AIC Model Selection Using Akaike Weights While Using a Minimum Number of Parameters (E.G., Myung, Forster, & Browne, 2000; Myung & Pitt, 1997)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Higher-Order Asymptotics
Higher-Order Asymptotics Todd Kuffner Washington University in St. Louis WHOA-PSI 2016 1 / 113 First- and Higher-Order Asymptotics Classical Asymptotics in Statistics: available sample size n ! 1 First-Order Asymptotic Theory: asymptotic statements that are correct to order O(n−1=2) Higher-Order Asymptotics: refinements to first-order results 1st order 2nd order 3rd order kth order error O(n−1=2) O(n−1) O(n−3=2) O(n−k=2) or or or or o(1) o(n−1=2) o(n−1) o(n−(k−1)=2) Why would anyone care? deeper understanding more accurate inference compare different approaches (which agree to first order) 2 / 113 Points of Emphasis Convergence pointwise or uniform? Error absolute or relative? Deviation region moderate or large? 3 / 113 Common Goals Refinements for better small-sample performance Example Edgeworth expansion (absolute error) Example Barndorff-Nielsen’s R∗ Accurate Approximation Example saddlepoint methods (relative error) Example Laplace approximation Comparative Asymptotics Example probability matching priors Example conditional vs. unconditional frequentist inference Example comparing analytic and bootstrap procedures Deeper Understanding Example sources of inaccuracy in first-order theory Example nuisance parameter effects 4 / 113 Is this relevant for high-dimensional statistical models? The Classical asymptotic regime is when the parameter dimension p is fixed and the available sample size n ! 1. What if p < n or p is close to n? 1. Find a meaningful non-asymptotic analysis of the statistical procedure which works for any n or p (concentration inequalities) 2. Allow both n ! 1 and p ! 1. 5 / 113 Some First-Order Theory Univariate (classical) CLT: Assume X1;X2;::: are i.i.d. -
Strength in Numbers: the Rising of Academic Statistics Departments In
Agresti · Meng Agresti Eds. Alan Agresti · Xiao-Li Meng Editors Strength in Numbers: The Rising of Academic Statistics DepartmentsStatistics in the U.S. Rising of Academic The in Numbers: Strength Statistics Departments in the U.S. Strength in Numbers: The Rising of Academic Statistics Departments in the U.S. Alan Agresti • Xiao-Li Meng Editors Strength in Numbers: The Rising of Academic Statistics Departments in the U.S. 123 Editors Alan Agresti Xiao-Li Meng Department of Statistics Department of Statistics University of Florida Harvard University Gainesville, FL Cambridge, MA USA USA ISBN 978-1-4614-3648-5 ISBN 978-1-4614-3649-2 (eBook) DOI 10.1007/978-1-4614-3649-2 Springer New York Heidelberg Dordrecht London Library of Congress Control Number: 2012942702 Ó Springer Science+Business Media New York 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. -
The Method of Maximum Likelihood for Simple Linear Regression
08:48 Saturday 19th September, 2015 See updates and corrections at http://www.stat.cmu.edu/~cshalizi/mreg/ Lecture 6: The Method of Maximum Likelihood for Simple Linear Regression 36-401, Fall 2015, Section B 17 September 2015 1 Recapitulation We introduced the method of maximum likelihood for simple linear regression in the notes for two lectures ago. Let's review. We start with the statistical model, which is the Gaussian-noise simple linear regression model, defined as follows: 1. The distribution of X is arbitrary (and perhaps X is even non-random). 2. If X = x, then Y = β0 + β1x + , for some constants (\coefficients", \parameters") β0 and β1, and some random noise variable . 