Published Version
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Supplemental Information
Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig. -
Tursiops Truncatus): ESTABLISHMENT of NOVEL MOLECULAR TOOLS to STUDY MARINE MAMMALS in CHANGING ENVIRONMENTS
ALMA MATER STUDIORUM UNIVERSITÀ DEGLI STUDI DI BOLOGNA Facoltà di Scienze Matematiche Fisiche e Naturali Scuola di Dottorato in Scienze Biologiche, Biomediche e Biotecnologiche Dottorato di Ricerca in Biologia e Fisiologia Cellulare Ciclo XXII SSD: BIO/11 FUNCTIONAL GENOMICS AND CELL BIOLOGY OF THE DOLPHIN (Tursiops truncatus): ESTABLISHMENT OF NOVEL MOLECULAR TOOLS TO STUDY MARINE MAMMALS IN CHANGING ENVIRONMENTS Presentata da: Dott.ssa ANNALAURA MANCIA Coordinatore Dottorato: Relatore: Prof.ssa Michela Rugolo Prof.ssa Marialuisa Melli - Esame finale 2010 - ALMA MATER STUDIORUM UNIVERSITÀ DEGLI STUDI DI BOLOGNA Faculty of Science Physiology and Cellular Biology XXII PhD Program SSD: BIO/11 FUNCTIONAL GENOMICS AND CELL BIOLOGY OF THE DOLPHIN (Tursiops truncatus): ESTABLISHMENT OF NOVEL MOLECULAR TOOLS TO STUDY MARINE MAMMALS IN CHANGING ENVIRONMENTS PhD Student: Dr ANNALAURA MANCIA Program Coordinator: Supervisor: Michela Rugolo, PhD Marialuisa Melli, PhD - Final PhD exam 2010 - To my sister, Roberta, once again “Dolphins are ‘non-human persons’ who qualify for moral standing as individuals” Thomas White “Research is what I'm doing when I don't know what I'm doing” Wernher Von Braun ABSTRACT The dolphin (Tursiops truncatus) is a mammal that is adapted to life in a totally aquatic environment. Despite the popularity and even iconic status of the dolphin, our knowledge of its physiology, its unique adaptations and the effects on it of environmental stressors are limited. One approach to improve this limited understanding is the implementation of established cellular and molecular methods to provide sensitive and insightful information for dolphin biology. We initiated our studies with the analysis of wild dolphin peripheral blood leukocytes, which have the potential to be informative of the animal’s global immune status. -
Literature Mining Sustains and Enhances Knowledge Discovery from Omic Studies
LITERATURE MINING SUSTAINS AND ENHANCES KNOWLEDGE DISCOVERY FROM OMIC STUDIES by Rick Matthew Jordan B.S. Biology, University of Pittsburgh, 1996 M.S. Molecular Biology/Biotechnology, East Carolina University, 2001 M.S. Biomedical Informatics, University of Pittsburgh, 2005 Submitted to the Graduate Faculty of School of Medicine in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2016 UNIVERSITY OF PITTSBURGH SCHOOL OF MEDICINE This dissertation was presented by Rick Matthew Jordan It was defended on December 2, 2015 and approved by Shyam Visweswaran, M.D., Ph.D., Associate Professor Rebecca Jacobson, M.D., M.S., Professor Songjian Lu, Ph.D., Assistant Professor Dissertation Advisor: Vanathi Gopalakrishnan, Ph.D., Associate Professor ii Copyright © by Rick Matthew Jordan 2016 iii LITERATURE MINING SUSTAINS AND ENHANCES KNOWLEDGE DISCOVERY FROM OMIC STUDIES Rick Matthew Jordan, M.S. University of Pittsburgh, 2016 Genomic, proteomic and other experimentally generated data from studies of biological systems aiming to discover disease biomarkers are currently analyzed without sufficient supporting evidence from the literature due to complexities associated with automated processing. Extracting prior knowledge about markers associated with biological sample types and disease states from the literature is tedious, and little research has been performed to understand how to use this knowledge to inform the generation of classification models from ‘omic’ data. Using pathway analysis methods to better understand the underlying biology of complex diseases such as breast and lung cancers is state-of-the-art. However, the problem of how to combine literature- mining evidence with pathway analysis evidence is an open problem in biomedical informatics research. -
