<<

Turkish Journal of Zoology Turk J Zool (2019) 43: 437-456 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Research Article doi:10.3906/zoo-1811-7

Comparative evaluation of taxonomic and functional diversities of leaf-litter of the Brazilian Atlantic Forest

1,2, 2 3 Elmo Borges Azevedo KOCH *, José Raimundo Maia dos SANTOS , Ivan Cardoso NASCIMENTO , 2,4 Jacques Hubert Charles DELABIE  1 Graduate Program in Ecology and Biomonitoring, Institute of , Federal University of Bahia, Ondina Campus, Salvador, Bahia, 2 Laboratory of Myrmecology, CEPEC-CEPLAC, Ilhéus, Bahia, Brazil 3 Department of Biological Sciences, State University of the Southwest of Bahia (UESB), Jequié Campus, Jequié, Bahia, Brazil 4 Department of Agrarian and Environmental Sciences, State University of Santa Cruz, Ilhéus, Bahia, Brazil

Received: 06.11.2018 Accepted/Published Online: 03.07.2019 Final Version: 02.09.2019

Abstract: The community living in leaf litter was assessed in 65 forest sites in the Brazilian Atlantic rainforest in the southern region of the state of Bahia, Brazil. In addition, we aimed to understand the patterns between taxonomic and functional diversities using two different resolutions of classification of ants into functional groups. We identified 364 ant belonging to 68 genera in 10 subfamilies in 65 regions. Considering a more general functional classification, we identified a total of 13 functional ant groups, and 26 functional ant groups considering a more specific functional classification. The Atlantic Forest environments studied presented great taxonomic ant diversity. We observed that ant species richness and the number of functional groups are not closely related metrics, especially when considering a more general functional classification. Moreover, even when considering a more specific functional classification, the relationship with ant richness is only moderate. These results suggest that the number of species in a given group does not necessarily reflect the role played by that group within the environment. Integrating different perspectives is crucial for the successful conservation of the Atlantic Forest ants.

Key words: Diversity, Formicidae, functional groups, invertebrate conservation, tourist ant species

1. Introduction The Brazilian Atlantic Forest is one of the 35 biodiversity Efforts to understand the implications of changes in hotspots on the earth (Myers et al., 2000), which correspond biodiversity on ecosystems has shown that variations in to regions with high rates of biodiversity and endemism both species and functional diversity can lead to changes highly threatened by human activities (Myers et al., 2000; in environmental mechanisms, since several ecological Zachos and Habel, 2011). This biome originally covered processes are influenced by the number and nature of an area of 1,315,460 km2, corresponding to about 15% of species of a given location (Tilman, 2001). A better Brazil. Currently, it is estimated that only 8% to 12% of understanding of the patterns of changes in biodiversity and the original extension of the biome remains (Ribeiro et their functional consequences may allow a more accurate al., 2009; Fundação SOS Mata Atlântica, 2010, available prediction of responses, as well as the conservation of online at http://www.sosma.org.br), disseminated in a environmental processes (Brown and Heske, 1990; Larsen range of small fragments of very irregular sizes and shapes et al., 2005). The monitoring of biodiversity considering its (generally less than 50 ha) with a low rate of connectivity functional aspects allows for complementary traditional (Ribeiro et al., 2009, 2011). Nevertheless, this environment diversity indicators, such as species richness, diversity still represents the second largest tropical moist forest in indices, and abundance (Moretti et al., 2009; Gerish et al., the world (Ribeiro et al., 2011). 2011), since it allows researchers to evaluate the real effect Most conservation research has focused on providing of the species on ecosystem functioning (Tilman, 2001) data on vertebrates; for most invertebrate groups, independently of taxonomic determinations (Cummins, even basic information is scarce, especially in tropical 1974). environments (Fisher and Robertson, 2002). Among * Correspondence: [email protected] 437

This work is licensed under a Creative Commons Attribution 4.0 International License. KOCH et al. / Turk J Zool the priorities for studies of invertebrate conservation are The Atlantic Forest covers mostly low to medium elevation extensive geographical sampling using common protocols, areas (<1000 m a.s.l.) along the eastern Brazilian coastline, and studies focused on taxa and groups of recognized presenting hot and humid climate type AF (Köppen, functional importance in ecosystems (Lewinsohn et al., 1936), with annual temperatures ranging between 20 and 2005). Although are the dominant group 25 °C (IBGE, 2010, available online at http://www.ibge. in terms of abundance and diversity in most terrestrial gov.br), without having a true dry season (Oliveira-Filho ecosystems (Wilson, 1992), they are often neglected in and Fontes, 2000). conservation planning (Schuldt et al., 2009; McGeoch et 2.2. Ant sampling design al., 2011). We used an adaptation of the ALL protocol (Agosti Ants represent an important, abundant, and diverse and Alonso, 2000), commonly used in studies in the component in tropical forests (Kaspari, 1996, 2000; Atlantic Forest (Campiolo and Delabie, 2000). At each Delabie et al., 2000; del Toro et al., 2012), as well as in most site, we established a transect of approximately 2500 m diverse terrestrial ecosystems (Hölldobler and Wilson, for the ant survey, starting at least 100 m from the forest 1990; Underwood and Fisher, 2006). The litter that lies on edge. At each transect we marked 50 points set at 50-m the floor of tropical forests—a complex of leaves, branches, intervals; at each point, 1 m2 of leaf litter was collected. rotten material, and other biotic and mineral components In total, 50 leaf litter samples were collected at each site, (Kaspari and Weiser, 1999)—is a microhabitat that plays and mini-Winkler apparatuses were used to extract the a fundamental role in the diversity and survival of many ant fauna (Bestelmeyer et al., 2000). Since 50 samples of ant species (Kaspari, 1996; Theunis et al., 2005). The ants 1 m2 of leaf litter were taken in each of the 65 localities present in this environment—leaf-litter ants—display distributed over 6500 km2, our collection effort represents one of the highest levels of morphological, ecological, a total of 3250 m2 of forest leaf litter studied for their ants. and taxonomic diversity among ants (Delabie et al., The resulting biological material was fixed in alcohol 2000; Schmidt et al., 2013; Silva and Brandão, 2014), and and further screened at the laboratory. The ants were soil fauna is considered to be one of the new frontiers in separated from other , mounted, and identified biodiversity studies (Wilson, 1987; Agosti and Alonso, at the Myrmecology Laboratory of the Cocoa Research 2000; Delabie et al., 2015a). Center based on a reference collection of Formicidae of The present study investigated the taxonomic and the Atlantic Forest and through a query of the literature functional diversity of leaf-litter ants of the Brazilian (Bolton, 2018, available online at http://www.antcat.org/ Atlantic Forest biome in the state of Bahia. Due to the catalog) and a specific dichotomous key. relatively small surface (only 130 × 50 km) in which the 2.3. Ant functional groups classifications 65 localities of forest were intensively sampled for their Several studies carried out in different environments have leaf-litter ants, this study probably represents one of the used different classifications of functional groups for ants. most important efforts made to date to assess ant diversity There are some “classical” classifications (e.g., Andersen, in a single tropical region. Specifically, we addressed 1995; Delabie et al., 2000; Silva and Brandão, 2010), which the following questions: (1) What is the taxonomic and are commonly used; in some cases, adaptations of these functional diversity of leaf-litter ants for the region studied? classifications for specific cases or subgroups were also (2) Do ant assemblages that present greater taxonomic used (e.g., Delabie et al., 2000; Silva et al., 2015). diversity also possess a corresponding functional diversity? In recent years, a considerable amount of new (3) Is the number of functional groups a good predictor information about ant biology has been published. for ant richness? (4) Do the patterns found between However, such information has not yet been included in the taxonomic and functional diversity differ according to the functional group classification currently used. We believe level of functional classification used? that this classification should be constantly updated using this information. A second possibility is that it should at 2. Materials and methods least be checked to determine if this information changes 2.1. Study area the interpretation we have of the functional groups where The ant fauna of the forest litter was intensively sampled these species were included. between the years 1996 and 2002 in 65 sites of the Brazilian Partly due to this new knowledge, we have also observed Atlantic rainforest (Atlantic Forest) (hereafter designated that the various groupings on which the functional groups as “FS” for forest sites), covering 26 municipalities in are established are completely heterogeneous according the southern region of the state of Bahia, Brazil (Table 1; to the scope of specialization. For example, the functional Figure 1). Our sites are within a representative area of the group “omnivorous generalists of the soil” is constituted a Central Corridor of the Atlantic Forest (Fonseca et al., priori by many species that have a very similar ecological 2004), reaching an area of approximately 180 × 70 km. role, characterizing a large functional redundancy,

438 KOCH et al. / Turk J Zool

Table 1. The 65 Atlantic Forest localities sampled in the state of Bahia, Brazil.

Municipality Locality Code Geographic Coordinates Arataca Anuri A1 15°25′30″S 39°27′19″W Arataca Arataca A2 15°16′49″S 39°26′31″W Arataca Arataca_2 A3 15°15′00″S 39°25′00″W Aurelino Leal Aurelino Leal B1 14°19′52″S 39°21′32″W Aurelino Leal Lage do Banco B2 14°22′58″S 39°24′56″W Barro Preto Barro Preto C1 14°48′57″S 39°29′02″W Buerarema Buerarema D1 14°54′07″S 39°17′12″W Buerarema Buerarema_2 D2 14°56′60″S 39°19′00″W Buerarema São José D3 14°56′′06′S 39°18′48′′W Camacan Camacan E1 15°24′00″S 39°30′00″W Camacan Camacan_2 E2 15°30′13″S 39°30′56″W Camacan Vargito E3 15°25′24″S 39°25′59″W Camamu Travessão F1 14°08′13″S 39°16′39″W Canavieiras Barreiras G1 15°35′54″S 39°09′38″W Canavieiras Canavieiras G2 15°32′04″S 39°00′39″W Canavieiras Canavieiras_2 G3 15°39′39′′S 39°08′42′′W Canavieiras Oiticica G4 15°30′08′′S 39°02′03″W Coaraci Coaraci H1 14°37′60″S 39°31′60″W Gongogi Gongogi I1 14°16′27″S 39°29′03″W Ibicaraí Ibicaraí J1 14°53′75″S 39°29′01″W Ibirapitanga Ibirapitanga K1 14°11′39″S 39°25′23″W Ilhéus Aguas de Olivença L1 14°56′00′′S 39°01′48′′W Ilhéus Aritagua L2 14°39′39″S 39°04′33″W Ilhéus Banco do Pedro L3 14°40′51″S 39°15′24″W Ilhéus Castelo Novo L4 14°39′12″S 39°11′39″W Ilhéus Ilhéus L5 14°47′50″S 39°03′82″W Ilhéus Ilhéus_2 L6 14°32′72″S 39°25′39″W Ilhéus Inema L7 14°30′00″S 39°30′00″W Ilhéus Maria Jape L8 14°48′86″S 39°06′00″W Ilhéus Olivença L9 14°58′85″S 39°01′48″W Ilhéus Ponta do Ramo L10 14°29′62″S 39°02′26″W Ilhéus Repartimento L11 14°49′86′′S 39°06′00′′W Itabuna Ferradas M1 14°49′33″S 39°24′16″W Itabuna Itabuna M2 14°46′41″S 39°17′40″W Itacaré Itacaré N1 14°18′33″S 39°00′70″W Itacaré Taboquinhas N2 14°21′01″S 39°10′29″W Itajuípe Itajuípe O1 14°42′12″S 39°29′53″W Itapé Itapé P1 14°52′22″S 39°25′31″W Itapitanga Itapitanga Q1 14°25′30″S 39°27′19″W Jussari Jussari R1 15°11′31′′S 39°23′11′′W Jussari Jussari_2 R2 15°08′26″S 39°31′29″W Jussari Pratas R3 15°11′45″S 39°26′46″W

439 KOCH et al. / Turk J Zool

Table 1. (Continued).