3. ∼ N(0; σ2), and is independent of X. 4. is independent across observations. A consequence of these assumptions is that the response variable Y is indepen- dent across observations, conditional on the predictor X, i.e., Y1 and Y2 are independent given X1 and X2 (Exercise 1). As you'll recall, this is a special case of the simple linear regression model: the first two assumptions are the same, but we are now assuming much more about the noise variable : it's not just mean zero with constant variance, but it has a particular distribution (Gaussian), and everything we said was uncorrelated before we now strengthen to independence1. Because of these stronger assumptions, the model tells us the conditional pdf 2 of Y for each x, p(yjX = x; β0; β1; σ ). (This notation separates the random variables from the parameters.) Given any data set (x1; y1); (x2; y2);::: (xn; yn), we can now write down the probability density, under the model, of seeing that data: n n (y −(β +β x ))2 Y 2 Y 1 − i 0 1 i p(yijxi; β0; β1; σ ) = p e 2σ2 2 i=1 i=1 2πσ 1See the notes for lecture 1 for a reminder, with an explicit example, of how uncorrelated random variables can nonetheless be strongly statistically dependent. -
Use of the Kurtosis Statistic in the Frequency Domain As an Aid In
lEEE JOURNALlEEE OF OCEANICENGINEERING, VOL. OE-9, NO. 2, APRIL 1984 85 Use of the Kurtosis Statistic in the FrequencyDomain as an Aid in Detecting Random Signals Absmact-Power spectral density estimation is often employed as a couldbe utilized in signal processing. The objective ofthis method for signal ,detection. For signals which occur randomly, a paper is to compare the PSD technique for signal processing frequency domain kurtosis estimate supplements the power spectral witha new methodwhich computes the frequency domain density estimate and, in some cases, can be.employed to detect their presence. This has been verified from experiments vith real data of kurtosis (FDK) [2] forthe real and imaginary parts of the randomly occurring signals. In order to better understand the detec- complex frequency components. Kurtosis is defined as a ratio tion of randomlyoccurring signals, sinusoidal and narrow-band of a fourth-order central moment to the square of a second- Gaussian signals are considered, which when modeled to represent a order central moment. fading or multipath environment, are received as nowGaussian in Using theNeyman-Pearson theory in thetime domain, terms of a frequency domain kurtosis estimate. Several fading and multipath propagation probability density distributions of practical Ferguson [3] , has shown that kurtosis is a locally optimum interestare considered, including Rayleigh and log-normal. The detectionstatistic under certain conditions. The reader is model is generalized to handle transient and frequency modulated referred to Ferguson'swork for the details; however, it can signals by taking into account the probability of the signal being in a be simply said thatit is concernedwith detecting outliers specific frequency range over the total data interval. -
Press Release
Japan Statistical Society July 10, 2020 The Institute of Statistical Mathematics (ISM) The Japan Statistical Society (JSS) Announcement of the Awardee of the Third Akaike Memorial Lecture Award Awardee/Speaker: Professor John Brian Copas (University of Warwick, UK) Lecture Title: “Some of the Challenges of Statistical Applications” Debater: Professor Masataka Taguri(Yokohama City University) Dr. Masayuki Henmi (The Institute of Statistical Mathematics) Date/Time: 16:00-18:00 September 9, 2020 1. Welcome Speech and Explanation of the Akaike Memorial Lecture Award 2. Akaike Memorial Lecture 3. Discussion with Young Scientists and Professor Copas’s rejoinder Venue: Toyama International Conference Center (https://www.ticc.co.jp/english/) 1-2 Ote-machi Toyama-city Toyama 930-0084MAP,Japan • Detailed information will be uploaded on the website of ISM (http://www.ism.ac.jp/index_e.html) and other media. Professor John B. Copas (current age, 76) Emeritus Professor, University of Warwick, UK Professor Copas, born in 1943, is currently Professor Emeritus at the University of Warwick. With a focus on both theory and application, his works provide a deep insight and wide perspective on various sources of data bias. His contributions span over a wide range of academic disciplines, including statistical medicine, ecometrics, and pscyhometrics. He has developed the Copas selection model, a well-known method for sensitivity analysis, and the Copas rate, a re-conviction risk estimator used in the criminal justice system. Dr. Hirotugu Akaike The late Dr. Akaike was a statistician who proposed the Akaike Information Criterion (AIC). He established a novel paradigm of statistical modeling, characterized by a predictive point of view, that was completely distinct from traditional statistical theory. -
