External Traced Monoidal Categories

Total Page:16

File Type:pdf, Size:1020Kb

External Traced Monoidal Categories External traced monoidal categories Nick Hu St. Catherine’s College University of Oxford Supervised by Dr Jamie Vicary A dissertation submitted for the degree of MSc Mathematics and Foundations of Computer Science Trinity 2019 Abstract String diagrams provide a novel technique for modern developments in category theory, and in particular, higher category theory. Many results about category theory can only be properly stated in the setting of 2-categories. We analyse the approach of using profunctors, which are a categorification of relations, to study category theory itself. Specifically, we examine the structure of ∗-autonomous categories and various other categories with duals, and develop a new characterisation of traced monoidal categories with respect to Prof: the 2-category of categories, profunctors, and natural transformations. We discuss at length the topic of diagrammatic methods, and advocate for a fancy kind of string diagram called an internal string diagram. i Contents 1 Introduction 1 1.1 The philosophy of category theory . 1 1.1.1 Picturing mathematics . 1 1.1.2 Peeking inside . 1 1.1.3 Externalising mathematics . 2 1.2 The context of our work . 2 1.3 Contributionandoutline........................................... 2 2 Preliminary material 4 2.1 Coends..................................................... 4 2.1.1 Yoneda reductions . 6 2.2 Profunctors .................................................. 7 2.2.1 Relationship to functors . 9 2.3 2-categories . 11 2.3.1 Prof, the compact closed monoidal weak 2-category of categories, profunctors and natural transformations . 15 3 Characterising traced monoidal categories internal to Prof 18 3.1 Traced monoidal categories . 18 3.2 A 2-morphism for tracing . 19 3.2.1 Sliding and naturality hold automatically . 21 3.3 Presentations of higher algebraic structure and the diagrammatic calculus . 23 3.4 The internal string diagram construction . 27 3.4.1 Actions of generating 2-morphisms . 29 3.5 Presentation of a traced monoidal category . 31 3.5.1 Action of Tr ............................................ 33 4 Sketches of internal traced ∗-autonomous categories 39 4.1 ∗-autonomous categories internal to Prof ................................. 39 4.1.1 Recovering ⊗ ........................................... 41 4.1.2 The exponential bifunctor − ⊸= ................................ 44 4.2 Tracing and other extensions . 45 4.2.1 Compact closedness as a presentation . 45 4.2.2 Relationship to linear distributivity . 46 4.2.3 Results on tracing . 47 5 Conclusion 55 5.1 Futurework.................................................. 55 References 56 ii 1. Introduction Category theory has become a universal language for the mathematical sciences. Beginning as an offshoot of traditional pure mathematics, in the school of algebraic topology, it has since come a long way, and is now the object of study for physicists, logicians, computer scientists, linguists, economists, and even philosophers. An argument can be put forward that no working mathematician’s toolbox is complete without a dab of category theory. The progression of this subfield of mathematics, and the proliferation of it in the mathematical sciences, has warranted that category theory becomes an end for study itself, rather than merely a means to describe different parts of algebra. Indeed, the situation has turned on its head — the discovery of the Yoneda lemma, which is arguably the first ‘real theorem’ of category theory, has had large impacts on modern developments in algebraic geometry and representation theory. Although we do not make it explicit, this whole dissertation is built out of Yoneda, as we make extensive use of profunctors. 1.1. The philosophy of category theory Perhaps the most important use of Yoneda is its philosophy; while a formal statement is perfectly fine for a mathematician, there is an important lesson to learn from asking ‘what does Yoneda really mean?’ One answer is the following: You work at a particle accelerator. You want to understand some particle. All you can do are throw other particles at it and see what happens. If you understand how your mystery particle responds to all possible test particles at all possible test energies, then you know everything there is to know about your mystery particle. Ravi Vakil (2009) on the Yoneda lemma Another is summarised by the common saying you can tell a lot about a person by the company they keep. That is, the big picture of how things relate to each other is more important than the details inside, and this fits into the general theme of category theory: we do not look at what an object is, but instead how it interacts. Category theory is most often used with objects which are inherently set-like, but we can never ‘peek inside’ — instead, our attention is diverted to the connections between objects: the morphisms. The tenet of this approach is that things should be compositional, and crucial to any definition of a category is a definition of how its morphisms compose. Computer scientists have secretly been doing this for decades, under a different name: abstraction. To build large and complicated software, the more-or-less only viable approach is to piece it together from smaller pieces. But if one is too focused on the implementation details, then interfacing becomes impossible; hence, an abstraction barrier is necessary. Fundamentally, we don’t care how a data structure is implemented, so long as it provides a suitable abstract interface. This is precisely what we do when we prove general theorems about categories with structure: by abstracting vector spaces, Hilbert spaces, and relations down to compact closed categories, we can prove things for them all in one go by proving theorems about compact closed categories. 