Maraú Fazenda Agua Boa S1 14°04′31′′S 39°03′11″W Maraú Maraú S2 14°09′45″S 39°00′40″W Maraú Tremembé S3 14°10′00″S 39°04′60″W Mascote Mascote T1 15°33′49″S 39°18′34″W Mascote Mascote_2 T2 15°33′00″S 39°16′60″W Mascote Pimenteiras T3 15°34′38″S 39°24′36″W Mascote São João do Paraiso T4 15°36′04″S 39°31′16″W Mascote São João do Paraiso_2 T5 15°38′54″S 39°26′30″W Santa Luzia Betânia U1 15°30′02″S 39°13′14″W Santa Luzia Santa Luzia U2 15°23′23″S 39°18′18″W São José da Vitória Puaias V1 14°03′42″S 39°20′39″W São José da Vitória Unacau V2 15°05′21″S 39°17′42″W Ubaitaba Ubaitaba W1 14°15′01″S 39°19′17″W Ubaitaba Ubaitaba_2 W2 14°24′89″S 39°19′24″W Ubatã Ubatã X1 14°13′32″S 39°27′56″W Una Colônia de Uma Y1 15°15′42″S 39°09′12″W Una Esmai Y2 15°15′08″S 39°09′28″W Una Madisa Y3 15°23′23″S 39°11′51″W Una Uma Y4 15°14′01″S 39°17′42″W Una Una_2 Y5 15°11′04″S 39°00′56″W Uruçuca Serra Grande Z1 14°27′05″S 39°02′35″W Uruçuca Uruçuca Z2 14°33′55″S 39°16′26″W Uruçuca Uruçuca_2 Z3 14°30′45″S 39°12′01″W and which are capable of replacing each other without biology and lifestyles. The leaf-litter ants found in the any significant impact on the community. In turn, the forest localities are classified as follows: army-ants (AA); functional group “specialized soil predator” may include arboreous omnivore (AO); dacetine predator (DP); several species of very distinct behavior, each specializing exclusive homopteran dependent (EHD); fungus-grower in the predation of one or a few groups of organisms; none (FG); large/medium-sized arboreous generalist predator of these species is a priori capable of replacing another to (LAP); large/medium-sized epigeic omnivore (LEO); large assume its ecological role; there are cases of null functional epigeic generalist predator (LEP); medium-sized litter/ redundancy. The local extinction of one of these particular hypogeic omnivore (MLO); medium-sized litter/hypogeic species will have a drastic impact on the community at generalist predator (MLP); small epigeic/litter/hypogeic least. It is this asymmetry and the suggestiveness in the omnivore (SO); small epigeic/litter/hypogeic generalist treatment of the criteria used to classify the functional predator (SLP); soil specialized forager/predator (SSP). groups that we are questioning, considering that the In the second classification used (functional criteria distinguishing a functional group must be based classification B = FC-B), we used more specific aspects on the permutation capacity of its components. and current information available about the biology of We used 2 classifications of ant functional groups the different species (especially for the large number of (FGs) in this study. First, we classified the ants (functional species previously classified/grouped as “fungus-growers” classification A = FC-A) according to the traditional and “soil specialized forager/predators”; see, in addition to scheme used for Neotropical ants (Delabie et al., 2000; the studies already mentioned, Schultz and Brady, 2008; Silvestre et al., 2003; Silva and Brandão, 2010; Brandão Mehdiabadi and Schultz, 2010; AntWiki, 2018, available et al., 2012; Silva et al., 2015). This FG scheme is based online at http://www.antwiki.org/wiki; AntWeb, 2018, on natural history information, phylogeny, microhabitat available online at http://www.antweb.org). Thus, in this distribution, eye size, body size, and body shape; species classification, in addition to the FC-A, the ant species were are grouped according to their potentially similar classified as arboreous/soil omnivore (ASO); coral fungus

440 KOCH et al. / Turk J Zool

Figure 1. Map of the study area in the state of Bahia (A), Brazil (B), showing the locations of the 65 Atlantic Forest sites (C). agriculture (FGCA); fungus generalized higher agriculture used (Winkler), are considered here as “tourists” according (FGHA); fungus leaf cutter agriculture (FGLA); fungus to the expression used by Belshaw and Bolton (1993). lower agriculture (FLA); fungus yeast agriculture (FYA); 2.4. Statistical analysis large/medium-sized arboreous/soil generalist predator We compared the ant species richness with the number of (LASP); large epigeic generalist predator and seed disperser functional ant groups for the two classifications used. For (LEPP); soil specialized predator of other ants (SSA); soil this, the number of ant species per site was compared to specialized predator of eggs, mainly spiders the number of FC-A and FC-B per site by linear regression. (SSAE); soil specialized chilopod predator (SSC); soil Residual analyses were used to check the error distribution specialized isopod forager/predator (SSI); soil specialized and the suitability of the regression models. predator (SSM); soil specialized predator of We illustrate the relationship of correspondence small, soft-bodied arthropods (SSSA); soil specialized between the variables of number of species and functional predator (SST); soil specialized forager/predator of groups, plotting these as a function of the localities from a variety of arthropods (more than 1 group) (SSVA). The the lowest to the greatest species richness of ants; for ant species belonging to functional groups that normally this, we used the function “doubleYScale” of the package do not occur in soil, or which do not forage and/or nest “latticeExtra”. This type of graph allows for plotting two predominantly in the soil, were grouped into the same variables at different scales in the same graph. These functional group: tourist species (TO). These species, analyses were run in the R environment for statistical which should not be expected with the sampling methods computing, v. 3.5.0 (R Development Core Team, 2018).

441 KOCH et al. / Turk J Zool

We calculated expected ant species richness (Chao 1 and 4 jackknife 2 estimators) using 500 randomizations and All data Singoub evaluated differences in sampling efficiency by comparison All data Singoub of species accumulation curves using EstimateS v. 9.1 (Colwell, 2013). 2 2 3. Results o ant secies 1 3.1. Taxonomic ant diversity We recorded a total of 364 ant species in the 65 localities. 1 umber These ants belong to 68 genera in 10 subfamilies: (57.0%), (15.0%), (11.5%), (5.5%), 1 1 2 2 4 4 (3.8%), (3.3%), (1.6%), umber o localities (1.4%), (0.6%), and (0.3%) (Appendix 1). The total number of subfamilies per locality ranges from 5 to 9. The number Figure 2. Species accumulation curves based on the number of of genera per locality varies from 27 to 39. The genera ant species (observed richness) sampled in different localities of the Brazilian Atlantic Forest. Filled circle = all data; filled that were sampled in all 65 locations and recorded in a 2 diamond = all data except singletons and doubletons; unfilled larger number of samples of 1 m of litter were as follows: circle = singletons and doubletons only. (4204 records; several species of the same were found in a single sample, each of which represents 1 record), Solenopsis (3306), Strumigenys (3208), Forel, 1905 occurred in all sites; 3 species were sampled in (2293), Nylanderia (1392), 64 out of 65 localities studied: Pheidole sp.01, Solenopsis (1173), (1041), and (943 sp.01, Hypoponera sp.09; Strumigenys elongata Roger, samples). Three genera were recorded in a single locality: 1863, Wasmannia auropunctata (Roger, 1863), Strumigenys , , and Eurhopalothrix (Appendix denticulata Mayr, 1887, and Strumigenys subedentata Mayr 1). 1887 occurred respectively in 63, 62, 61, and 60 localities The total ant richness varied from 51 to 102 between (Table 2). localities (Appendix 2). We recorded 81 singletons (a single Among other species of ants, those occurring in record of a given species) and 39 doubletons (2 records at least 75% of the sites studied are Cyphomyrmex of a given species). According to the Chao 1 estimator, transversus Emery, 1894, Hypoponera trigona (Mayr, the sampling sufficiency was 81% (estimated richness = 1887), Crematogaster brasiliensis Mayr, 1878, 449 ± 25.07). According to the jackknife 2 estimator, the venusta Forel, 1912, Pheidole sp.04 (recorded in 58 FSs), sampling sufficiency was 74.7% (estimated richness = 487). Odontomachus haematodus (Linnaeus, 1758) (56 FSs), Considering all data, the accumulation curve continued Pheidole sp.03 (55 FSs), imitator Emery, 1894, growing without reaching a plateau, despite the number sagax Kempf, 1973, Hypoponera distinguenda of localities sampled. However, this pattern is completely (Emery, 1890), Sericomyrmex sp.03, Solenopsis sp.08, different when singletons and doubletons are plotted Trachymyrmex cornetzi (Forel, 1912) (sampled in 54 separately from other species. The accumulation curve for FSs), Nylanderia sp.08 (53 FSs), simoni Emery, ant species without singletons and doubletons reached a 1890 (52 FSs), Brachymyrmex sp.02 (51 FSs), Octostruma plateau and could thus be considered representative of the stenognatha Brown & Kempf, 1960, harpax characteristic faunal segment of the stratum of the biome (Fabricius, 1804), Solenopsis sp.07 (occurring in 50 FSs), where they have been sampled. On the other hand, the Prionopelta antillana Forel, 1909, and Solenopsis virulens curve made from the singletons and doubletons is almost (F. Smith, 1858) (sampled in 49 FS) (Table 2). straight and is exclusively dependent on collector effort 3.2. Functional ant diversity (Figure 2). We recorded a total of 13 ant FGs considering FC-A and Pheidole had the greatest number of species (23.2% 26 ant FGs considering FC-B. The number of FC-A ranged of the total) among all 68 sampled genera. Other genera from 10 (in 5 FSs) to 13 (Appendix 2). The majority of that also presented a large number of species were localities presented 11 FGs (44.6%). The FGs registered Strumigenys (6.8%), Hypoponera (5.8%), Gnamptogenys in a minor number of localities were AA, LAP, and EHD, (5.1%), Nylanderia and Solenopsis (4.8% both), Rogeria occurring respectively in 17, 36, and 49 FSs. Among the and Trachymyrmex (3% both), and Brachymyrmex and other FGs, 10 were recorded in all 65 localities studied (2.7% both). Odontomachus meinerti (Appendix 2A).

442 KOCH et al. / Turk J Zool

Table 2. List of ants according to their functional group classification and the number of localities where they were found in the Brazilian Atlantic Forest biome (maximum = 65). Functional groups: AA = army-ants; AO = arboreous omnivore; ASO = arboreous/soil omnivore; DP = dacetine predator; EHD = exclusive homopteran dependent; FG = fungus-grower; LAP = large/medium-sized arboreous generalist predator; LASP = large/ medium-sized arboreous/soil generalist predator; LEO = large/medium-sized epigeic omnivore; LEP = large epigeic generalist predator; MLO = medium-sized litter/hypogeic omnivore; MLP = medium-sized litter/hypogeic generalist predator; SO = small epigeic/litter/hypogeic omnivore; SLP = small epigeic/litter/hypogeic generalist predator; SSP = soil specialized forager/predator; FGCA = coral fungus agriculture; FGHA = fungus generalized higher agriculture; FGLA = fungus leaf cutter agriculture; FLA = fungus lower agriculture; FYA = fungus yeast agriculture; LASP = large/medium-sized arboreous/soil generalist predator; LEPP = large epigeic generalist predator and seed dispersers; SSA = soil specialized predators of other ants; SSAE = soil specialized predators of arthropod eggs; SSC = soil specialized chilopod predator; SSI = soil specialized isopoda forager/predator; SSM = soil specialized millipede predator; SSSA = soil specialized predator of small, soft-bodied arthropods; SST = soil specialized termite predator; SSVA soil specialized forager/predator of a variety of arthropods; TO = tourist species.

Functional group Species Classification A Classification B No. localities Eciton burchelli (Westwood, 1842) AA AA 2 coecus (Latreille, 1802) AA AA 17 Labidus praedator (F. Smith, 1858) AA AA 5 Neivamyrmex sp.03 AA AA 1 muelleri Emery, 1893 AO TO 1 Azteca paraensis bondari Borgmeier, 1937 AO TO 1 Azteca sp.01 AO TO 13 Azteca sp.02 AO TO 7 Azteca sp.03 AO TO 6 Camponotus atriceps (F. Smith, 1958) AO ASO 1 Camponotus bidens Mayr, 1870 AO TO 3 Camponotus canescens Mayr, 1870 AO TO 8 Camponotus cingulatus Mayr, 1862 AO ASO 23 Camponotus crassus Mayr, 1862 AO TO 8 Camponotus fastigatus Roger, 1863 AO LEO 1 Camponotus latangulus Roger, 1863 AO ASO 15 Camponotus nidulans (F. Smith, 1860) AO TO 2 Camponotus rectangularis Emery, 1890 AO TO 2 Camponotus trapezoideus Santschi, 1922 AO TO 2 Camponotus sp.01 AO TO 1 Cardiocondyla minutior Forel, 1899 AO TO 1 Cardiocondyla obscurior Wheeler, 1929 AO TO 1 augustus (Mayr, 1862) AO TO 1 Cephalotes maculatus (F. Smith, 1876) AO TO 1 Cephalotes pavonii (Latreille, 1809) AO TO 4 Cephalotes pusillus (Klug, 1824) AO TO 5 Crematogaster acuta (Fabricius, 1804) AO TO 12 Crematogaster brasiliensis Mayr, 1878 AO ASO 58 Mayr, 1862 AO ASO 11 Crematogaster crinosa Mayr, 1862 AO TO 6

