, USA Ryan Williams Computer Science Department Carnegie Mellon University Pittsburgh, PA, USA 18.1 INTRODUCTION Most interesting real-world optimization problems are very challenging from a computational point of view. In fact, quite often, finding an optimal or even a near-optimal solution to a large-scale optimization problem may require com- putational resources far beyond what is practically available. There is a sub- stantial body of literature exploring the computational properties of optimiza- tion problems by considering how the computational demands of a solution method grow with the size of the problem instance to be solved (see e.g. Aho et al., 1979). A key distinction is made between problems that require compu- tational resources that grow polynomially with problem size versus those for which the required resources grow exponentially. The former category of prob- lems are called efficiently solvable, whereas problems in the latter category are deemed intractable because the exponential growth in required computational resources renders all but the smallest instances of such problems unsolvable. It has been determined that a large class of common optimization problems are classified as NP-hard. It is widely believed—though not yet proven (Clay Mathematics Institute, 2003)—that NP-hard problems are intractable, which means that there does not exist an efficient algorithm (i.e. one that scales poly- nomially) that is guaranteed to find an optimal solution for such problems.
    [Show full text]
  • David B. Shmoys
    CURRICULUM VITAE David B. Shmoys 231 Rhodes Hall 312 Comstock Road Cornell University Ithaca, NY 14850 Ithaca, NY 14853 (607)-257-7404 (607)-255-9146 [email protected] Education Ph.D., Computer Science, University of California, Berkeley, June 1984. Thesis: Approximation Algorithms for Problems in Scheduling, Sequencing & Network Design Thesis Committee: Eugene L. Lawler (chair), Dorit S. Hochbaum, Richard M. Karp. B.S.E., Electrical Engineering and Computer Science, Princeton University, June 1981. Graduation with Highest Honors, Phi Beta Kappa, Tau Beta Pi. Thesis: Perfect Graphs & the Strong Perfect Graph Conjecture Research Advisors: H. W. Kuhn, K. Steiglitz and D. B. West Professional Employment Laibe/Acheson Professor of Business Management & Leadership Studies, Cornell, 2013–present. Tang Visiting Professor, Department of Ind. Eng. & Operations Research, Columbia, Spring 2019. Visiting Scientist, Simons Institute for the Theory of Computing, University of California, Berkeley, Spring 2018. Director, School of Operations Research & Information Engineering, Cornell University, 2013–2017. Professor of Operations Research & Information Engineering and of Computer Science, Cornell, 2007–present. Visiting Professor, Sloan School of Management, MIT, 2010–2011, Summer 2015. Visiting Research Scientist, New England Research & Development Center, Microsoft, 2010–2011. Professor of Operations Research & Industrial Engineering and of Computer Science, Cornell University, 1997–2006. Visiting Research Scientist, Computer Science Division, EECS, University of California, Berkeley, 1999–2000. Associate Professor of Operations Research & Industrial Engineering and of Computer Science, Cor- nell University, 1996–1997. Associate Professor of Operations Research & Industrial Engineering, Cornell University, 1992–1996. 1 Visiting Research Scientist, Department of Computer Science, Eotv¨ os¨ University, Fall 1993. Visiting Research Scientist, Department of Computer Science, Princeton University, Spring 1993.
    [Show full text]
  • Curriculum Vitae
    Curriculum Vitae Tandy Warnow Grainger Distinguished Chair in Engineering 1 Contact Information Department of Computer Science The University of Illinois at Urbana-Champaign Email: [email protected] Homepage: http://tandy.cs.illinois.edu 2 Research Interests Phylogenetic tree inference in biology and historical linguistics, multiple sequence alignment, metage- nomic analysis, big data, statistical inference, probabilistic analysis of algorithms, machine learning, combinatorial and graph-theoretic algorithms, and experimental performance studies of algorithms. 3 Professional Appointments • Co-chief scientist, C3.ai Digital Transformation Institute, 2020-present • Grainger Distinguished Chair in Engineering, 2020-present • Associate Head for Computer Science, 2019-present • Special advisor to the Head of the Department of Computer Science, 2016-present • Associate Head for the Department of Computer Science, 2017-2018. • Founder Professor of Computer Science, the University of Illinois at Urbana-Champaign, 2014- 2019 • Member, Carl R. Woese Institute for Genomic Biology. Affiliate of the National Center for Supercomputing Applications (NCSA), Coordinated Sciences Laboratory, and the Unit for Criticism and Interpretive Theory. Affiliate faculty member in the Departments of Mathe- matics, Electrical and Computer Engineering, Bioengineering, Statistics, Entomology, Plant Biology, and Evolution, Ecology, and Behavior, 2014-present. • National Science Foundation, Program Director for Big Data, July 2012-July 2013. • Member, Big Data Senior Steering Group of NITRD (The Networking and Information Tech- nology Research and Development Program), subcomittee of the National Technology Council (coordinating federal agencies), 2012-2013 • Departmental Scholar, Institute for Pure and Applied Mathematics, UCLA, Fall 2011 • Visiting Researcher, University of Maryland, Spring and Summer 2011. 1 • Visiting Researcher, Smithsonian Institute, Spring and Summer 2011. • Professeur Invit´e,Ecole Polytechnique F´ed´erale de Lausanne (EPFL), Summer 2010.