High-Throughput Characterization of Blood Serum Proteomics of IBD Patients with Respect to Aging and Genetic Factors
RESEARCH ARTICLE High-Throughput Characterization of Blood Serum Proteomics of IBD Patients with Respect to Aging and Genetic Factors Antonio F. Di Narzo1,2, Shannon E. Telesco3, Carrie Brodmerkel3, Carmen Argmann1,2, Lauren A. Peters2,4, Katherine Li3, Brian Kidd1,2, Joel Dudley1,2, Judy Cho1,2, Eric E. Schadt1,2, Andrew Kasarskis1,2, Radu Dobrin3*, Ke Hao1,2* 1 Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America, 2 Icahn Institute of Genomics and Multiscale Biology, Icahn School of a1111111111 Medicine at Mount Sinai, New York, New York, United States of America, 3 Janssen R&D, LLC, Spring a1111111111 House, Pennsylvania, United States of America, 4 Graduate School of Biomedical Sciences, Icahn School of a1111111111 Medicine at Mount Sinai, New York, New York, United States of America a1111111111 a1111111111 * [email protected] (RD); [email protected] (KH) Abstract OPEN ACCESS To date, no large scale, systematic description of the blood serum proteome has been per- Citation: Di Narzo AF, Telesco SE, Brodmerkel C, formed in inflammatory bowel disease (IBD) patients. By using microarray technology, a Argmann C, Peters LA, Li K, et al. (2017) High- more complete description of the blood proteome of IBD patients is feasible. It may help to Throughput Characterization of Blood Serum achieve a better understanding of the disease. We analyzed blood serum profiles of 1128 Proteomics of IBD Patients with Respect to Aging and Genetic Factors. PLoS Genet 13(1): e1006565. proteins in IBD patients of European descent (84 Crohn's Disease (CD) subjects and 88 doi:10.1371/journal.pgen.1006565 Ulcerative Colitis (UC) subjects) as well as 15 healthy control subjects, and linked protein Editor: Gregory S. -
A Dissertation Entitled the Androgen Receptor
A Dissertation entitled The Androgen Receptor as a Transcriptional Co-activator: Implications in the Growth and Progression of Prostate Cancer By Mesfin Gonit Submitted to the Graduate Faculty as partial fulfillment of the requirements for the PhD Degree in Biomedical science Dr. Manohar Ratnam, Committee Chair Dr. Lirim Shemshedini, Committee Member Dr. Robert Trumbly, Committee Member Dr. Edwin Sanchez, Committee Member Dr. Beata Lecka -Czernik, Committee Member Dr. Patricia R. Komuniecki, Dean College of Graduate Studies The University of Toledo August 2011 Copyright 2011, Mesfin Gonit This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of The Androgen Receptor as a Transcriptional Co-activator: Implications in the Growth and Progression of Prostate Cancer By Mesfin Gonit As partial fulfillment of the requirements for the PhD Degree in Biomedical science The University of Toledo August 2011 Prostate cancer depends on the androgen receptor (AR) for growth and survival even in the absence of androgen. In the classical models of gene activation by AR, ligand activated AR signals through binding to the androgen response elements (AREs) in the target gene promoter/enhancer. In the present study the role of AREs in the androgen- independent transcriptional signaling was investigated using LP50 cells, derived from parental LNCaP cells through extended passage in vitro. LP50 cells reflected the signature gene overexpression profile of advanced clinical prostate tumors. The growth of LP50 cells was profoundly dependent on nuclear localized AR but was independent of androgen. Nevertheless, in these cells AR was unable to bind to AREs in the absence of androgen. -
Research Article Clinic-Genomic Association Mining for Colorectal Cancer Using Publicly Available Datasets