443 KOCH et al. / Turk J Zool

Table 2. (Continued). Crematogaster curvispinosa (Mayr, 1862) AO ASO 11 Crematogaster erecta (Mayr, 1866) AO TO 2 Crematogaster nigropilosa Mayr, 1870 AO TO 2 Crematogaster near flavosensitiva AO ASO 30 Crematogaster sp.01 AO TO 6 Crematogaster sp.02 AO ASO 18 Dolichoderus attelaboides (Fabricius, 1775) AO TO 3 Dolichoderus bidens (Linnaeus, 1758) AO TO 4 Dolichoderus bispinosus (Olivier, 1792) AO TO 7 Dolichoderus lamellosus (Mayr, 1870) AO TO 1 Dolichoderus lutosus (F. Smith, 1858) AO TO 10 floricola (Jerdon, 1851) AO TO 8 Myrmelachista sp.01 AO TO 1 Myrmelachista sp.02 AO TO 1 Nesomyrmex asper (Mayr, 1887) AO TO 1 Nesomyrmex itinerans (Kempf, 1959) AO TO 1 Nesomyrmex spininodis (Mayr, 1887) AO TO 1 Nesomyrmex tristani (Emery, 1896) AO TO 6 Nesomyrmex sp.01 AO TO 1 Procryptocerus adlerzi (Mayr, 1887) AO TO 1 Procryptocerus hylaeus Kempf, 1951 AO TO 2 Procryptocerus pictipes Emery, 1896 AO TO 1 ocellatus Mayr, 1887 DP DP 12 Eurhopalothrix clypeata Brown & Kempf, 1960 DP DP 1 Rhopalothrix sp.01 DP DP 8 Strumigenys alberti Forel, 1893 DP DP 2 Strumigenys appretiatus (Borgmeier, 1954) DP DP 7 Strumigenys carinithorax Borgmeier, 1934 DP DP 27 Strumigenys crassicornis Mayr, 1887 DP DP 16 Strumigenys denticulata Mayr, 1887 DP DP 61 Strumigenys dolichognatha Weber, 1934 DP DP 14 Strumigenys eggersi (Emery, 1890) DP DP 20 Strumigenys elongata Roger, 1863 DP DP 63 Strumigenys emmae (Emery, 1890) DP DP 2 Strumigenys group Appretiatus sp.01 DP DP 3 Strumigenys hindenburgi Forel, 1915 DP DP 1 Strumigenys louisianae Roger, 1863 DP DP 8 Strumigenys perparva Brown, 1958 DP DP 14 Strumigenys propiciens Emery 1906 DP DP 12 Strumigenys rugithorax (Kempf, 1959) DP DP 32 Strumigenys schulzi Emery, 1894 DP DP 38 Strumigenys smithi Forel, 1886 DP DP 6 Strumigenys subedentata Mayr, 1887 DP DP 60 Strumigenys trinidadensis Wheeler, 1922 DP DP 1

444 KOCH et al. / Turk J Zool

Table 2. (Continued). Strumigenys sp.01 DP DP 36 Acropyga decedens (Mayr, 1887) EHD EHD 44 Acropyga fuhrmanni (Forel, 1914) EHD EHD 12 Acropyga smithii Forel, 1893 EHD EHD 8 balzani (Emery, 1890) FG FGLA 1 Acromyrmex coronatus (Fabricius, 1804) FG FGLA 3 Acromyrmex subterraneus brunneus (Forel, 1912) FG FGLA 4 Apterostigma acre Lattke, 1997 FG FGCA 17 Apterostigma auriculatum Wheeler, 1925 FG FGCA 34 Apterostigma group Pilosum sp.01 FG FGCA 24 Apterostigma ierense Weber, 1937 FG FGCA 33 Apterostigma madidiense Weber, 1938 FG FGCA 35 Apterostigma near epinotale FG FGCA 11 Apterostigma sp.01 FG FGCA 21 Atta sexdens rubropilosa Forel, 1908 FG FGLA 6 Atta sexdens (Linnaeus, 1758) FG FGLA 1 Sericomyrmex bondari Borgmeier, 1937 FG FGHA 46 Sericomyrmex sp.01 FG FGHA 2 Sericomyrmex sp.02 FG FGHA 1 Sericomyrmex sp.03 FG FGHA 54 Trachymyrmex cornetzi (Forel, 1912) FG FGHA 54 Trachymyrmex opulentus (Mann, 1922) FG FGHA 1 Trachymyrmex relictus Borgmeier, 1934 FG FGHA 10 Trachymyrmex sp.01 FG FGHA 4 Trachymyrmex sp.02 FG FGHA 2 Trachymyrmex sp.03 FG FGHA 2 Trachymyrmex sp.04 FG FGHA 3 Trachymyrmex sp.05 FG FGHA 1 Trachymyrmex sp.06 FG FGHA 1 Mycetophylax conformis (Mayr, 1884) FG FLA 1 Mycetophylax olitor Forel, 1893 FG FLA 1 Mycocepurus smithi (Forel, 1893) FG FLA 47 Myrmicocrypta microphthalma Borgmeier, 1948 FG FLA 6 Myrmicocrypta near buenzlii FG FLA 14 Myrmicocrypta sp.01 FG FLA 5 Cyphomyrmex peltatus Kempf, 1966 FG FYA 46 Cyphomyrmex rimosus (Spinola, 1853) FG FYA 13 Cyphomyrmex near cornutus FG FYA 1 Cyphomyrmex near plaumanni FG FYA 3 Cyphomyrmex transversus Emery, 1894 FG FYA 58 Cyphomyrmex vorticis Weber, 1940 FG FYA 4 Ectatomma tuberculatum (Olivier, 1792) LAP LASP 15 Neoponera inversa (F. Smith, 1858) LAP TO 2 Neoponera unidentata (Mayr, 1862) LAP LASP 12

445 KOCH et al. / Turk J Zool

Table 2. (Continued). Neoponera villosa (Fabricius, 1804) LAP TO 1 Odontomachus hastatus (Fabricius, 1804) LAP TO 1 elongatus Mayr, 1870 LAP TO 1 Pseudomyrmex filiformis (Fabricius, 1804) LAP TO 1 Pseudomyrmex group Pallidus sp.01 LAP TO 3 Pseudomyrmex gracilis (Fabricius, 1804) LAP TO 1 Pseudomyrmex kuenckeli Emery, 1890 LAP LASP 2 Pseudomyrmex laevifrons Ward, 1989 LAP TO 1 Pseudomyrmex oculatus (F. Smith, 1855) LAP TO 8 Pseudomyrmex rochai (Forel, 1912) LAP TO 1 Pseudomyrmex tenuissimus Emery, 1906 LAP TO 1 Pseudomyrmex sp.01 LAP TO 2 Camponotus group Myrmophaenus sp.01 LEO LEO 6 Camponotus leydigi Forel, 1886 LEO LEO 2 Camponotus novogranadensis Mayr, 1970 LEO LEO 20 Camponotus punctulatus andigenus Emery, 1903 LEO LEO 14 Dolichoderus imitator Emery, 1894 LEO LEO 54 Solenopsis geminata (Fabricius, 1804) LEO LEO 13 Solenopsis virulens (F. Smith, 1858) LEO LEO 49 Ectatomma edentatum Roger, 1863 LEP LEP 16 Ectatomma muticum Mayr, 1870 LEP LEP 1 Ectatomma permagnum Forel, 1908 LEP LEP 2 constricta Mayr, 1884 LEP LEP 33 Neoponera apicalis (Latreille, 1802) LEP LEP 1 Neoponera striatinodis (Emery, 1890) LEP LEP 1 Neoponera verenae (Forel, 1922) LEP LEP 3 Odontomachus haematodus (Linnaeus, 1758) LEP LEP 56 Odontomachus meinerti Forel, 1905 LEP LEP 65 Pachycondyla crassinoda (Latreille, 1802) LEP LEP 8 (Fabricius, 1804) LEP LEP 50 Pachycondyla near magnifica LEP LEP 1 Pachycondyla striata F. Smith, 1858 LEP LEP 2 Pseudomyrmex tenuis (Fabricius, 1804) LEP LEP 36 Pseudomyrmex termitarius (F. Smith, 1855) LEP LEP 5 Odontomachus chelifer (Latreille, 1802) LEP LEPP 1 (Emery, 1894) MLO MLO 42 Hylomyrma immanis Kempf, 1973 MLO MLO 32 Hylomyrma sagax Kempf, 1973 MLO MLO 54 Lachnomyrmex plaumanni Borgmeier, 1957 MLO MLO 10 Kempf, 1961 MLO MLO 31 Megalomyrmex goeldii Forel, 1912 MLO MLO 28 Megalomyrmex ayri Brandão, 1990 MLO MLO 2 Megalomyrmex modestus Emery, 1896 MLO MLO 2 Megalomyrmex pusillus Forel, 1912 MLO MLO 3

446 KOCH et al. / Turk J Zool

Table 2. (Continued). (W.M. Wheeler, 1909) MLO MLO 22 Megalomyrmex sp.01 MLO MLO 1 Megalomyrmex sp.02 MLO MLO 6 Nylanderia sp.01 MLO MLO 18 Nylanderia sp.02 MLO MLO 17 Nylanderia sp.03 MLO MLO 22 Nylanderia sp.04 MLO MLO 24 Nylanderia sp.05 MLO MLO 22 Nylanderia sp.06 MLO MLO 6 Nylanderia sp.07 MLO MLO 3 Nylanderia sp.08 MLO MLO 53 Nylanderia sp.09 MLO MLO 15 Nylanderia sp.10 MLO MLO 19 Nylanderia sp.11 MLO MLO 37 Nylanderia sp.12 MLO MLO 28 Nylanderia sp.13 MLO MLO 11 Nylanderia sp.14 MLO MLO 8 Pheidole fimbriata Roger, 1863 MLO MLO 22 Anochetus oriens Kempf, 1964 MLP MLP 1 Basiceros disciger (Mayr, 1887) MLP MLP 3 Gnamptogenys acuminata (Emery, 1896) MLP MLP 16 Gnamptogenys brunnea Lattke, 1995 MLP MLP 2 Gnamptogenys annulata (Mayr, 1887) MLP MLP 2 Gnamptogenys continua (Mayr, 1887) MLP MLP 3 Gnamptogenys gracilis (Santschi, 1929) MLP MLP 25 Gnamptogenys horni (Santschi, 1929) MLP MLP 14 Gnamptogenys mediatrix Brown, 1958 MLP MLP 2 Gnamptogenys menozzi (Borgmeier, 1928) MLP MLP 2 Gnamptogenys minuta (Emery, 1896) MLP MLP 3 Gnamptogenys moelleri (Forel, 1912) MLP MLP 32 Gnamptogenys pleurodon (Emery, 1896) MLP MLP 19 Gnamptogenys near horni MLP MLP 6 Gnamptogenys striatula Mayr, 1884 MLP MLP 5 Gnamptogenys sp.01 MLP MLP 5 Gnamptogenys sp.02 MLP MLP 21 Heteroponera angulata Borgmeier, 1959 MLP MLP 1 Heteroponera mayri Kempf, 1962 MLP MLP 1 Neoponera schultz (W.P. Mackay & E.E. Mackay, 2010) MLP MLP 4 Neoponera venusta Forel, 1912 MLP MLP 58 gilberti (Kempf, 1960) MLP MLP 17 Pseudoponera stigma (Fabricius, 1804) MLP MLP 6 arhuaca (Forel, 1901) MLP MLP 42 Rasopone ferruginea (F. Smith, 1858) MLP MLP 4 Anochetus bispinosus (F. Smith, 1858) SLP SLP 1