1.1.1. Picturing mathematics. In our preferred flavour of category theory, the development is particularly radical, thanks to the technique of string diagrams. No longer is algebra confined to one-dimensional lines of equations; instead, we represent algebraic expressions with diagrams of strings which fully exploit the two-dimensional geometry of the page, and our innate natural intuitions of homotopy. In our work, we shall make full use of the diagrammatic calculus (Joyal and Street 1991) to perform abstract mathematics in a novel fashion. Our philosophy is that this is the most effective method of working with higher categories, and in an anti-traditional fashion we deliberately give only a relatively informal definition of our diagrammatic methods. This is done in good faith — formal foundations exist1 and are absolutely necessary, but we are of the opinion that they are not particularly helpful from a pedagogical perspective, especially for those who are seeing the diagrammatic calculus for the first time. 1.1.2. Peeking inside. As we have described it, category theory provides an arena for formal mathematics with which one can study traditional mathematical structures. The natural question arises: what is the arena for formal category theory? One answer leads to Cat, the category of small categories and functors. Given that the objects of this category are categories, and that we are familiar with the internals of a category, it seems that if we wish to make statements about these categories we need to violate our previous principle of not ‘peeking inside’ the objects by breaking the abstraction barrier. To do this in a principled way, we transition from ordinary (1-)category theory to the theory of 2-categories2, which was born from generalising Cat. In this setting, we can formally study naturally category-theoretic phenomena, like adjunctions (also called dualities in the general 2-category theory world). However, new challenges also present themselves. Just as when moving from traditional mathematics to category theory, the notion of isomorphism between structures becomes formalised and important, when moving to 2-category theory, we also have the notion of isomorphism between morphisms. This motivates coherence, which we discuss later. Furthermore, traditional algebraic methods become unwieldy; intuitively simple 2-categorical generalisations of well-understood 1-categorical concepts require several pages of coherence equations to properly define. The case is even worse for 3-category theory, as the number of equations required explodes combinatorially. Even though important formalisations are missing, through sheer mathematical effort3 we fortunately have plenty of machinery to work with 1. This is a big topic in itself, unsuitable for exposition here. We refer the reader to Selinger (2009) for a lengthy discussion. 2. These are frequently referred to as bicategories in the literature. 3. To see what we mean, compare Michael Stay (2013, Definition 4.11) with the 1-categorical counterpart. 1 in the 2-categorical case. As we touched upon earlier, we will rely heavily on diagrammatic methods to provide human-digestible results. 1.1.3. Externalising mathematics. Our guiding principle is that of (vertical) categorification: the procedure of lifting structures from 푛-category theory to 푛 + 1-category theory4. By this, we mean the externalisation/internalisation of mathematics. This terminology is confusing, because often the reference frame is not made explicit. The most basic example of this is the correspondence between an element of aset 푥 ∈ 푋 and a function {∗} → 푋 given by ∗ ↦ 푥5; in the category Set, the former describes the property of ‘having 푥’ internally to 푋 — the membership relation ∈ ‘peeks inside’ the Set object
Recommended publications
  • Bialgebras in Rel
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Electronic Notes in Theoretical Computer Science 265 (2010) 337–350 www.elsevier.com/locate/entcs Bialgebras in Rel Masahito Hasegawa1,2 Research Institute for Mathematical Sciences Kyoto University Kyoto, Japan Abstract We study bialgebras in the compact closed category Rel of sets and binary relations. We show that various monoidal categories with extra structure arise as the categories of (co)modules of bialgebras in Rel.In particular, for any group G we derive a ribbon category of crossed G-sets as the category of modules of a Hopf algebra in Rel which is obtained by the quantum double construction. This category of crossed G-sets serves as a model of the braided variant of propositional linear logic. Keywords: monoidal categories, bialgebras and Hopf algebras, linear logic 1 Introduction For last two decades it has been shown that there are plenty of important exam- ples of traced monoidal categories [21] and ribbon categories (tortile monoidal cat- egories) [32,33] in mathematics and theoretical computer science. In mathematics, most interesting ribbon categories are those of representations of quantum groups (quasi-triangular Hopf algebras)[9,23] in the category of finite-dimensional vector spaces. In many of them, we have non-symmetric braidings [20]: in terms of the graphical presentation [19,31], the braid c = is distinguished from its inverse c−1 = , and this is the key property for providing non-trivial invariants (or de- notational semantics) of knots, tangles and so on [12,23,33,35] as well as solutions of the quantum Yang-Baxter equation [9,23].