Hindawi Publishing Corporation BioMed Research International Volume 2014, Article ID 170289, 10 pages http://dx.doi.org/10.1155/2014/170289 Research Article Clinic-Genomic Association Mining for Colorectal Cancer Using Publicly Available Datasets Fang Liu,1 Yaning Feng,1 Zhenye Li,2 Chao Pan,1 Yuncong Su,1 Rui Yang,1 Liying Song,1 Huilong Duan,1 and Ning Deng1 1 Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China 2 General Hospital of Ningxia Medical University, Yinchuan 750004, China Correspondence should be addressed to Ning Deng; [email protected] Received 30 March 2014; Accepted 12 May 2014; Published 2 June 2014 Academic Editor: Degui Zhi Copyright © 2014 Fang Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In recent years, a growing number of researchers began to focus on how to establish associations between clinical and genomic data. However, up to now, there is lack of research mining clinic-genomic associations by comprehensively analysing available gene expression data for a single disease. Colorectal cancer is one of the malignant tumours. A number of genetic syndromes have been proven to be associated with colorectal cancer. This paper presents our research on mining clinic-genomic associations for colorectal cancer under biomedical big data environment. The proposed method is engineered with multiple technologies, including extracting clinical concepts using the unified medical language system (UMLS), extracting genes through the literature mining, and mining clinic-genomic associations through statistical analysis. -
Hippo and Sonic Hedgehog Signalling Pathway Modulation of Human Urothelial Tissue Homeostasis
Hippo and Sonic Hedgehog signalling pathway modulation of human urothelial tissue homeostasis Thomas Crighton PhD University of York Department of Biology November 2020 Abstract The urinary tract is lined by a barrier-forming, mitotically-quiescent urothelium, which retains the ability to regenerate following injury. Regulation of tissue homeostasis by Hippo and Sonic Hedgehog signalling has previously been implicated in various mammalian epithelia, but limited evidence exists as to their role in adult human urothelial physiology. Focussing on the Hippo pathway, the aims of this thesis were to characterise expression of said pathways in urothelium, determine what role the pathways have in regulating urothelial phenotype, and investigate whether the pathways are implicated in muscle-invasive bladder cancer (MIBC). These aims were assessed using a cell culture paradigm of Normal Human Urothelial (NHU) cells that can be manipulated in vitro to represent different differentiated phenotypes, alongside MIBC cell lines and The Cancer Genome Atlas resource. Transcriptomic analysis of NHU cells identified a significant induction of VGLL1, a poorly understood regulator of Hippo signalling, in differentiated cells. Activation of upstream transcription factors PPARγ and GATA3 and/or blockade of active EGFR/RAS/RAF/MEK/ERK signalling were identified as mechanisms which induce VGLL1 expression in NHU cells. Ectopic overexpression of VGLL1 in undifferentiated NHU cells and MIBC cell line T24 resulted in significantly reduced proliferation. Conversely, knockdown of VGLL1 in differentiated NHU cells significantly reduced barrier tightness in an unwounded state, while inhibiting regeneration and increasing cell cycle activation in scratch-wounded cultures. A signalling pathway previously observed to be inhibited by VGLL1 function, YAP/TAZ, was unaffected by VGLL1 manipulation. -
Integrating Data Mining, Network Pharmacology, and Molecular
Integrating Data Mining, Network Pharmacology, and Molecular Docking Verication to Investigate the Molecular Mechanism of Traditional Chinese Medicine Prescriptions for Treating Male Infertility Xue Bai Beijing University of Chinese Medicine Yibo Tang Beijing University of Chinese Medicine Qiang Li Beijing University of Chinese Medicine Guimin Liu Beijing University of Chinese Medicine Dan Liu Beijing University of Chinese Medicine Xiaolei Fan Beijing University of Chinese Medicine Zhejun Liu Beijing University of Chinese Medicine Shujun Yu Beijing University of Chinese Medicine Tian Tang Beijing University of Chinese Medicine Shuyan Wang Beijing