447 KOCH et al. / Turk J Zool

Table 2. (Continued). Anochetus mayri Emery, 1884 SLP SLP 48 Anochetus neglectus Emery, 1894 SLP SLP 1 Anochetus simoni Emery, 1890 SLP SLP 52 Hypoponera foreli (Mayr, 1887) SLP SLP 40 Hypoponera group Foreli sp.01 SLP SLP 1 Hypoponera group Foreli sp.02 SLP SLP 1 Hypoponera distinguenda (Emery, 1890) SLP SLP 54 Hypoponera iheringi (Forel, 1908) SLP SLP 1 Hypoponera opaciceps (Mayr, 1887) SLP SLP 6 Hypoponera opacior (Forel, 1893) SLP SLP 4 Hypoponera trigona (Mayr, 1887) SLP SLP 58 Hypoponera sp.01 SLP SLP 6 Hypoponera sp.02 SLP SLP 4 Hypoponera sp.03 SLP SLP 3 Hypoponera sp.04 SLP SLP 1 Hypoponera sp.05 SLP SLP 2 Hypoponera sp.06 SLP SLP 1 Hypoponera sp.07 SLP SLP 1 Hypoponera sp.08 SLP SLP 1 Hypoponera sp.09 SLP SLP 64 Blepharidatta delabiei Brandão, Feitosa & Diniz, 2015 SO SO 15 Brachymyrmex admotus Mayr, 1887 SO SO 17 Brachymyrmex coactus Mayr, 1887 SO SO 3 Brachymyrmex delabiei Ortiz & Fernández, 2014 SO SO 1 Brachymyrmex myops Emery, 1906 SO SO 1 Brachymyrmex sp.01 SO SO 10 Brachymyrmex sp.02 SO SO 51 Brachymyrmex sp.03 SO SO 9 Brachymyrmex sp.04 SO SO 18 Carebara panamensis (W.M. Wheeler, 1925) SO SO 22 Carebara urichi (W.M. Wheeler, 1922) SO SO 37 Carebara sp.01 SO SO 6 Carebarella sp.01 SO SO 2 Cryptomyrmex boltoni (Fernández, 2003) SO SO 17 Dorymyrmex thoracicus Gallardo, 1916 SO SO 1 Linepithema humile (Mayr, 1868) SO SO 7 Linepithema sp.01 SO SO 1 Ochetomyrmex neopolitus Fernández, 2003 SO SO 7 bruchi Santschi, 1926 SO SO 4 Pheidole mendicula W.M. Wheeler, 1925 SO SO 3 Pheidole triconstricta Forel, 1886 SO SO 1 Pheidole tristis (F. Smith, 1858) SO SO 1 Pheidole sp.01 SO SO 64 Pheidole sp.02 SO SO 26

448 KOCH et al. / Turk J Zool

Table 2. (Continued). Pheidole sp.03 SO SO 55 Pheidole sp.04 SO SO 58 Pheidole sp.05 SO SO 41 Pheidole sp.06 SO SO 38 Pheidole sp.07 SO SO 4 Pheidole sp.08 SO SO 21 Pheidole sp.09 SO SO 47 Pheidole sp.10 SO SO 16 Pheidole sp.11 SO SO 17 Pheidole sp.12 SO SO 1 Pheidole sp.13 SO SO 42 Pheidole sp.14 SO SO 5 Pheidole sp.15 SO SO 23 Pheidole sp.16 SO SO 10 Pheidole sp.17 SO SO 7 Pheidole sp.18 SO SO 18 Pheidole sp.19 SO SO 17 Pheidole sp.20 SO SO 3 Pheidole sp.21 SO SO 23 Pheidole sp.22 SO SO 1 Pheidole sp.23 SO SO 2 Pheidole sp.24 SO SO 17 Pheidole sp.25 SO SO 7 Pheidole sp.26 SO SO 15 Pheidole sp.27 SO SO 9 Pheidole sp.28 SO SO 14 Pheidole sp.29 SO SO 2 Pheidole sp.30 SO SO 44 Pheidole sp.31 SO SO 20 Pheidole sp.32 SO SO 12 Pheidole sp.33 SO SO 6 Pheidole sp.34 SO SO 1 Pheidole sp.35 SO SO 3 Pheidole sp.36 SO SO 5 Pheidole sp.37 SO SO 5 Pheidole sp.38 SO SO 5 Pheidole sp.39 SO SO 1 Pheidole sp.40 SO SO 2 Pheidole sp.41 SO SO 29 Pheidole sp.42 SO SO 16 Pheidole sp.43 SO SO 4 Pheidole sp.44 SO SO 12 Pheidole sp.45 SO SO 2 Pheidole sp.46 SO SO 3

449 KOCH et al. / Turk J Zool

Table 2. (Continued). Pheidole sp.47 SO SO 2 Pheidole sp.48 SO SO 8 Pheidole sp.49 SO SO 4 Pheidole sp.50 SO SO 1 Pheidole sp.51 SO SO 4 Pheidole sp.52 SO SO 1 Pheidole sp.53 SO SO 16 Pheidole sp.54 SO SO 6 Pheidole sp.55 SO SO 1 Pheidole sp.56 SO SO 2 Pheidole sp.57 SO SO 4 Pheidole sp.58 SO SO 2 Pheidole sp.59 SO SO 3 Pheidole sp.60 SO SO 1 Pheidole sp.61 SO SO 1 Pheidole sp.62 SO SO 2 Pheidole sp.63 SO SO 1 Pheidole sp.64 SO SO 2 Rogeria alzatei Kugler, 1994 SO SO 12 Rogeria belti Mann, 1922 SO SO 1 Rogeria besucheti C. Kugler, 1994 SO SO 1 Rogeria blanda (F. Smith, 1858) SO SO 10 Rogeria foreli Emery, 1894 SO SO 5 Rogeria micromma Kempf, 1961 SO SO 1 Rogeria scobinata C. Kugler, 1994 SO SO 5 Rogeria subarmata (Kempf, 1961) SO SO 38 Rogeria sp.01 SO SO 16 Solenopsis globularia (F. Smith, 1858) SO SO 1 Solenopsis pollux Forel, 1893 SO SO 1 Solenopsis sp.01 SO SO 64 Solenopsis sp.02 SO SO 27 Solenopsis sp.03 SO SO 13 Solenopsis sp.04 SO SO 30 Solenopsis sp.05 SO SO 2 Solenopsis sp.06 SO SO 3 Solenopsis sp.07 SO SO 50 Solenopsis sp.08 SO SO 54 Solenopsis sp.09 SO SO 4 Solenopsis sp.10 SO SO 1 Wasmannia auropunctata (Roger, 1863) SO SO 62 Wasmannia lutzi Forel, 1908 SO SO 34 Wasmannia sp.01 SO SO 20 Cerapachys near splendens SSP SSA 1 Cerapachys splendens Borgmeier, 1957 SSP SSA 11

450 KOCH et al. / Turk J Zool

Table 2. (Continued). Octostruma balzani (Emery, 1894) SSP SSA 22 Octostruma iheringi (Emery, 1888) SSP SSA 44 Octostruma petiolata (Mayr, 1887) SSP SSA 29 Octostruma rugifera (Mayr, 1887) SSP SSA 47 Octostruma stenognatha Brown & Kempf, 1960 SSP SSA 50 Octostruma sp.01 SSP SSA 5 Tranopelta gilva Mayr, 1866 SSP SSA 2 Typhlomyrmex pusillus Emery, 1894 SSP SSA 9 Discothyrea sexarticulata Borgmeier, 1954 SSP SSAE 21 Fulakora agostii (Lacau & Delabie, 2002) SSP SSC 12 Fulakora armigera (Mayr, 1887) SSP SSC 3 Fulakora elongata (Santschi, 1912) SSP SSC 1 Fulakora lurilabes (Lattke, 1991) SSP SSC 4 arcuata Roger, 1861 SSP SSI 1 Leptogenys crudelis Borgmeier, 1930 SSP SSI 1 Leptogenys pusilla (Emery, 1890) SSP SSI 2 Leptogenys unistimulosa Roger, 1863 SSP SSI 1 Leptogenys sp.01 SSP SSI 6 Stegomyrmex vizottoi Diniz, 1990 SSP SSM 22 contumax Kempf, 1975 SSP SSM 14 Thaumatomyrmex fraxiniD’ Esquivel & Jahyny, 2017 SSP SSM 32 Thaumatomyrmexsp.02 SSP SSM 5 Cryptopone holmgreni (W.M. Wheeler, 1925) SSP SSSA 1 Neoponera bucki (Borgmeier, 1927) SSP SST 11 Neoponera laevigata (F. Smith, 1858) SSP SST 2 Prionopelta antillana Forel, 1909 SSP SSVA 49

For FC-B, the number of FGs ranged from 14 to 22 4. Discussion (values found, respectively, in 1 and 2 localities). The In a previous study, Silva and Brandão (2014) found 530 majority of localities presented 17 FGs (27.7%). The FGs species of ants using Winkler traps in the largest series of registered in a minor number of localities were LEPP, ant species found in a single study in 26 localities along FGLA, SSI, SST, AA, and SSC, occurring respectively in 3400 km of the Atlantic rainforest biome and a gradient 2, 8, 11, 14, 17, and 18 localities. Among the other FGs, 9 of up to 20° latitude. For the state of Bahia, Santos et al. were recorded in all 65 localities studied (Appendix 2B). (2017) performed one of the largest inventories of soil ants (using both pitfall and Winkler traps) in a single state of 3.3. Relationship between taxonomic and functional ant Brazil, recording 391 species of ants in 11 distinct Atlantic diversity rainforest landscapes along approximately 1000 km. In There was no significant relationship between species the present study, despite a smaller geographic coverage, 2 richness and FC-A (R = 0.048, P = 0.0807; Figure 3); we sampled a larger number of Atlantic Forest sites however, we found a significant relationship between than previous studies, finding a representative number 2 species richness and FC-B (R = 0.349, P < 0.001; Figure 3). of ants (364 species), which represents not only part of When comparing the relationship between the number of the diversity already recorded in the studies of Silva and species and that of FGs, it was observed that the variables Brandão (2014) and Santos et al. (2017), but also many ant did not present any pattern when considering the FC-A species not recorded in those two studies. and presented a low matching pattern when considering In general, the Atlantic Forest environments studied the FC-B (Appendix 2). presented great taxonomic ant diversity. These results

451 KOCH et al. / Turk J Zool

extremely small and known to be a cryptobiotic inhabitant 24 of the forest litter and specialist predator of spider eggs Class ficat on A (Delabie et al., 2000; Solsa-Calvo and Longino, 2008). The oups 22 Class ficat on B two species representing the subfamily Heteroponerinae, 20 Heteroponera angulata Borgmeier, 1959 and Heteroponera 18 mayri Kempf, 1962, also present specialized habits and are related to soil environments (Feitosa, 2015). This genus is 16 known to have nesting habits in trunks and fallen branches 14 (Lattke, 2003), with still-unknown food habits (Weiser and of funct onal gr 12 Kaspari, 2006). The variations in ant richness among the different 10 localities studied here are probably the result of a set of Number 8 environmental and structural factors of the different sites 35 45 55 65 75 85 95 105 sampled. The natural dynamics of the litter can also affect Ant r chness the heterogeneity of this stratum (Queiroz et al., 2013), influencing the offerings of colonization sites and a variety of food resources (Campos et al., 2007). Several studies Figure 3. Relationship between number of functional groups (classifications A: FC-A and B: FC-B) with ant richness in 65 have shown that the litter quality strongly affects food localities of the Atlantic Forest biome in Bahia state, Brazil. resources, availability of nesting sites, and microclimatic Appendix 1. List of ant species registered in 26 municipalities conditions, and thus the structure of ant assemblages and 65 localities of Atlantic Forest in Bahia state, Brazil. (Levings and Windsor, 1984; Benson and Harada, 1988; Municipalities: A–Z; number in parentheses represents the Kaspari, 1996; Campos et al., 2003). number of locations sampled by municipality. It is worth mentioning that we recorded a large number of singletons or doubletons (33.8%). A single specimen or record may suggest a rare species, such as a confirm that the Brazilian Atlantic Forest is one of the generalist species occasionally feeding in the locality, or a tropical biomes that present the highest ant diversity (Silva specialist occurring only in a single forest site. Such high and Brandão, 2014; Santos et al., 2017). An apparently proportions of unique species are consistent with other insufficient sampling effort (considering all species), biodiversity studies of arthropods in tropical regions despite the large number of localities and samples, is a (Coddington et al., 2009), and with other ant studies common situation found in studies of biodiversity all undertaken in the Atlantic Forest (Pacheco et al., 2009; over the tropics (Leponce et al., 2004; Feitosa and Ribeiro, Freitas et al., 2014; Santos et al., 2017). For FC-B, we 2005; Delabie et al., 2007; Freitas et al., 2014; Santos et al., classified a number of these species as “tourists” according 2017), since many rare or tourist species continue to be to Belshaw and Bolton (1993). The number of species in encountered for the first time even after intense sampling this group reflects the great variety of nesting and foraging efforts (Santos, 2003; Leponce et al., 2010). The influence of strategies in Formicidae, along with reflecting numerous these species on the overall richness estimation is evident opportunistic species in the studied localities. Few studies when the accumulation curves of Figure 2 are compared. have sought to understand what these species are doing in As in most ant samples in the whole Neotropical region the litter; their activity in this stratum could be seasonal, (Kempf, 1972; Delabie et al., 2000; Leponce et al., 2004; for example (see Delabie et al., 2000). It seems important Groc et al., 2014; Silva and Brandão, 2014; Santos et al., to investigate how these species can affect the organization 2017), Myrmicinae was the subfamily that presented the of litter ant assemblages. largest number of species (more than 50% of recorded The variation in the number of FGs (as was also species). The representative number of species of the observed for ant richness) found among forest localities subfamily Ponerinae is possibly related to the amount when considering a more specific classification (FC-B) of resources available in the forest leaf litter. Ants of this confirms that each habitat holds a particular assemblage subfamily are known to be predators and frequently have of ants with different resource requirements and optimal cryptic and active foraging behavior (Delabie et al., 2015b). environmental conditions. Variation in habitat complexity The subfamilies Heteroponerinae and Proceratiinae (both greatly affects the abundance of resources as well as with less than 1% representation) are rarely found in microclimatic and abiotic conditions for ants (Groc et al., any forest environment of the Neotropical region. The 2014). single representative of the subfamily Proceratiinae in the This range of functions performed by different species present study, Discothyrea sexarticulata Borgmeier, 1954, is is observed even among species within the same genus. An