    [Show full text]
  • Right Ideals of a Ring and Sublanguages of Science
    RIGHT IDEALS OF A RING AND SUBLANGUAGES OF SCIENCE Javier Arias Navarro Ph.D. In General Linguistics and Spanish Language http://www.javierarias.info/ Abstract Among Zellig Harris’s numerous contributions to linguistics his theory of the sublanguages of science probably ranks among the most underrated. However, not only has this theory led to some exhaustive and meaningful applications in the study of the grammar of immunology language and its changes over time, but it also illustrates the nature of mathematical relations between chunks or subsets of a grammar and the language as a whole. This becomes most clear when dealing with the connection between metalanguage and language, as well as when reflecting on operators. This paper tries to justify the claim that the sublanguages of science stand in a particular algebraic relation to the rest of the language they are embedded in, namely, that of right ideals in a ring. Keywords: Zellig Sabbetai Harris, Information Structure of Language, Sublanguages of Science, Ideal Numbers, Ernst Kummer, Ideals, Richard Dedekind, Ring Theory, Right Ideals, Emmy Noether, Order Theory, Marshall Harvey Stone. §1. Preliminary Word In recent work (Arias 2015)1 a line of research has been outlined in which the basic tenets underpinning the algebraic treatment of language are explored. The claim was there made that the concept of ideal in a ring could account for the structure of so- called sublanguages of science in a very precise way. The present text is based on that work, by exploring in some detail the consequences of such statement. §2. Introduction Zellig Harris (1909-1992) contributions to the field of linguistics were manifold and in many respects of utmost significance.
    [Show full text]
  • Formal Introduction to Digital Image Processing
    MINISTÉRIO DA CIÊNCIA E TECNOLOGIA INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS INPE–7682–PUD/43 Formal introduction to digital image processing Gerald Jean Francis Banon INPE São José dos Campos July 2000 Preface The objects like digital image, scanner, display, look–up–table, filter that we deal with in digital image processing can be defined in a precise way by using various algebraic concepts such as set, Cartesian product, binary relation, mapping, composition, opera- tion, operator and so on. The useful operations on digital images can be defined in terms of mathematical prop- erties like commutativity, associativity or distributivity, leading to well known algebraic structures like monoid, vector space or lattice. Furthermore, the useful transformations that we need to process the images can be defined in terms of mappings which preserve these algebraic structures. In this sense, they are called morphisms. The main objective of this book is to give all the basic details about the algebraic ap- proach of digital image processing and to cover in a unified way the linear and morpholog- ical aspects. With all the early definitions at hand, apparently difficult issues become accessible. Our feeling is that such a formal approach can help to build a unified theory of image processing which can benefit the specification task of image processing systems. The ultimate goal would be a precise characterization of any research contribution in this area. This book is the result of many years of works and lectures in signal processing and more specifically in digital image processing and mathematical morphology. Within this process, the years we have spent at the Brazilian Institute for Space Research (INPE) have been decisive.
    [Show full text]
  • On the Completeness of the Traced Monoidal Category Axioms in (Rel,+)∗
    Acta Cybernetica 23 (2017) 327–347. On the Completeness of the Traced Monoidal Category Axioms in (Rel,+)∗ Mikl´os Barthaa To the memory of my friend and former colleague Zolt´an Esik´ Abstract It is shown that the traced monoidal category of finite sets and relations with coproduct as tensor is complete for the extension of the traced sym- metric monoidal axioms by two simple axioms, which capture the additive nature of trace in this category. The result is derived from a theorem saying that already the structure of finite partial injections as a traced monoidal category is complete for the given axioms. In practical terms this means that if two biaccessible flowchart schemes are not isomorphic, then there exists an interpretation of the schemes by partial injections which distinguishes them. Keywords: monoidal categories, trace, iteration, feedback, identities in cat- egories, equational completeness 1 Introduction It was in March, 2012 that Zolt´an visited me at the Memorial University in St. John’s, Newfoundland. I thought we would find out a research topic together, but he arrived with a specific problem in mind. He knew about the result found by Hasegawa, Hofmann, and Plotkin [12] a few years earlier on the completeness of the category of finite dimensional vector spaces for the traced monoidal category axioms, and wanted to see if there is a similar completeness statement true for the matrix iteration theory of finite sets and relations as a traced monoidal category. Unfortunately, during the short time we spent together, we could not find the solu- tion, and after he had left I started to work on some other problems.