    [Show full text]
  • K-Medians, Facility Location, and the Chernoff-Wald Bound
    86 K-Medians, Facility Location, and the Chernoff-Wald Bound Neal E. Young* Abstract minimizez d + k We study the general (non-metric) facility-location and weighted k-medians problems, as well as the fractional cost(x) < k facility-location and k-medians problems. We describe a dist(x) S d natural randomized rounding scheme and use it to derive approximation algorithms for all of these problems. subject to ~-~/x(f,c) = 1 (Vc) For facility location and weighted k-medians, the re- =(f,c) < x(f) (vf, c) spective algorithms are polynomial-time [HAk + d]- and [(1 + e)d; In(n + n/e)k]-approximation algorithms. These x(f,c) >_ 0 (vf, c) performance guarantees improve on the best previous per- x(f) E {0,1} (vf) formance guarantees, due respectively to Hochbaum (1982) and Lin and Vitter (1992). For fractional k-medians, the al- gorithm is a new, Lagrangian-relaxation, [(1 + e)d, (1 + e)k]- Figure 1: The facility-location IP. Above d, k, x(f) and approximation algorithm. It runs in O(kln(n/e)/e 2) linear- x(f, c) are variables, dist(x), the assignment cost of x, time iterations. is ~-~Ic x(f, c)disz(f, c), and cost(x), the facility cost of For fractional facilities-location (a generalization of frac- tional weighted set cover), the algorithm is a Lagrangian- relaxation, ~(1 + e)k]-approximation algorithm. It runs in O(nln(n)/e ~) linear-time iterations and is essentially the The weighted k-medians problem is the same same as an unpublished Lagrangian-relaxation algorithm as the facility location problem except for the following: due to Garg (1998).
    [Show full text]
  • Exact and Approximate Algorithms for Some Combinatorial Problems
    EXACT AND APPROXIMATE ALGORITHMS FOR SOME COMBINATORIAL PROBLEMS A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Soroush Hosseini Alamdari May 2018 c 2018 Soroush Hosseini Alamdari ALL RIGHTS RESERVED EXACT AND APPROXIMATE ALGORITHMS FOR SOME COMBINATORIAL PROBLEMS Soroush Hosseini Alamdari, Ph.D. Cornell University 2018 Three combinatorial problems are studied and efficient algorithms are pre- sented for each of them. The first problem is concerned with lot-sizing, the second one arises in exam-scheduling, and the third lies on the intersection of the k-median and k-center clustering problems. BIOGRAPHICAL SKETCH Soroush Hosseini Alamdari was born in Malayer, a town in Hamedan province of Iran right on the outskirts of Zagros mountains. After receiving a gold medal in the Iranian National Olympiad in Informatics he went to Sharif University of Technology in Tehran to study Computer Engineering. After completing his BSc he went to the University of Waterloo and received his MMath in computer science. Then after a short period of working in industry, he came back to com- plete his PhD in computer science here at the Cornell University. iii ACKNOWLEDGEMENTS First and foremost I would like to thank my Adviser Prof. David Shmoys who accepted me as a student, taught me so many fascinating things, and supported me in whatever endeavor I took on. Without his care and attention this docu- ment would simply not be possible. I would also like to thank all my friends, colleagues and co-authors.