452 KOCH et al. / Turk J Zool example of this assumption is the genus Neoponera, which The conservation of biodiversity is essential for possesses 10 species recorded in the studied localities, maintaining stable ecosystem services (Tilman et al., these being distributed in 4 different functional groups. 1996). With the global loss of biodiversity that today’s In addition, the differences observed between FC-A and world is undergoing (Kolbert, 2014), the decrease in FC-B suggest the importance of considering intrinsic species richness may rapidly result in decreased ecosystem aspects of the biology of the different genera and species functioning levels (Hooper et al., 2005) and stability of ants. The species of the genera Cerapachys, Cryptopone, (Tilman et al., 2006). However, this effect depends on Discothyrea, Fulakora, Leptogenys, Octostruma, changes in community composition and ecosystem Prionopelta, Stegomyrmex, Thaumatomyrmex, Tranopelta, functions involved, i.e. the nature of species that are lost and Typhlomyrmex, all classified as soil specialized (Fournier et al., 2017). In addition to taxonomic diversity, foragers/predators, for example, were subdivided into 8 the additional information provided by other facets of different functional groups when a more specific functional biodiversity, such as phylogenetic and functional diversity, classification was considered (see Table 2). The occurrence is often neglected in ecosystem management, although it is of these genera varied considerably in the 65 FSs studied. fundamental to understand, predict, and manage changes Octostruma stenognatha Brown & Kempf, 1960, Prionopelta in the functions and properties of the ecosystem (Fournier antillana Forel, 1909, Octostruma rugifera (Mayr, 1887), et al., 2017). For leaf-litter ants, Silva and Brandão and Octostruma iheringi (Emery, 1888) were frequently (2014) demonstrated that greater accuracy in predicting sampled in the FSs studied (occurring in >70%), while the biodiversity patterns can be achieved by combining occurrence of other species ranged from 1 to 32 FSs. The different components of the ant community structure importance of ants to the functioning of the ecosystem instead of using traditional variables. (Folgarait, 1998; Del Toro et al., 2012) makes them highly In conclusion, our study demonstrates that the suitable indicator taxa. Therefore, it is reasonable that Brazilian Atlantic Forest localities that present great the functional aspects involving the biology of different taxonomic diversity do not necessarily also correspond species or subgroups within this group are better explored. to great functional diversity. Our results show that the According to Alonso (2010), conservation efforts of number of functional groups is not always a good predictor ant species should be concentrated on single species (a of species richness. However, the relationship between the common approach to vertebrate conservation), depending two metrics we compared here differs according to the on their specific conservation needs, their local rarity, level of functional classification used. In a larger sense, our or their ecological role. We believe that this could be an findings suggest that the contrast in the use of taxonomic interesting alternative particularly useful for the groups of or functional diversity has more nuanced outcomes specialist species, which prior to this study were generally about the Atlantic Forest ant communities than has grouped as “specialist predator species”. This approach been previously considered. Our findings also highlight should also be used for the functional groups of leaf- the value of biodiversity inventory studies that explicitly cutting ants and other specialized functional groups. incorporate potentially important functional aspects of The inconsistent patterns between species richness the species and in the analyses that integrate such data. and the number of ant FGs demonstrate the importance Integrating different biodiversity perspectives is crucial for of considering both taxonomic and functional diversity the successful conservation of the Brazilian Atlantic Forest together. Ants are one of the most diverse, abundant, ants. and ecologically relevant groups of organisms on earth (Hölldobler and Wilson, 1990; Alonso, 2010), supporting Acknowledgments a range of ecological functions in terrestrial environments We thank the colleagues of the Myrmecology Laboratory (Folgarait, 1998; Underwood and Fisher, 2006; del Toro (CEPEC/CEPLAC) for their help in processing the et al., 2012). In tropical forests, the ecosystem services biological material. EBAK acknowledges CAPES for the assigned to ants are generally related to their trophic scholarship granted; JHCD acknowledges his research position or feeding behavior (Philpott and Armbrecht, grant from CNPq. 2006; Leal et al., 2012), usually linked to their morphology (Gibb et al., 2015).

453 KOCH et al. / Turk J Zool

References

Agosti D, Alonso LE (2000). The ALL protocol: a standard protocol Coddington JA, Agnarsson I, Miller JA, Kuntner M, Hormiga G for the collection of ground-dwelling ants. In: Agosti D, Majer (2009). Undersampling bias: the null hypothesis for singleton JM, Alonso LE, Schultz TR, editors. Ants: Standard Methods species in tropical arthropod surveys. J Anim Ecol 78: 573-584. for Measuring and Monitoring Biodiversity. Washington, DC, Colwell RK (2013). EstimateS: Statistical Estimation of Species Rich- USA: Smithsonian Institution Press, pp. 122-144. ness and Shared Species from Samples. Version 9. Storrs, CT, Alonso LE (2010). Ant conservation: current status and a call to ac- USA: University of Connecticut. tion. In: Lach L, Parr CL, Abbott KL, editors. Ant Ecology. Ox- Delabie JHC, Agosti D, Nascimento IC (2000). Litter ant communities ford, UK: Oxford University Press, pp. 59-74. of the Brazilian Atlantic rain forest region. In: Agosti D, Majer Andersen AN (1995). A classification of Australian ant communities, JD, Alonso LE, Schultz T, editors. Sampling Ground-Dwelling based on functional groups which parallel plant life-forms in Ants: Case Studies from the World’s Rain Forests. Perth, relation to stress and disturbance. J Biogeogr 22: 15-29. Australia: Curtin Institute of Technology, pp. 1-17. Baccaro FB, Feitosa RM, Fernandez F, Fernandes IO, Izzo TJ, Souza Delabie JHC, Benton FP, Medeiros MA (1991). La polydomie chez JLP, Solar R (2015). Guia para os gêneros de formigas do Brasil. les Formicidae arboricoles dans les cacaoyeres du Brésil: op- Manaus: Editora INPA (in Portuguese). timisation de l’occupation de l’espace ou strategie defensive. Belshaw RB, Bolton B (1993). The effect of forest disturbance on the Soc 7: 173-178 (in French). leaf litter ant fauna in Ghana. Biodivers Conserv 2: 656-666. Delabie JHC, DaRocha WD, Marques TED, Mariano CSF (2015). Benson WW, Harada AY (1988). Local diversity of tropical and Importância das formigas em estudos de biodiversidade e o temperate ant faunas (: Formicidae). Acta papel desses insetos nos ecossistemas. In: Suguituru SS, Morini Amazon 18: 275-289. MSC, Feitosa RM, Da Silva RR, editors. Formigas do Alto Ti- etê. Bauru, Brazil: Canal 6 Editora, pp. 55-72 (in Portuguese). Bestelmeyer BT, Agosti D, Alonso LE, Brandão CRF, Brown WL Jr, Delabie JHC, Silvestre R (2000). Field techniques for the study Delabie JHC, Feitosa RM, Serrão JE, Mariano CSF, Majer JD (2015). of ground-living ants: an overview, description, and evalua- As formigas Poneromorfas do Brasil. 1st ed. Ilhéus, Brazil: Edi- tion. In: Agosti D, Majer JD, Alonso LE, Schultz TR, editors. tus (in Portuguese). Ants: Standard Methods for Measuring and Monitoring Bio- Delabie JHC, Jahyny B, Nascimento IC, Mariano CSF, Lacau S, diversity. Washington, DC, USA: Smithsonian Institution, pp. Campiolo S, Philpott SM, Leponce M (2007). Contribution of 122-144. cocoa plantations to the conservation of native ants (Insecta: Brandão CRF, Silva RR, Delabie JHC (2012). Neotropical ants Hymenoptera: Formicidae) with a special emphasis on the (Hymenoptera) functional groups: Nutritional and applied Atlantic Forest fauna of southern Bahia, Brazil. Biodivers implications. In: Panizzi AR, Parra JRP, editors. Insect Conserv 16: 2359-2384. Bioecology and Nutrition for Integrated Pest Management. Del Toro I, Ribbons RR, Pelini SL (2012). The little things that run Boca Raton, FL, USA: CRC Press, pp. 213-236. the world revisited: a review of ant-mediated ecosystem ser- Brown JH, Heske EJ (1990). Control of a desert-grassland transition vices and disservices (Hymenoptera: Formicidae). Myrmecol by a keystone rodent guild. Science 250: 1705-1707. News 17: 133-146. Campiolo S, Delabie JHC (2000). Caractérisation de la myrmécofaune Dias NS, Zanetti R, Santos MS, Louzada J, Delabie JHC (2008). de la litière de la forêt atlantique du sud de Bahia-Brésil. Interação de fragmentos florestais com agroecossistemas In: l’Union Internationale pour l’Étude des Insectes Sociaux, adjacentes de café e pastagem: respostas das comunidades de Section Française. Actes des Colloque Insectes Sociaux. Tours, formigas (Hymenoptera, Formicidae). Iheringia Ser Zool 98: France: l’Université Paul Sabatier de Toulouse, pp. 65-70 (in 136-142 (in Portuguese). French). Feitosa RM (2015). Estado da arte sobre a taxonomia e filogenia Campos RBF, Schoereder JH, Sperber CF (2003). Local determinants de Heteroponerinae. In: Delabie JHC, Feitosa RM, Serrão JE, of species richness in litter ant communities (Hymenoptera: Mariano CSF, Majer JD (2015). As formigas Poneromorfas do Formicidae). Sociobiology 41: 357-367. Brasil. 1st ed. Ilhéus, Brazil: Editus, pp. 33-41 (in Portuguese). Campos RBF, Schoereder JH, Sperber CF (2007). Small-scale patch Feitosa RSM, Ribeiro AS (2005). Mirmecofauna (Hymenoptera: dynamics after disturbance in litter ant communities. Basic Formicidae) de serapilheira de uma área de Floresta Atlântica Appl Ecol 8: 36-43. no Parque Estadual da Cantareira – São Paulo, Brasil. Biotemas 18: 51-71 (in Portuguese). Carvalho KS, Vasconcelos HL (2002). Comunidade de formigas que nidificam em pequenos galhos da serrapilheira em floresta da Fisher BL, Robertson H (2002). Comparison and origin of forest and Amazônia Central, Brasil. Rev Bras Entomol 46: 115-121 (in grassland ant assemblages in the high plateau of Madagascar. Portuguese). Biotropica 34: 155-167. Chao A, Chiu CH, Hsieh TC (2012). Proposing a resolution to Folgarait PJ (1998). Ant biodiversity and its relationship to ecosystem debates on diversity partitioning. Ecology 93: 2037-2051. functioning: a review. Biodiversity Conservation 7: 1221-1244.