    [Show full text]
  • A Generalization of Conjugacy in Groups Rendiconti Del Seminario Matematico Della Università Di Padova, Tome 40 (1968), P
    RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA OLAF TAMASCHKE A generalization of conjugacy in groups Rendiconti del Seminario Matematico della Università di Padova, tome 40 (1968), p. 408-427 <http://www.numdam.org/item?id=RSMUP_1968__40__408_0> © Rendiconti del Seminario Matematico della Università di Padova, 1968, tous droits réservés. L’accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ A GENERALIZATION OF CONJUGACY IN GROUPS OLAF TAMASCHKE*) The category of all groups can be embedded in the category of all S-semigroups [I]. The S-semigroup is a mathematical structure that is based on the group structure. The intention is to use it as a tool in group theory. The Homomorphism Theorem and the Iso- morphism Theorems, the notions of normal subgroup and of sub- normal subgroup, the Theorem of Jordan and Holder, and some other statements of group theory have been generalized to ~S-semi- groups ([l] and [2]). The direction of these generalizations, and the intention behind them, may become clearer by the remark that the double coset semigroups form a category properly between the ca- tegory of all groups and the category of all S-semigroups. By the double coset semigroup G/H of a group G modulo an arbitrary subgroup H of G we mean the semigroup generated by all 9 E G, with respect to the « complex &#x3E;&#x3E; multiplication, considered as an S-semigroup.
    [Show full text]
  • Monoid Modules and Structured Document Algebra (Extendend Abstract)
    Monoid Modules and Structured Document Algebra (Extendend Abstract) Andreas Zelend Institut fur¨ Informatik, Universitat¨ Augsburg, Germany [email protected] 1 Introduction Feature Oriented Software Development (e.g. [3]) has been established in computer science as a general programming paradigm that provides formalisms, meth- ods, languages, and tools for building maintainable, customisable, and exten- sible software product lines (SPLs) [8]. An SPL is a collection of programs that share a common part, e.g., functionality or code fragments. To encode an SPL, one can use variation points (VPs) in the source code. A VP is a location in a pro- gram whose content, called a fragment, can vary among different members of the SPL. In [2] a Structured Document Algebra (SDA) is used to algebraically de- scribe modules that include VPs and their composition. In [4] we showed that we can reason about SDA in a more general way using a so called relational pre- domain monoid module (RMM). In this paper we present the following extensions and results: an investigation of the structure of transformations, e.g., a condi- tion when transformations commute, insights into the pre-order of modules, and new properties of predomain monoid modules. 2 Structured Document Algebra VPs and Fragments. Let V denote a set of VPs at which fragments may be in- serted and F(V) be the set of fragments which may, among other things, contain VPs from V. Elements of F(V) are denoted by f1, f2,... There are two special elements, a default fragment 0 and an error . An error signals an attempt to assign two or more non-default fragments to the same VP within one module.
    [Show full text]
  • Zappa-Szép Products of Semigroups
    Applied Mathematics, 2015, 6, 1047-1068 Published Online June 2015 in SciRes. http://www.scirp.org/journal/am http://dx.doi.org/10.4236/am.2015.66096 Zappa-Szép Products of Semigroups Suha Wazzan Mathematics Department, King Abdulaziz University, Jeddah, Saudi Arabia Email: [email protected] Received 12 May 2015; accepted 6 June 2015; published 9 June 2015 Copyright © 2015 by author and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract The internal Zappa-Szép products emerge when a semigroup has the property that every element has a unique decomposition as a product of elements from two given subsemigroups. The external version constructed from actions of two semigroups on one another satisfying axiom derived by G. Zappa. We illustrate the correspondence between the two versions internal and the external of Zappa-Szép products of semigroups. We consider the structure of the internal Zappa-Szép product as an enlargement. We show how rectangular band can be described as the Zappa-Szép product of a left-zero semigroup and a right-zero semigroup. We find necessary and sufficient conditions for the Zappa-Szép product of regular semigroups to again be regular, and necessary conditions for the Zappa-Szép product of inverse semigroups to again be inverse. We generalize the Billhardt λ-semidirect product to the Zappa-Szép product of a semilattice E and a group G by constructing an inductive groupoid. Keywords Inverse Semigroups, Groups, Semilattice, Rectangular Band, Semidiret, Regular, Enlargement, Inductive Groupoid 1.