IMS Bulletin 39(5)
Volume 39 • Issue 5 IMS1935–2010 Bulletin June 2010 IMS Carver Award: Julia Norton Contents Julia A. Norton, Professor Emerita in the 1 IMS Carver Award Department of Statistics and Biostatistics at California State University, East Bay in 2–3 Members’ News: new US National Academy mem- Hayward, California, USA has received bers; Donald Gaver; Marie the 2010 Carver Medal from the Institute Davidian; tributes to Kiyosi of Mathematical Statistics. The presenta- Itô, Ehsanes Saleh tion of the medal will take place August 4 Laha Award recipients 10, 2010 at a special ceremony during the IMS Annual Meeting in Gothenburg, 5 Statistics museum Sweden. Rietz lecture: Michael Stein 6 Professor Norton receivesThe candidate the award for IMS President-Elect is Medallion Preview: Marek for contributions to the IMS throughout 7 Ruth Williams Biskup her career, and especially for her conscien- tious and pivotal service as IMS Treasurer 8 NISS/SAMSI award; during the period when the IMS Business Samuel Kotz Julia A. Norton Office was moved from California to 9 Obituary: Hirotugu Akaike Ohio. 10 Annual survey She said she was greatly surprised to receive the award, commenting, “I just said yes to all sorts of new ideas that came the way of the Institute during my two terms 11 Rick’s Ramblings: with Larry Shepp as Treasurer.” She added, “Like most things, the best part of the job is the fantastic teamwork displayed by the staff. I am most proud of my hand in helping to hire and Terence’s Stuff: Changes, 12 keep [Executive Director] Elyse in our employ.” courses and committees The Carver Medal was created by the IMS in 2002 13 IMS meetings in honor of Harry C. -
Akaike Receives 2006 Kyoto Prize
Akaike Receives 2006 Kyoto Prize In June 2006 the Inamori global network of closely linked systems. Modern Foundation announced statistical sciences are expected to help our un- the laureates who will re- derstanding of the study of such complicated, un- ceive its 22nd annual certain, and dynamic systems, or the study of sit- Kyoto Prize, Japan’s high- uations where only incomplete information is est private award for life- available. The main role of statistical sciences must time achievement, pre- be to give useful scientific methodologies for the sented to individuals and development of new technologies and for the fur- groups worldwide who ther development of society, which is characterized have contributed signifi- by increased uncertainty. One of the characteris- cantly to humankind’s tics of the statistical sciences is their interdisci- betterment. Receiving the plinary nature, with applicability in various fields. prize in the Basic Sciences For example, the role of the statistical sciences has Hirotugu Akaike category is the Japanese recently become increasingly important in the un- statistical mathematician derstanding and forecasting of phenomena in eco- HIROTUGU AKAIKE, professor emeritus at the Institute nomic-related fields, such as finance and insur- of Statistical Mathematics. The prize consists of a ance; safety-related fields, including pharma- diploma, a Kyoto Prize Medal of 20-karat gold, and ceuticals, food, and transportation; natural phe- a cash gift of 50 million yen (approximately nomena, such as weather, natural disasters, and the US$446,000). environment; and in the management of huge sys- tems. The Work of Hirotugu Akaike Starting in the early 1970s Akaike explained the Rapid advances in science and technology in the importance of modeling in analysis and in fore- twentieth century brought numerous benefits to so- casting. -
Statistical Models in R Some Examples