    [Show full text]
  • Approximation Algorithms for NP-Hard Optimization Problems
    Approximation algorithms for NP-hard optimization problems Philip N. Klein Neal E. Young Department of Computer Science Department of Computer Science Brown University Dartmouth College Chapter 34, Algorithms and Theory of Computation Handbook c 2010 Chapman & Hall/CRC 1 Introduction In this chapter, we discuss approximation algorithms for optimization problems. An optimization problem consists in finding the best (cheapest, heaviest, etc.) element in a large set P, called the feasible region and usually specified implicitly, where the quality of elements of the set are evaluated using a func- tion f(x), the objective function, usually something fairly simple. The element that minimizes (or maximizes) this function is said to be an optimal solution of the objective function at this element is the optimal value. optimal value = minff(x) j x 2 Pg (1) A example of an optimization problem familiar to computer scientists is that of finding a minimum-cost spanning tree of a graph with edge costs. For this problem, the feasible region P, the set over which we optimize, consists of spanning trees; recall that a spanning tree is a set of edges that connect all the vertices but forms no cycles. The value f(T ) of the objective function applied to a spanning tree T is the sum of the costs of the edges in the spanning tree. The minimum-cost spanning tree problem is familiar to computer scientists because there are several good algorithms for solving it | procedures that, for a given graph, quickly determine the minimum-cost spanning tree. No matter what graph is provided as input, the time required for each of these algorithms is guaranteed to be no more than a slowly growing function of the number of vertices n and edges m (e.g.
    [Show full text]
  • A Gentle Introduction to Matroid Algorithmics
    A Gentle Introduction to Matroid Algorithmics Matthias F. Stallmann April 14, 2016 1 Matroid axioms The term matroid was first used in 1935 by Hassler Whitney [34]. Most of the material in this overview comes from the textbooks of Lawler [25] and Welsh [33]. A matroid is defined by a set of axioms with respect to a ground set S. There are several ways to do this. Among these are: Independent sets. Let I be a collection of subsets defined by • (I1) ; 2 I • (I2) if X 2 I and Y ⊆ X then Y 2 I • (I3) if X; Y 2 I with jXj = jY j + 1 then there exists x 2 X n Y such that Y [ x 2 I A classic example is a graphic matroid. Here S is the set of edges of a graph and X 2 I if X is a forest. (I1) and (I2) are clearly satisfied. (I3) is a simplified version of the key ingredient in the correctness proofs of most minimum spanning tree algorithms. If a set of edges X forms a forest then jV (X)j − jXj = jc(X)j, where V (x) is the set of endpoints of X and c(X) is the set of components induced by X. If jXj = jY j + 1, then jc(X)j = jc(Y )j − 1, meaning X must have at least one edge x that connects two of the components induced by Y . So Y [ x is also a forest. Another classic algorithmic example is the following uniprocessor scheduling problem, let's call it the scheduling matroid.
    [Show full text]
  • Lecture Notes: “Graph Theory 2”
    Lecture notes: \Graph Theory 2" November 28, 2018 Anders Nedergaard Jensen Preface In this course we study algorithms, polytopes and matroids related to graphs. These notes are almost complete, but some of the examples from the lectures have not been typed up, and some background information, such as proper definitions are sometimes lacking. For proper definitions we refer to: Bondy and Murty: "Graph Theory". Besides these minor problems, the notes represent the content of the class very well. 1 Contents 1 Matchings 6 1.1 Matchings . .6 1.2 When is a matching maximum? . .7 1.2.1 Coverings . .8 1.2.2 Hall's Theorem . 10 1.3 Augmenting path search . 11 1.4 Matchings in general graphs . 16 1.4.1 Certificates . 16 1.4.2 Edmonds' Blossom Algorithm . 18 1.5 Maximum weight matching in bipartite graphs . 23 1.6 Distances in graphs (parts of this section are skipped) . 26 1.6.1 Warshall's Algorithm . 28 1.6.2 Bellman-Ford-Moore . 30 1.6.3 Floyd's Algorithm . 33 1.7 Maximal weight matching in general graphs . 34 1.7.1 The Chinese postman problem . 35 1.7.2 Edmonds' perfect matching polytope theorem . 36 1.7.3 A separation oracle . 40 1.7.4 Some ideas from the ellipsoid method . 43 2 Matroids 44 2.1 Planar graphs . 44 2.2 Duality of plane graphs . 46 2.3 Deletion and contraction in dual graphs . 47 2.4 Matroids . 48 2.4.1 Independent sets . 48 2.4.2 The cycle matroid of a graph .
    [Show full text]