    [Show full text]
  • Linear Algebra Review 3
    INTRODUCTION TO GROUP REPRESENTATIONS JULY 1, 2012 LINEAR ALGEBRA REVIEW 3 Here we describe some of the main linear algebra constructions used in representation theory. Since we are working with finite-dimensional vector spaces, a choice of basis iden- n tifies each new space with some C : What makes these interesting is how they behave with respect to linear transformation, which in turn gives ways to construct new representations from old ones. Let V and W be finite-dimensional vector spaces over C, and choose bases B = fv1; : : : ; vmg for V and C = fw1; : : : ; wng for W . Direct Sum: There are two types of direct sums, internal and external. The internal direct sum expresses a given vector space V 0 in terms of two (or more) subspaces V and W . Definition: We say V 0 is the internal direct sum of subspaces V and W , written V 0 = V + W; if each vector in V 0 can be written uniquely as a sum v0 = v + w with v in V and w in W . Equivalently, this condition holds if and only if B [ C is a basis for V 0: In turn, we also have this condition if dim(V ) + dim(W ) = dim(V 0) and V \ W = f0g: In the special case where V 0 admits an inner product and W = V ?, we call V 0 = V ⊕W an orthogonal direct sum. If B and C are orthonormal bases, then B [C is an orthonormal basis for V 0: On the other hand, the main idea here can be applied to combine two known vector spaces.
    [Show full text]
  • A Survey of Graphical Languages for Monoidal Categories
    5 Traced categories 32 5.1 Righttracedcategories . 33 5.2 Planartracedcategories. 34 5.3 Sphericaltracedcategories . 35 A survey of graphical languages for monoidal 5.4 Spacialtracedcategories . 36 categories 5.5 Braidedtracedcategories . 36 5.6 Balancedtracedcategories . 39 5.7 Symmetrictracedcategories . 40 Peter Selinger 6 Products, coproducts, and biproducts 41 Dalhousie University 6.1 Products................................. 41 6.2 Coproducts ............................... 43 6.3 Biproducts................................ 44 Abstract 6.4 Traced product, coproduct, and biproduct categories . ........ 45 This article is intended as a reference guide to various notions of monoidal cat- 6.5 Uniformityandregulartrees . 47 egories and their associated string diagrams. It is hoped that this will be useful not 6.6 Cartesiancenter............................. 48 just to mathematicians, but also to physicists, computer scientists, and others who use diagrammatic reasoning. We have opted for a somewhat informal treatment of 7 Dagger categories 48 topological notions, and have omitted most proofs. Nevertheless, the exposition 7.1 Daggermonoidalcategories . 50 is sufficiently detailed to make it clear what is presently known, and to serve as 7.2 Otherprogressivedaggermonoidalnotions . ... 50 a starting place for more in-depth study. Where possible, we provide pointers to 7.3 Daggerpivotalcategories. 51 more rigorous treatments in the literature. Where we include results that have only 7.4 Otherdaggerpivotalnotions . 54 been proved in special cases, we indicate this in the form of caveats. 7.5 Daggertracedcategories . 55 7.6 Daggerbiproducts............................ 56 Contents 8 Bicategories 57 1 Introduction 2 9 Beyond a single tensor product 58 2 Categories 5 10 Summary 59 3 Monoidal categories 8 3.1 (Planar)monoidalcategories . 9 1 Introduction 3.2 Spacialmonoidalcategories .