Statistical Models Statistical Models in R Some Examples Steven Buechler Department of Mathematics 276B Hurley Hall; 1-6233 Fall, 2007 Statistical Models Outline Statistical Models Linear Models in R Statistical Models Regression Regression analysis is the appropriate statistical method when the response variable and all explanatory variables are continuous. Here, we only discuss linear regression, the simplest and most common form. Remember that a statistical model attempts to approximate the response variable Y as a mathematical function of the explanatory variables X1;:::; Xn. This mathematical function may involve parameters. Regression analysis attempts to use sample data find the parameters that produce the best model Statistical Models Linear Models The simplest such model is a linear model with a unique explanatory variable, which takes the following form. y^ = a + bx: Here, y is the response variable vector, x the explanatory variable, y^ is the vector of fitted values and a (intercept) and b (slope) are real numbers. Plotting y versus x, this model represents a line through the points. For a given index i,y ^i = a + bxi approximates yi . Regression amounts to finding a and b that gives the best fit. Statistical Models Linear Model with 1 Explanatory Variable ● 10 ● ● ● ● ● 5 y ● ● ● ● ● ● y ● ● y−hat ● ● ● ● 0 ● ● ● ● x=2 0 1 2 3 4 5 x Statistical Models Plotting Commands for the record The plot was generated with test data xR, yR with: > plot(xR, yR, xlab = "x", ylab = "y") > abline(v = 2, lty = 2) > abline(a = -2, b = 2, col = "blue") > points(c(2), yR[9], pch = 16, col = "red") > points(c(2), c(2), pch = 16, col = "red") > text(2.5, -4, "x=2", cex = 1.5) > text(1.8, 3.9, "y", cex = 1.5) > text(2.5, 1.9, "y-hat", cex = 1.5) Statistical Models Linear Regression = Minimize RSS Least Squares Fit In linear regression the best fit is found by minimizing n n X 2 X 2 RSS = (yi − y^i ) = (yi − (a + bxi )) : i=1 i=1 This is a Calculus I problem. -
A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications
Special Publication 800-22 Revision 1a A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications AndrewRukhin,JuanSoto,JamesNechvatal,Miles Smid,ElaineBarker,Stefan Leigh,MarkLevenson,Mark Vangel,DavidBanks,AlanHeckert,JamesDray,SanVo Revised:April2010 LawrenceE BasshamIII A Statistical Test Suite for Random and Pseudorandom Number Generators for NIST Special Publication 800-22 Revision 1a Cryptographic Applications 1 2 Andrew Rukhin , Juan Soto , James 2 2 Nechvatal , Miles Smid , Elaine 2 1 Barker , Stefan Leigh , Mark 1 1 Levenson , Mark Vangel , David 1 1 2 Banks , Alan Heckert , James Dray , 2 San Vo Revised: April 2010 2 Lawrence E Bassham III C O M P U T E R S E C U R I T Y 1 Statistical Engineering Division 2 Computer Security Division Information Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-8930 Revised: April 2010 U.S. Department of Commerce Gary Locke, Secretary National Institute of Standards and Technology Patrick Gallagher, Director A STATISTICAL TEST SUITE FOR RANDOM AND PSEUDORANDOM NUMBER GENERATORS FOR CRYPTOGRAPHIC APPLICATIONS Reports on Computer Systems Technology The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology (NIST) promotes the U.S. economy and public welfare by providing technical leadership for the nation’s measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of concept implementations, and technical analysis to advance the development and productive use of information technology. ITL’s responsibilities include the development of technical, physical, administrative, and management standards and guidelines for the cost-effective security and privacy of sensitive unclassified information in Federal computer systems. -
Preface: Special Issue in Honor of Dr. Hirotugu Akaike