University of Chinese Medicine Lingru Li Beijing University of Chinese Medicine Kailin Zhou Beijing University of Chinese Medicine Yanfei Zheng Beijing University of Chinese Medicine Zhenquan Liu ( [email protected] ) Research Page 1/42 Keywords: Traditional Chinese medicine, male infertility, data mining, network pharmacology, molecular docking Posted Date: March 4th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-264555/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 2/42 Abstract Background: Male infertility (MI) affects almost 5% adult men worldwide, and 75% of these cases are unexplained idiopathic. There are limitations in the current treatment due to the unclear mechanism of MI, which highlight the urgent need for a more effective strategy or drug. Traditional Chinese Medicine (TCM) prescriptions have been used to treat MI for thousands of years, but their molecular mechanism is not well dened. Methods: Aiming at revealing the molecular mechanism of TCM prescriptions on MI, a comprehensive strategy integrating data mining, network pharmacology, and molecular docking verication was performed. -
Molecular Processes During Fat Cell Development Revealed by Gene
Open Access Research2005HackletVolume al. 6, Issue 13, Article R108 Molecular processes during fat cell development revealed by gene comment expression profiling and functional annotation Hubert Hackl¤*, Thomas Rainer Burkard¤*†, Alexander Sturn*, Renee Rubio‡, Alexander Schleiffer†, Sun Tian†, John Quackenbush‡, Frank Eisenhaber† and Zlatko Trajanoski* * Addresses: Institute for Genomics and Bioinformatics and Christian Doppler Laboratory for Genomics and Bioinformatics, Graz University of reviews Technology, Petersgasse 14, 8010 Graz, Austria. †Research Institute of Molecular Pathology, Dr Bohr-Gasse 7, 1030 Vienna, Austria. ‡Dana- Farber Cancer Institute, Department of Biostatistics and Computational Biology, 44 Binney Street, Boston, MA 02115. ¤ These authors contributed equally to this work. Correspondence: Zlatko Trajanoski. E-mail: [email protected] Published: 19 December 2005 Received: 21 July 2005 reports Revised: 23 August 2005 Genome Biology 2005, 6:R108 (doi:10.1186/gb-2005-6-13-r108) Accepted: 8 November 2005 The electronic version of this article is the complete one and can be found online at http://genomebiology.com/2005/6/13/R108 © 2005 Hackl et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which deposited research permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Gene-expression<p>In-depthadipocytecell development.</p> cells bioinformatics were during combined fat-cell analyses with development de of novo expressed functional sequence annotation tags fo andund mapping to be differentially onto known expres pathwayssed during to generate differentiation a molecular of 3 atlasT3-L1 of pre- fat- Abstract Background: Large-scale transcription profiling of cell models and model organisms can identify novel molecular components involved in fat cell development. -
A High Throughput, Functional Screen of Human Body Mass Index GWAS Loci Using Tissue-Specific Rnai Drosophila Melanogaster Crosses Thomas J
Washington University School of Medicine Digital Commons@Becker Open Access Publications 2018 A high throughput, functional screen of human Body Mass Index GWAS loci using tissue-specific RNAi Drosophila melanogaster crosses Thomas J. Baranski Washington University School of Medicine in St. Louis Aldi T. Kraja Washington University School of Medicine in St. Louis Jill L. Fink Washington University School of Medicine in St. Louis Mary Feitosa Washington University School of Medicine in St. Louis Petra A. Lenzini Washington University School of Medicine in St. Louis See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Baranski, Thomas J.; Kraja, Aldi T.; Fink, Jill L.; Feitosa, Mary; Lenzini, Petra A.; Borecki, Ingrid B.; Liu, Ching-Ti; Cupples, L. Adrienne; North, Kari E.; and Province, Michael A., ,"A high