454 KOCH et al. / Turk J Zool

Fonseca GAB, Alger K, Pinto LP, Araujo M, Cavalcanti R (2004). Lattke JE (2003). Biogeografia de las hormigas neotropicais. In: Corredores de biodiversidade: o corredor central da Mata Fernández F, editor. Introduccion a las hormigas de la región Atlântica. In: Arruda MB, Sá LFSN, editors. Corredores Neotropical. Bogotá, : Instituto de Investigación de Ecológicos: uma Abordagem Integradora de Ecossistemas no Recursos Biológicos Alexander Von Humbolt, pp. 65-85 (in Brasil. Brasília, Brazil: IBAMA, pp. 47-65 (in Portuguese). Spanish). Fournier B, Mouly A, Moretti M, Gillet F (2017). Contrasting Leal IR, Filgueiras BKC, Gomes JP, Iannuzzi L, Andersen AN (2012). processes drive alpha and beta taxonomic, functional and Effects of habitat fragmentation on ant richness and functional phylogenetic diversity of orthopteran communities in composition in Brazilian Atlantic forest. Biodivers Conserv 21: grasslands. Agr Ecosyst Environ 242: 43-52. 1687-1701. Freitas JMS, Delabie JHC, Lacau S (2014). Composition and diversity Leponce M, Meyer C, Häuser CL, Bouchet P, Delabie JHC, Weigt of ant species into leaf litter of two fragments of a semi-decid- L, Basset Y (2010). Challenges and solutions for planning and uous seasonal forest in the Atlantic Forest biome in Barra do implementing large-scale biotic inventories. Abc Taxa 8: 18-48. Choça, Bahia, Brazil. Sociobiology 61: 9-20. Leponce M, Theunis L, Delabie JHC, Roisin Y (2004). Scale Gerisch M, Agostinelli V, Henle K, Dziock F (2011). More species, dependence of diversity measures in a leaf-litter ant assemblage. but all do the same: contrasting effects of flood disturbance on Ecography 27: 253-257. ground beetle functional and species diversity. Oikos 121: 508- Levings SC, Windsor DM (1984). Litter moisture-content as a 515. determinant of litter arthropod distribution and abundance Gibb H, Stoklosa J, Warton DI, Brown AM, Andrew NR, Cunning- during the dry season on Barro-Colorado Island, . ham A (2015). Does morphology predict trophic position and Biotropica 16: 125-131. habitat use of ant species and assemblages? Oecologia 177: 519- Lewinsohn TM, Freitas AVL, Prado PI (2005). Conservation of 531. terrestrial invertebrates and their habitats in Brazil. Conserv Biol 19: 640-645. Groc S, Delabie JHC, Fernández F, Leponce M, Orivel J, Silvestre R, Vasconcelos HL, Dejean A (2014). Leaf-litter ant communities McGeoch MA, Sithole H, Samways MJ, Simaika JP, Pryke JS, (Hymenoptera: Formicidae) in a pristine Guianese rainforest: Picker M, Uys C, Armstrong AJ, Dippenaar-Schoeman AS, stable functional structure versus high species turnover. Myr- Engelbrecht IA et al. (2011). Conservation and monitoring of mecol News 19: 43-51. invertebrates in terrestrial protected areas. Koedoe 53: a1000. Hölldobler B, Wilson EO (1990). The Ants. Cambridge, MA, USA: McGlynn TP, Carr RA, Carson JH, Buma J (2004). Frequent nest Harvard University Press. relocation in the ant araneoides: Resources competition and natural enemies. Oikos 106: 611-621. Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S et al. (2005). Mehdiabadi NJ, Schultz TR (2010). Natural history and phylogeny Effects of biodiversity on ecosystem functioning: a consensus of the fungus-farming ants (Hymenoptera: Formicidae: of current knowledge. Ecol Monogr 75: 3-35. Myrmicinae: Attini). Myrmecol News 13: 37-55. Kaspari M (1996) Testing resource-based models of patchiness in Moretti M, De Bello F, Roberts SPM, Potts SG (2009). Taxonomical four Neotropical litter ant assemblages. Oikos 76: 443-454. vs. functional responses of bee communities to fire in two contrasting climatic regions. J Anim Ecol 78: 98-108. Kaspari M (2000) A primer on ant ecology. In: Agosti D, Majer JD, Alonso LE, Schultz TR, editors. Standard Methods for Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J Measuring and Monitoring Biodiversity. Washington, DC, (2000). Biodiversity hotspots for conservation priorities. Na- USA: Smithsonian Institution Press, pp. 9-24. ture 403: 853-858. Oliveira-Filho AT, Fontes MAL (2000). Patterns of floristic Kaspari M, Weiser M (1999). The size–grain hypothesis and differentiation among Atlantic Forests in Southeastern Brazil, interspecific scaling in ants. Funct Ecol 13: 530-538. and the influence of climate. Biotropica 32: 793-810. Kempf WW (1972). Catálogo abreviado das formigas da Região Pacheco R, Silva RR, Morini MSdeC, Brandão CRF (2009). A Neotropical. Stud Entomol 15: 3-344 (in Portuguese). comparison of the leaf-litter ant fauna in a secondary Atlantic Kolbert E (2014). The Sixth Extinction: An Unnatural History. New Forest with an adjacent pine plantation in Southeastern Brazil. York, NY, USA: Henry Holt & Company. Neotrop Entomol 38: 55-65. Köppen W (1936). Das Geographisches System der Klimate. Philpott SM, Armbrecht I (2006). Biodiversity in tropical agroforests Handbuch der Klimatologie, Vol. 3. Berlin, Germany: and the ecological role of ants and ant diversity in predatory Gebrüder Bornträger (in German). function. Ecol Entomol 31: 369-377. Larsen TH, Williams MN, Kremen C (2005). Extinction order Queiroz ACM, Ribas CR, França FM (2013). Microhabitat character- and altered community structure rapidly disrupt ecosystem istics that determine ant richness patterns: the importance of functioning. Ecol Lett 8: 538-547. leaf litter for epigaeic ants. Sociobiology 60: 397-404.

455 KOCH et al. / Turk J Zool

R Development Core Team (2018). R: A Language and Environment Silva RR, Silvestre R, Brandão CRF, Morini MSC, Delabie JHC for Statistical Computing. Vienna, Austria: R Foundation for (2015). Grupos tróficos e guildas de formigas poneromorfas. Statistical Computing. In: Delabie JHC, Feitosa RM, Serrão JE, Mariano CSF, Majer JD, editors. As formigas Poneromorfas do Brasil. Ilhéus, Brazil: Ribeiro MC, Martensen AC, Metzger JP, Tabarelli M, Scarano, For- SciELO Books–Editus, pp. 163-179. tin MJ (2011). The Brazilian Atlantic forest: a shrinking biodi- versity hotspot. In: Zachos FE, Habel JC, editors. Biodiversity Silvestre R, Brandão CRF, Silva RR (2003). Gremios funcionales de Hotspots. Berlin, Germany: Springer. hormigas: El caso de lós gremios del Cerrado. In: Fernandéz F, editor. Introducción a las hormigas de La región Neotropi- Ribeiro MC, Metzger JP, Martensen AC, Ponzoni F, Hirota, MM cal. Bogotá, Colombia: Fundación Humboldt, pp. 113-148 (in (2009). Brazilian Atlantic forest: how much is left and how is Spanish). the remaining forest distributed? Implications for conserva- tion. Biol Conserv 142: 1141-1153. Sosa-Calvo J, Longino JT (2008). Subfamilia Proceratiinae. In: Jimé- nez E Fernández F, Arias TM, Lozano-Zambrano FH, editors. Rusek J (1998). Biodiversity of Collembola and their functional role Sistemática, biogeografía y conservación de las hormigas caza- in the ecosystem. J Biodivers Conserv 7: 1207-1219. doras de Colombia. Bogotá, Colombia: Instituto de Investig- Santos AJ (2003). Estimativas de riqueza em espécies. In: Cullen ación de Recursos Biológicos Alexander von Humboldt, pp. LJR, Valladares CP, Rudran R, editors. Métodos de estudos em 219-237 (in Spanish). biologia da conservação e manejo da vida silvestre. Fundação Theunis L, Gilbert M, Roisin Y, Leponce M (2005). Spatial structure O Boticário de Proteção à Natureza. Curitiba, Brazil: UFPR, of litter-dwelling ant distribution in a subtropical dry forest. pp. 19-41 (in Portuguese). Insect Soc 52: 366-377. Santos JRM, Mariano CSF, Martins LCB, Ramos-Lacau LS, Tilman D (2001). Functional diversity. Encyclopedia of Biodiversity Nascimento IC, Da Rocha WD, Delabie JHC (2015). 3: 109-121. Assembleias de formigas epigeias (Hymenoptera: Formicidae) em um cacaual e remanescente de floresta da Amazônia Tilman D, Reich PB, Knops JMH (2006). Biodiversity and ecosystem Oriental, Brasil. Agrotropica 27: 149-160 (in Portuguese). stability in a decade-long grassland experiment. Nature 441: 629-632. Santos RJ, Koch EBA, Leite CMP, Porto TJ, Debalie JHC (2017). An assessment of leaf-litter and epigaeic ants (Hymenoptera: For- Tilman D, Wedin D, Knops J (1996). Productivity and sustainability micidae) living in different landscapes of the Atlantic Forest influenced by biodiversity in grassland ecosystems. Nature 379: Biome in the State of Bahia, Brazil. J Insect Biodivers 5: 1-19. 718-720. Schmidt FA, Ribas CR, Schoereder JH (2013). How predictable is the Underwood EC, Fisher BL (2006). The role of ants in conservation response of ant assemblages to natural forest recovery? Impli- monitoring: if, when, and how. Biol Conserv 132: 166-182. cations for their use as bioindicators. Ecol Indic 24:158-166. Vellend M (2010). Conceptual synthesis in community ecology. Q Schuldt A, Wang ZH, Zhou HZ, Assmann T (2009). Integrating Rev Biol 85: 183-206. highly diverse invertebrates into broad-scale analyses of cross- Weiser M, Kaspari M (2006). Ecological morphospace of New World taxon congruence across the Palaearctic. Ecography 32: 1019- ants. Ecol Entomol 31: 131-142. 1030. Wilson EO (1987). The little things that run the world. Conserv Biol Schultz TR, Brady SG (2008). Major evolutionary transitions in ant 1: 344-346. agriculture. P Natl Acad Sci USA 15: 5435-5440. Wilson EO (1992). The Diversity of Life. Cambridge, MA, USA: Shimida A, Wilson MV (1985). Biological determinants of species Belknap Press of Harvard University Press. diversity. J Biogeogr 12: 1-20. Zachos F, Habel J (2011). Biodiversity Hotspots: Distribution Silva RR, Brandão CRF (2010). Morphological patterns and and Protection of Conservation Priority Areas. Heidelberg, community organization in leaf-litter ant assemblages. Ecol Germany: Springer. Monogr 80: 107-124. Silva RR, Brandão CRF (2014). Ecosystem-wide morphological structure of leaf-litter ant communities along a tropical latitu- dinal gradient. PloSONE 9: e93049.

456 KOCH et al. / Turk J Zool [65] 12 3 1 4 49 1 1 13 7 6 3 4 7 54 1 10 1 7 1 1 11 2 17 5 1 16 Z(3) 2 32 3 1 3 1 Y(5) 1 8 1 4 4 1 62 1 1 X 1 W(2) 16 1 1 1 4 1 V(2) 7 3 16 U(2) 1 3 1 27 1 2 T(5) 4 1 7 1 3 1 53 1 2 1 3 3 S(3) 2 1 14 33 1 1 6 R(3) 6 3 2 1 1 1 Q 1 1 1 2 1 1 P 1 3 1 O 1 1 3 3 N(2) 1 12 22 1 1 7 M(2) 12 1 2 1 1 2 1 1 L(11) 1 1 47 1 7 1 7 2 88 3 1 3 1 4 2 K 4 13 1 1 3 J 1 4 2 2 1 2 I 1 1 H 2 3 2 1 G(4) 1 4 1 1 1 44 2 1 1 F 11 1 E(3) 2 1 22 3 2 D(3) 21 1 1 29 1 2 2 C 1 4 1 1 2 B(2) 3 8 1 4 1 1 A(3) 19 14 1 1 1 sp.01 sp.01 sp. prox. prox. sp. sp.01 sp.02 sp.03 SPECIES agostiiFulakora armigera Fulakora elongata Fulakora lurilabes Fulakora Prionopelta antillana muelleri Azteca paraensis Azteca bondari Azteca Azteca Azteca Dolichoderus attelaboides Dolichoderus bidens Dolichoderus bispinosus Dolichoderus imitator Dolichoderus lamellosus Dolichoderus lutosus Dorymyrmex thoracicus humile Linepithema Linepithema Cerapachys splendens splendens Cerapachys Eciton burchelli coecus Labidus Labidus praedator Neivamyrmex Ectatomma edentatum List of ant species registered in 26 municipalities and 65 localities of Atlantic Forest in Bahia state, Brazil. Municipalities: A–Z; number in parentheses represents the represents in parentheses number A–Z; Municipalities: Brazil. in Bahia state, Forest Atlantic 65 localities of and in 26 municipalities species registered ant of List SUBFAMILIES Amblyoponinae Dolichoderinae Dorylinae Ectatomminae Appendix 1. Appendix municipality. by sampled locations of number