    [Show full text]
  • Simple Semirings
    International Journal of Engineering Inventions e-ISSN: 2278-7461, p-ISSN: 2319-6491 Volume 2, Issue 7 (May 2013) PP: 16-19 Simple Semirings P. Sreenivasulu Reddy1, Guesh Yfter tela2 Department of mathematics, Samara University, Samara, Afar Region, Ethiopia Post Box No.131 Abstract: Author determine different additive structures of simple semiring which was introduced by Golan [3]. We also proved some results based on the papers of Fitore Abdullahu [1]. I. Introduction This paper reveals the additive structures of simple semirings by considering that the multiplicative semigroup is rectangular band. 1.1. Definition: A semigroup S is called medial if xyzu = xzyu, for every x, y, z, u in S. 1.2. Definition: A semigroup S is called left (right) semimedial if it satisfies the identity x2yz = xyxz (zyx2 = zxyx), where x,y,z S and x, y are idempotent elements. 1.3. Definition: A semigroup S is called a semimedial if it is both left and right semimedial. Example: The semigroup S is given in the table is I-semimedial * a b c a b b b b b b b c c c c 1.4. Definition: A semigroup S is called I- left (right) commutative if it satisfies the identity xyz = yxz (zxy = zyx), where x, y are idempotent elements. 1.5. Definition: A semigroup S is called I-commutative if it satisfies the identity xy = yx, where x,y S and x, y are idempotent elements. Example: The semigroup S is given in the table is I-commutative. * a b c a b b a b b b b c c b c 1.6.
    [Show full text]
  • Some Aspects of Semirings
    Appendix A Some Aspects of Semirings Semirings considered as a common generalization of associative rings and dis- tributive lattices provide important tools in different branches of computer science. Hence structural results on semirings are interesting and are a basic concept. Semi- rings appear in different mathematical areas, such as ideals of a ring, as positive cones of partially ordered rings and fields, vector bundles, in the context of topolog- ical considerations and in the foundation of arithmetic etc. In this appendix some algebraic concepts are introduced in order to generalize the corresponding concepts of semirings N of non-negative integers and their algebraic theory is discussed. A.1 Introductory Concepts H.S. Vandiver gave the first formal definition of a semiring and developed the the- ory of a special class of semirings in 1934. A semiring S is defined as an algebra (S, +, ·) such that (S, +) and (S, ·) are semigroups connected by a(b+c) = ab+ac and (b+c)a = ba+ca for all a,b,c ∈ S.ThesetN of all non-negative integers with usual addition and multiplication of integers is an example of a semiring, called the semiring of non-negative integers. A semiring S may have an additive zero ◦ defined by ◦+a = a +◦=a for all a ∈ S or a multiplicative zero 0 defined by 0a = a0 = 0 for all a ∈ S. S may contain both ◦ and 0 but they may not coincide. Consider the semiring (N, +, ·), where N is the set of all non-negative integers; a + b ={lcm of a and b, when a = 0,b= 0}; = 0, otherwise; and a · b = usual product of a and b.
    [Show full text]
  • Isomorphism of Binary Operations in Differential Geometry
    S S symmetry Article Isomorphism of Binary Operations in Differential Geometry Nikita E. Barabanov Department of Mathematics, North Dakota State University, Fargo, ND 58108, USA; [email protected] Received: 28 August 2020; Accepted: 30 September 2020; Published: 3 October 2020 Abstract: We consider smooth binary operations invariant with respect to unitary transformations that generalize the operations of the Beltrami–Klein and Beltrami–Poincare ball models of hyperbolic geometry, known as Einstein addition and Möbius addition. It is shown that all such operations may be recovered from associated metric tensors that have a canonical form. Necessary and sufficient conditions for canonical metric tensors to generate binary operations are found. A definition of algebraic isomorphism of binary operations is given. Necessary and sufficient conditions for binary operations to be isomorphic are provided. It is proved that every algebraic automorphism gives rise to isomorphism of corresponding gyrogroups. Necessary and sufficient conditions in terms of metric tensors for binary operations to be isomorphic to Euclidean addition are given. The problem of binary operations to be isomorphic to Einstein addition is also solved in terms of necessary and sufficient conditions. We also obtain necessary and sufficient conditions for binary operations having the same function-parameter in the canonical representation of metric tensors to be isomorphic. Keywords: differential geometry; canonical metric tensor; binary operation; Einstein addition; Euclidean addition; isomorphism 1. Introduction The theory of the binary operation of the Beltrami–Klein ball model, known as Einstein addition, and the binary operation of the Beltrami–Poincare ball model of hyperbolic geometry, known as Möbius addition has been extensively developed for the last twenty years [1–36].
    [Show full text]