throughput, functional screen of human Body Mass Index GWAS loci using tissue-specific RNAi Drosophila melanogaster crosses." PLoS Genetics.14,4. e1007222. (2018). https://digitalcommons.wustl.edu/open_access_pubs/6820 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Authors Thomas J. Baranski, Aldi T. Kraja, Jill L. Fink, Mary Feitosa, Petra A. Lenzini, Ingrid B. Borecki, Ching-Ti Liu, L. Adrienne Cupples, Kari E. North, and Michael A. Province This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/open_access_pubs/6820 RESEARCH ARTICLE A high throughput, functional screen of human Body Mass Index GWAS loci using tissue-specific RNAi Drosophila melanogaster crosses Thomas J. -
Twin Study of Early-Onset Major Depression Finds DNA Methylation
bioRxiv preprint doi: https://doi.org/10.1101/422345; this version posted September 20, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Twin Study of Early-Onset Major Depression Finds DNA Methylation Enrichment for Neurodevelopmental Genes Roxann Roberson-Nay1,2, Aaron R. Wolen4, Dana M. Lapato2,4, Eva E. Lancaster2,4, Bradley T. Webb1,2,4, Bradley Verhulst3, John M. Hettema1,2, Timothy P. YorK2,4 1. Virginia Commonwealth University, Department of Psychiatry, Richmond, VA. 2. Virginia Commonwealth University, Virginia Institute for Psychiatric and Behavioral Genetics, Richmond, VA. 3. Department of Psychology, Michigan State University, East Lansing, MI. 4. Virginia Commonwealth University, Department of Human and Molecular Genetics, Richmond, VA. Correspondence: Roxann Roberson-Nay, Ph.D., Virginia Commonwealth University, Depart- ment of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, P.O. Box 980489, Richmond, VA 23298, Fax (804) 828-0245, email: roxann.roberson- [email protected]. bioRxiv preprint doi: https://doi.org/10.1101/422345; this version posted September 20, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Major depression (MD) is a debilitating mental health condition with peak prevalence occurring early in life. Genome-wide examination of DNA methylation (DNAm) offers an attractive comple- ment to studies of allelic risk given it can reflect the combined influence of genes and environment. -
Algorithms and Applications of Next-Generation DNA Sequencing
Algorithms and Applications of Next-Generation DNA Sequencing Chip-Seq, database of human variations, and analysis of mammary ductal carcinomas by Anthony Peter Fejes Bachelor of Science, Biochemistry (Hons. Co-op), University of Waterloo, 2000 Bachelor of Independent Studies, University of Waterloo, 2001 Master of Science, Microbiology & Immunology, The University of British Columbia, 2004 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy in THE FACULTY OF GRADUATE STUDIES (Bioinformatics) The University Of British Columbia (Vancouver) April 2012 © Anthony Peter Fejes, 2012 Abstract Next Generation Sequencing (NGS) technologies enable Deoxyribonucleic Acid (DNA) or Ribonucleic Acid (RNA) sequencing to be done at volumes and speeds several orders of magnitude faster than Sanger (dideoxy termination) based methods and have enabled the development of novel experiment types that would not have been practical before the advent of the NGS-based machines. The dramatically increased throughput of these new protocols requires significant changes to the algorithms used to process and analyze the results. In this thesis, I present novel algorithms used for Chromatin Immunoprecipitation and Sequencing (ChIP-Seq) as well as the structures required and challenges faced for working with Single Nucleotide Variations (SNVs) across a large collection of samples, and finally, I present the results obtained when performing an NGS based analysis of eight mammary ductal carcinoma cell lines and four matched normal cell lines. ii Preface The work described in this thesis is based entirely upon research done at the Canada’s Michael Smith Genome Sciences Centre (BCGSC) in Dr. Steve J.M. Jones’ group by Anthony Fejes.