1 KOCH et al. / Turk J Zool 1 2 15 16 2 2 3 25 14 2 2 3 32 19 6 5 21 5 9 44 12 8 17 1 5 3 7 1 14 2 14 1 2 1 1 2 1 2 3 33 15 1 12 1 1 1 1 2 2 3 1 4 5 3 1 1 1 8 4 13 2 1 5 3 1 3 4 3 2 8 2 2 1 1 1 5 1 3 1 1 1 5 15 5 1 7 1 1 1 2 6 2 8 1 1 2 12 1 1 2 3 2 9 1 5 8 3 1 1 2 1 2 8 2 4 3 2 1 1 2 16 2 2 1 5 6 21 1 4 1 1 4 1 8 54 8 1 3 1 5 8 1 2 4 1 1 2 1 4 1 1 3 1 1 1 13 6 2 2 1 24 2 1 1 1 3 4 1 1 1 9 1 4 12 1 1 1 1 5 1 1 3 2 3 2 1 1 1 1 1 1 2 6 2 1 1 1 1 1 1 3 2 12 2 1 sp. sp.01 sp.02 horni Ectatomma muticum Ectatomma permagnum Ectatomma tuberculatum Gnamptogenys acuminata Gnamptogenys annulata Gnamptogenys brunnea Gnamptogenys continua Gnamptogenys gracilis horni Gnamptogenys Gnamptogenys mediatrix Gnamptogenys menozzi Gnamptogenys minuta Gnamptogenys moelleri Gnamptogenys pleurodon Gnamptogenys prox. Gnamptogenys Gnamptogenys Gnamptogenys striatula Typhlomyrmex pusillus decedens Acropyga Acropyga fuhrmanni smithii Acropyga Brachymyrmex admotus (Continued). Formicinae Appendix 1. Appendix

2 KOCH et al. / Turk J Zool 3 1 1 10 51 9 18 1 3 8 23 8 1 6 15 2 2 20 14 2 1 2 1 13 1 2 2 1 1 18 2 1 1 2 3 5 15 4 3 1 13 4 1 1 1 23 3 2 2 7 1 2 2 2 2 4 1 1 1 66 15 1 2 2 1 1 1 1 1 12 19 2 1 1 3 1 11 1 1 4 3 2 7 1 1 1 31 1 11 1 1 13 3 2 35 4 26 1 7 7 3 6 1 19 5 2 33 1 29 3 2 1 12 2 1 3 2 1 1 4 2 34 2 1 3 1 1 6 3 4 25 1 2 2 1 2 1 1 9 1 1 6 2 2 12 1 1 1 1 3 1 2 1 16 5 1 3 1 1 1 2 sp.01 sp.02 sp.03 sp.04 sp.01 gp. gp. sp.01 Brachymyrmex coactus Brachymyrmex delabiei Brachymyrmex myops Brachymyrmex Brachymyrmex Brachymyrmex Brachymyrmex atriceps Camponotus bidens Camponotus Camponotus canescens Camponotus cingulatus Camponotus crassus Camponotus fastigatus Camponotus Myrmophaenus sp.01 Camponotus latangulus leydigi Camponotus Camponotus nidulans Camponotus novogranadensis Camponotus punctulatus andigenus Camponotus rectangularis Camponotus Camponotus trapezoideus Myrmelachista (Continued). Appendix 1. Appendix

3 KOCH et al. / Turk J Zool 1 18 17 22 24 22 6 3 53 15 19 37 28 11 8 1 1 12 1 3 4 17 34 24 33 35 11 21 1 13 1 7 6 2 4 3 1 22 1 2 1 2 2 6 2 2 13 11 24 5 14 29 11 1 6 5 1 1 7 17 9 17 3 3 3 3 1 1 1 8 11 1 8 1 1 5 4 7 2 1 1 6 19 7 7 4 1 1 4 1 1 2 19 4 5 8 3 7 3 7 7 15 13 1 1 52 4 3 45 11 1 3 7 5 4 15 2 4 3 13 2 12 2 4 5 5 1 2 1 1 3 19 11 9 1 3 2 1 6 4 7 19 7 4 2 1 1 1 1 1 8 6 7 1 1 1 6 2 1 3 4 1 4 2 9 3 2 7 1 2 1 1 9 4 3 2 1 1 3 13 15 14 9 32 13 1 58 1 12 27 11 4 3 3 17 11 21 14 7 8 1 4 6 3 3 1 2 12 1 1 4 1 1 4 1 1 32 1 17 5 5 3 5 3 28 17 1 19 24 13 1 1 7 1 3 12 1 7 5 1 7 1 7 1 16 3 1 15 1 5 2 1 2 1 1 4 1 32 27 4 1 4 1 2 15 1 5 2 3 1 28 1 6 11 5 1 4 1 7 9 14 11 5 1 1 1 1 1 2 2 1 1 4 2 4 2 3 1 1 36 2 8 8 7 1 4 1 1 7 7 5 sp.02 sp.01 comp. comp. sp. sp.01 sp.02 sp.03 sp.04 sp.05 sp.06 sp.07 sp.08 sp.09 sp.10 sp.11 sp.12 sp.13 sp.14 epinotale Myrmelachista Nylanderia Nylanderia Nylanderia Nylanderia Nylanderia Nylanderia Nylanderia Nylanderia Nylanderia Nylanderia Nylanderia Nylanderia Nylanderia Nylanderia Heteroponera angulata mayri Heteroponera balzani Acromyrmex Acromyrmex coronatus Acromyrmex subterraneus brunneus Apterostigma acre Apterostigma auriculatum Apterostigma sp.01 Pilosum ierense Apterostigma Apterostigma madidiense Apterostigma prox. Apterostigma (Continued). Heteroponerinae Myrmicinae Appendix 1. Appendix

4 KOCH et al. / Turk J Zool 6 1 3 15 1 1 22 6 37 2 1 1 4 5 12 58 11 6 11 2 2 30 6 18 17 46 4 2 3 1 27 4 1 1 7 2 8 1 1 1 8 1 2 6 1 6 1 1 22 1 1 8 1 1 12 1 3 3 2 5 26 1 2 1 1 13 3 1 3 1 35 3 2 1 2 1 33 2 1 1 4 4 6 5 1 18 1 1 17 1 8 1 6 11 1 6 17 1 6 13 45 5 11 2 9 1 3 8 1 3 9 3 15 1 1 17 4 1 3 4 6 1 3 1 3 1 31 1 1 1 8 34 7 2 2 2 36 8 6 3 1 5 9 95 15 1 18 3 2 5 4 1 3 17 1 1 8 6 2 21 14 3 15 1 5 2 2 27 2 2 8 1 1 1 2 1 1 1 5 39 12 11 12 4 1 12 1 3 3 7 18 1 36 12 3 1 9 8 1 3 46 3 1 1 1 2 3 6 3 1 7 1 1 24 1 1 6 8 5 1 33 1 16 1 13 sp. sp.01 sp.02 sp.01 sp.01 flavosensitiva Atta sexdens Atta rubropilosa sexdens sexdens Atta disciger Basiceros Blepharidatta delabiei Cardiocondyla minutior Cardiocondyla obscurior Carebara panamensis Carebara Carebara urichi Carebarella Cephalotes angustus Cephalotes maculatus pavonii Cephalotes Cephalotes pusillus acuta Crematogaster Crematogaster brasiliensis Crematogaster carinata Crematogaster crinosa Crematogaster curvispinosa erecta Crematogaster Crematogaster nigropilosa Crematogaster prox. Crematogaster Crematogaster Cryptomyrmex boltoni Cyphomyrmex peltatus (Continued). Appendix 1. Appendix

5 KOCH et al. / Turk J Zool 13 1 3 58 4 1 42 32 54 10 31 28 2 2 3 22 1 6 8 1 1 47 6 11 18 12 15 4 1 2 1 1 2 9 29 3 27 4 1 27 1 1 3 2 14 3 2 1 1 12 1 18 21 5 34 3 16 3 8 1 5 2 1 1 9 11 3 2 7 6 2 75 2 2 11 1 6 2 6 2 19 1 19 6 26 6 7 1 18 37 13 6 12 1 1 1 5 18 7 1 1 17 2 7 1 2 14 5 1 3 2 1 1 1 4 5 11 4 8 6 1 14 24 1 4 4 1 4 82 6 1 19 38 25 3 6 7 8 1 1 19 5 19 6 4 1 4 1 1 28 2 2 1 4 1 18 17 1 4 5 2 1 12 6 1 4 2 1 22 1 25 3 7 9 5 3 1 4 1 1 1 8 3 15 6 3 2 1 1 2 9 8 4 5 1 3 1 3 1 11 14 3 7 5 1 3 1 1 5 3 1 21 13 16 2 1 2 1 1 2 5 4 7 3 1 3 gp. gp. sp.01 sp.02 sp. sp. cornutus plaumanni Cyphomyrmex rimosus Cyphomyrmex prox. Cyphomyrmex prox. Cyphomyrmex transversus Cyphomyrmex vorticis Eurhopalothrix clypeata balzani Hylomyrma Hylomyrma immanis sagax Hylomyrma Lachnomyrmex plaumanni drifti Megalomyrmex Megalomyrmex goeldii Megalomyrmex sp.01 Silvestrii Megalomyrmex modestus Megalomyrmex pusillus Megalomyrmex silvestrii Megalomyrmex Megalomyrmex Monomorium floricola Mycetophylax conformis olitor Mycetophylax smithi Mycocepurus Myrmicocrypta microphthalma (Continued). Appendix 1. Appendix

6 KOCH et al. / Turk J Zool 14 5 1 1 1 1 6 7 22 44 29 47 5 50 4 22 3 64 26 55 58 41 38 4 21 47 16 17 1 42 5 1 1 1 1 11 43 9 37 19 2 13 12 25 1 3 1 14 1 3 1 5 1 13 17 2 1 55 52 16 73 7 25 9 1 11 2 13 2 8 1 1 2 1 7 8 2 3 1 1 1 5 3 28 1 25 1 16 8 1 9 3 15 12 1 1 1 2 4 4 12 36 23 1 11 23 6 6 8 11 1 1 19 13 37 13 3 8 8 1 14 2 2 13 2 1 23 12 57 6 25 38 24 1 3 45 6 16 4 1 2 2 7 47 3 27 2 72 44 4 26 1 1 9 24 1 7 3 8 44 11 2 34 13 9 26 11 2 9 2 1 3 2 1 5 1 5 2 14 3 2 2 2 3 1 8 26 2 1 3 2 3 1 4 9 14 3 17 5 1 1 1 1 1 5 5 34 8 38 28 25 29 9 1 8 2 2 15 2 1 5 6 3 19 8 24 1 2 12 1 1 1 2 1 1 1 2 16 15 3 33 2 57 1 4 92 33 18 11 3 3 2 48 12 1 16 2 4 3 2 1 12 1 15 24 5 4 1 1 2 1 7 3 11 1 3 17 3 3 1 8 2 1 4 6 2 17 6 1 2 6 3 1 2 5 3 6 19 2 1 1 4 4 2 2 1 1 1 4 4 46 6 39 43 13 36 2 12 2 2 18 5 5 6 4 2 14 2 2 1 21 4 11 1 1 7 1 14 1 1 3 4 11 26 3 1 2 17 1 1 1 1 4 6 4 18 41 34 15 25 24 9 13 3 1 6 1 3 14 7 12 2 1 3 3 6 2 2 1 9 6 12 2 1 4 14 4 4 13 2 4 1 1 3 2 28 12 3 14 4 21 1 28 42 31 8 1 1 2 7 sp. sp.01 sp.01 sp.01 sp.01 sp.02 sp.03 sp.04 sp.05 sp.06 sp.07 sp.08 sp.09 sp.10 sp.11 sp.12 sp.13 sp.14 buenzlii Myrmicocrypta prox. Myrmicocrypta asper Nesomyrmex Nesomyrmex itinerans Nesomyrmex Nesomyrmex spininodis Nesomyrmex tristani Ochetomyrmex neopolitus Octostruma balzani Octostruma iheringi Octostruma petiolata Octostruma rugifera Octostruma Octostruma stenognatha Oxyepoecus bruchi fimbriata Pheidole mendicula Pheidole Pheidole Pheidole Pheidole Pheidole Pheidole Pheidole Pheidole Pheidole Pheidole Pheidole Pheidole Pheidole Pheidole Pheidole (Continued). Appendix 1. Appendix