Ann Inst Stat Math (2010) 62:1–2 DOI 10.1007/s10463-009-0269-6 Preface: Special issue in honor of Dr. Hirotugu Akaike Published online: 10 December 2009 © The Institute of Statistical Mathematics, Tokyo 2009 We deeply regret to announce that Dr. Hirotugu Akaike passed away on August 4, 2009. In 2007, because of his excellent contribution to the field of statistical sci- ence, we planned to publish “Special Issue of the Annals of the Institute of Statistical Mathematics in Honor of Dr. Hirotugu Akaike”. We received the sad news of his death, just after all editorial process has completed. This issue begins with an article by Dr. Akaike’s last manuscript. Dr. Hirotugu Akaike was awarded the 2006 Kyoto Prize for his major contribution to statistical science and modeling with the Akaike Information Criterion (AIC) with the praise that “In the early 1970’s, Dr. Hirotugu Akaike formulated the Akaike Infor- mation Criterion (AIC), a new practical, yet versatile criterion for the selection of statistical models, based on basic concepts of information mathematics. This criterion established a new paradigm that bridged the world of data and the world of mod- eling, thus contributing greatly to the information and statistical sciences” (Inamori Foundation). In 1973, he proposed the AIC as a natural extension of the log-likelihood. The most natural way of applying the AIC was to use it as the model selection or order selection criterion. In the minimum AIC procedure, the model with the minimum value of the AIC is selected as the best one among many possible models. -
Chapter 5 Statistical Models in Simulation
Chapter 5 Statistical Models in Simulation Banks, Carson, Nelson & Nicol Discrete-Event System Simulation Purpose & Overview The world the model-builder sees is probabilistic rather than deterministic. Some statistical model might well describe the variations. An appropriate model can be developed by sampling the phenomenon of interest: Select a known distribution through educated guesses Make estimate of the parameter(s) Test for goodness of fit In this chapter: Review several important probability distributions Present some typical application of these models ٢ ١ Review of Terminology and Concepts In this section, we will review the following concepts: Discrete random variables Continuous random variables Cumulative distribution function Expectation ٣ Discrete Random Variables [Probability Review] X is a discrete random variable if the number of possible values of X is finite, or countably infinite. Example: Consider jobs arriving at a job shop. Let X be the number of jobs arriving each week at a job shop. Rx = possible values of X (range space of X) = {0,1,2,…} p(xi) = probability the random variable is xi = P(X = xi) p(xi), i = 1,2, … must satisfy: 1. p(xi ) ≥ 0, for all i ∞ 2. p(x ) =1 ∑i=1 i The collection of pairs [xi, p(xi)], i = 1,2,…, is called the probability distribution of X, and p(xi) is called the probability mass function (pmf) of X. ٤ ٢ Continuous Random Variables [Probability Review] X is a continuous random variable if its range space Rx is an interval or a collection of intervals. The probability that X lies in the interval [a,b] is given by: b P(a ≤ X ≤ b) = f (x)dx ∫a f(x), denoted as the pdf of X, satisfies: 1. -
Statistical Modeling Methods: Challenges and Strategies
Biostatistics & Epidemiology ISSN: 2470-9360 (Print) 2470-9379 (Online) Journal homepage: https://www.tandfonline.com/loi/tbep20 Statistical modeling methods: challenges and strategies Steven S. Henley, Richard M. Golden & T. Michael Kashner To cite this article: Steven S. Henley, Richard M. Golden & T. Michael Kashner (2019): Statistical modeling methods: challenges and strategies, Biostatistics & Epidemiology, DOI: 10.1080/24709360.2019.1618653 To link to this article: https://doi.org/10.1080/24709360.2019.1618653 Published online: 22 Jul 2019. Submit your article to this journal Article views: 614 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tbep20 BIOSTATISTICS & EPIDEMIOLOGY https://doi.org/10.1080/24709360.2019.1618653 Statistical modeling methods: challenges and strategies Steven S. Henleya,b,c, Richard M. Goldend and T. Michael Kashnera,b,e aDepartment of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA; bCenter for Advanced Statistics in Education, VA Loma Linda Healthcare System, Loma Linda, CA, USA; cMartingale Research Corporation, Plano, TX, USA; dSchool of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA; eDepartment of Veterans Affairs, Office of Academic Affiliations (10A2D), Washington, DC, USA ABSTRACT ARTICLE HISTORY Statistical modeling methods are widely used in clinical science, Received 13 June 2018 epidemiology, and health services research to