7 KOCH et al. / Turk J Zool 23 10 7 18 17 3 23 1 2 17 7 15 9 14 2 44 20 12 6 1 3 5 5 5 1 2 29 16 4 12 2 3 2 8 4 1 3 1 5 5 3 5 3 6 2 2 5 13 1 1 1 3 4 7 2 1 8 9 3 1 1 4 1 8 11 1 2 6 4 8 2 4 4 1 1 2 2 1 1 8 1 1 1 4 1 1 3 3 1 1 1 4 2 1 2 1 33 19 1 1 1 25 3 1 1 1 2 4 9 8 6 1 4 6 8 2 1 3 2 1 5 2 1 18 1 15 1 1 7 1 1 1 1 1 1 1 5 2 2 2 1 1 9 16 1 1 5 6 4 2 7 1 1 1 2 1 1 1 3 7 1 1 3 1 2 3 3 5 7 4 1 1 2 1 11 1 4 2 5 1 37 9 2 1 2 2 2 9 4 2 3 1 1 2 16 4 1 1 4 1 1 7 5 3 4 4 1 16 1 1 1 2 1 7 4 2 1 1 6 4 1 1 5 2 16 3 1 3 4 13 3 2 8 5 5 1 2 7 6 1 11 4 24 7 2 19 1 1 1 7 2 1 14 1 3 1 1 1 5 2 5 1 1 2 1 1 19 1 1 1 2 1 1 2 7 1 17 3 5 1 2 3 2 sp.15 sp.16 sp.17 sp.18 sp.19 sp.20 sp.21 sp.22 sp.23 sp.24 sp.25 sp.26 sp.27 sp.28 sp.29 sp.30 sp.31 sp.32 sp.33 sp.34 sp.35 sp.36 sp.37 sp.38 sp.39 sp.40 sp.41 sp.42 sp.43 sp.44 sp.45 sp.46 sp.47 sp.48 sp.49 sp.50 Pheidole Pheidole Pheidole Pheidole Pheidole Pheidole Pheidole Pheidole Pheidole Pheidole Pheidole Pheidole Pheidole Pheidole Pheidole Pheidole Pheidole Pheidole Pheidole Pheidole Pheidole Pheidole Pheidole Pheidole Pheidole Pheidole Pheidole Pheidole Pheidole Pheidole Pheidole Pheidole Pheidole Pheidole Pheidole Pheidole (Continued). Appendix 1. Appendix

8 KOCH et al. / Turk J Zool 4 1 16 6 1 2 4 2 3 1 1 2 1 2 1 1 1 2 1 8 1 12 1 10 5 1 5 16 38 46 2 1 54 3 1 1 1 13 32 1 7 2 7 27 24 1 2 6 1 2 1 31 45 3 3 1 3 4 11 38 1 1 1 2 8 9 2 2 1 1 2 1 1 19 4 1 44 1 1 1 2 11 14 5 13 2 1 18 1 1 9 2 18 3 1 1 8 1 1 1 4 3 2 1 43 5 2 1 2 1 5 11 1 3 1 4 7 21 25 57 4 1 9 1 1 5 6 1 1 5 1 13 4 2 1 3 3 12 1 1 3 1 1 4 6 34 9 3 2 3 18 26 1 4 1 2 1 1 2 2 3 4 1 32 1 1 1 8 7 1 4 1 16 1 3 2 1 3 17 19 sp.01 sp.02 sp.03 sp.01 sp.51 sp.52 sp.53 sp.54 sp.55 sp.56 sp.57 sp.58 sp.59 sp.60 sp.61 sp.62 sp.63 sp.64 sp.01 Pheidole Pheidole Pheidole Pheidole Pheidole Pheidole Pheidole Pheidole Pheidole Pheidole Pheidole Pheidole Pheidole Pheidole triconstrictaPheidole tristisPheidole Procryptocerus adlerzi Procryptocerus hylaeus Procryptocerus pictipes Rhopalothrix Rogeria belti Rogeria alzatei Rogeria besucheti Rogeria blanda Rogeria foreli Rogeria micromma Rogeria scobinata Rogeria Rogeria subarmata Sericomyrmex bondari Sericomyrmex Sericomyrmex Sericomyrmex (Continued). Appendix 1. Appendix

9 KOCH et al. / Turk J Zool 13 1 1 64 27 13 30 2 3 50 54 4 1 49 22 2 7 27 16 61 14 20 63 2 3 1 8 14 12 99 3 1 5 27 39 1 5 2 91 1 2 29 1 126 9 51 17 2 7 163 1 11 37 5 9 17 1 1 76 1 3 1 15 25 14 2 2 38 1 28 1 3 55 13 34 22 4 1 1 52 1 8 33 1 32 2 1 11 3 1 39 22 1 66 4 1 2 1 33 117 11 1 1 2 114 1 1 82 1 2 1 13 1 4 11 1 12 99 3 2 2 4 1 115 1 9 1 1 5 12 1 1 2 1 14 42 6 3 26 1 11 22 3 2 2 7 1 13 2 15 12 3 3 18 11 13 1 3 2 21 36 3 1 34 5 1 19 1 25 3 1 1 85 1 1 5 1 7 1 13 89 1 15 1 1 21 4 3 17 7 1 8 1 2 1 4 12 35 1 1 3 7 218 7 5 23 3 4 98 2 1 62 2 1 31 27 282 5 38 122 3 1 6 5 16 1 7 6 36 14 1 3 1 41 18 1 19 3 9 7 33 2 2 6 6 2 3 1 25 4 12 29 1 3 9 24 1 7 3 8 1 1 2 1 1 9 1 17 5 4 13 37 2 2 2 1 84 13 34 1 3 8 46 15 11 2 32 11 1 2 54 4 1 11 2 3 71 17 1 47 3 62 4 1 76 1 1 4 21 17 11 1 1 1 53 2 39 1 3 14 12 2 6 3 1 22 2 6 2 71 1 17 4 16 5 2 14 2 12 12 65 3 9 13 52 5 1 2 1 1 58 37 1 gp. gp. sp.01 sp.02 sp.03 sp.04 sp.05 sp.06 sp.07 sp.08 sp.09 sp.10 Solenopsis geminata Solenopsis Solenopsis globularia Solenopsis pollux Solenopsis Solenopsis Solenopsis Solenopsis Solenopsis Solenopsis Solenopsis Solenopsis Solenopsis Solenopsis virulens Solenopsis vizottoi Stegomyrmex alberti Strumigenys Strumigenys appretiatus Strumigenys carinithorax Strumigenys crassicornis Strumigenys denticulata Strumigenys dolichognatha eggersi Strumigenys elongata Strumigenys emmae Strumigenys Strumigenys sp.01 Appretiatus Strumigenys hindenburgi Strumigenys louisianae perparva Strumigenys Strumigenys propiciens (Continued). Appendix 1. Appendix

10 KOCH et al. / Turk J Zool 32 38 6 36 60 1 54 1 10 4 2 2 3 1 1 2 62 34 20 1 48 1 1 52 1 54 40 1 1 12 2 18 24 5 2 35 2 17 12 14 23 1 2 5 36 19 1 1 2 35 4 16 3 4 34 4 6 1 2 28 1 7 2 8 13 3 33 1 1 5 5 1 1 7 2 3 1 9 18 1 6 9 7 16 5 1 1 4 1 7 4 7 15 5 1 12 1 1 1 26 4 12 1 16 22 1 8 57 4 37 1 54 5 15 9 23 21 11 1 1 55 4 13 1 22 27 6 1 14 3 8 93 7 12 1 2 2 1 1 29 8 1 1 2 11 27 3 1 11 7 1 2 6 5 8 3 13 9 11 1 2 2 25 1 33 2 1 13 13 1 1 3 2 1 31 1 2 26 22 19 14 63 34 1 11 1 1 1 8 26 2 46 73 27 21 17 11 6 15 1 3 28 3 5 2 22 1 2 1 1 3 5 1 5 4 3 1 2 7 24 6 1 1 9 2 16 11 1 4 13 5 5 2 38 8 1 1 75 16 9 3 8 25 32 2 4 3 15 1 9 14 1 8 11 15 6 7 1 2 23 5 1 74 19 6 18 3 18 1 1 3 4 21 2 1 24 15 4 5 27 9 33 3 1 1 1 5 1 13 3 21 2 1 1 4 9 2 1 51 2 1 2 17 2 3 1 3 2 8 33 1 28 2 23 19 sp.01 sp.02 sp.03 sp.04 sp.05 sp.06 sp.01 Strumigenys Strumigenys rugithorax schulzi Strumigenys smithi Strumigenys Strumigenys Strumigenys subedentata Strumigenys trinidadensis Trachymyrmex cornetzi Trachymyrmex opulentus Trachymyrmex relictus Trachymyrmex Trachymyrmex Trachymyrmex Trachymyrmex Trachymyrmex Trachymyrmex gilvaTranopelta Wasmannia auropunctata lutzi Wasmannia sp.01 Wasmannia bispinosus Anochetus mayriAnochetus neglectusAnochetus oriensAnochetus simoni Anochetus Cryptopone holmgreni Hypoponera distinguenda Hypoponera foreli gp. Hypoponera sp.01 Foreli gp. Hypoponera sp.02 Foreli (Continued). Ponerinae Appendix 1. Appendix

11 KOCH et al. / Turk J Zool 1 6 4 6 4 3 1 2 1 1 1 64 58 1 1 2 6 1 33 1 11 2 2 3 4 1 12 58 1 1 56 1 45 19 4 1 1 2 35 11 2 3 153 8 4 7 1 86 7 16 1 1 2 4 48 14 13 9 3 1 42 21 4 16 4 1 15 14 25 4 11 3 3 86 4 1 6 7 1 1 22 1 8 16 6 1 5 7 2 9 22 2 2 1 3 7 16 1 5 3 1 4 4 17 7 23 8 8 31 8 1 2 1 8 37 17 1 12 1 4 2 11 2 2 4 4 218 49 44 1 2 1 2 96 47 6 2 1 2 1 12 1 7 4 8 1 5 3 7 2 1 1 3 6 2 2 3 6 18 4 1 1 5 7 4 57 2 1 1 1 31 16 5 23 12 9 3 18 1 2 1 1 1 12 5 76 21 4 46 2 3 2 27 6 1 1 1 3 3 12 7 2 2 7 7 15 1 1 31 21 1 1 22 3 sp.01 sp.02 sp.03 sp.04 sp.05 sp.06 sp.07 sp.08 sp.01 Hypoponera iheringi Hypoponera Hypoponera opaciceps opacior Hypoponera Hypoponera Hypoponera Hypoponera Hypoponera Hypoponera Hypoponera Hypoponera Hypoponera sp.09 Hypoponera Hypoponera trigona arcuata Leptogenys crudelis Leptogenys pusilla Leptogenys Leptogenys Leptogenys unistimulosa Mayaponera constricta Neoponera apicalis Neoponera bucki inversa Neoponera Neoponera laevigata Neoponera obscuricornis schultz Neoponera Neoponera striatinodis Neoponera unidentata Neoponera venusta villosaNeoponera Odontomachus chelifer Odontomachus haematodus (Continued). Appendix 1. Appendix

12 KOCH et al. / Turk J Zool 1 65 8 50 1 2 17 6 42 4 14 32 5 21 1 1 3 1 2 1 8 1 2 36 1 5 46 4 1 3 1 2 36 11 5 15 4 12 1 3 16 1 1 1 1 4 2 1 32 12 11 1 3 1 5 29 1 1 1 1 1 34 3 2 1 1 3 82 2 16 6 2 18 4 1 11 1 26 2 1 1 1 1 1 1 34 14 1 1 1 1 12 4 1 1 1 2 12 2 1 1 8 1 6 24 1 3 1 1 6 1 38 1 2 1 2 3 1 2 5 2 16 2 1 6 1 134 19 1 4 1 22 1 2 1 8 1 2 1 1 1 21 1 2 12 1 4 1 1 5 13 3 1 1 8 2 16 6 1 8 13 1 1 21 3 4 1 2 1 4 2 11 4 21 1 6 2 1 1 11 1 5 1 35 31 2 1 8 3 6 1 6 27 2 8 2 1 4 1 1 6 3 1 1 5 6 1 1 1 3 1 31 14 2 4 2 1 11 1

sp0.1 sp magnifica Odontomachus hastatus Odontomachus meinerti Pachycondyla crassinoda harpax Pachycondyla Pachycondyla prox. Pachycondyla striata gilberti Pseudoponera Pseudoponera stigma Rasopone arhuaca Rasopone ferruginea Thaumatomyrmex contumax Thaumatomyrmex fraxini Thaumatomyrmex sp.01 Discothyrea sexarticulata Pseudomyrmex elongatus Pseudomyrmex filiformis gp. Pseudomyrmex sp.01 Pallidus Pseudomyrmex gracilis Pseudomyrmex kuenckeli Pseudomyrmex laevifrons Pseudomyrmex oculatus Pseudomyrmex rochai Pseudomyrmex tenuis Pseudomyrmex Pseudomyrmex tenuissimus Pseudomyrmex termitarius (Continued). Proceratiinae Pseudomyrmecinae Appendix 1. Appendix

13 KOCH et al. / Turk J Zool

Appendix 2. Correspondence relationship plot between number of ant species (in rich- ness rank order) and number of ant functional groups considering (A) using a classifica- tion according to the commonly used scheme for Neotropical ants, FC-A: Classification A; (B) using more specific aspects and current information about the biology of the biology of the different species, FC-B: Classification B.

14