Molecular Approaches to Drug Abuse Research: Volume II
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
GABA Receptors
D Reviews • BIOTREND Reviews • BIOTREND Reviews • BIOTREND Reviews • BIOTREND Reviews Review No.7 / 1-2011 GABA receptors Wolfgang Froestl , CNS & Chemistry Expert, AC Immune SA, PSE Building B - EPFL, CH-1015 Lausanne, Phone: +41 21 693 91 43, FAX: +41 21 693 91 20, E-mail: [email protected] GABA Activation of the GABA A receptor leads to an influx of chloride GABA ( -aminobutyric acid; Figure 1) is the most important and ions and to a hyperpolarization of the membrane. 16 subunits with γ most abundant inhibitory neurotransmitter in the mammalian molecular weights between 50 and 65 kD have been identified brain 1,2 , where it was first discovered in 1950 3-5 . It is a small achiral so far, 6 subunits, 3 subunits, 3 subunits, and the , , α β γ δ ε θ molecule with molecular weight of 103 g/mol and high water solu - and subunits 8,9 . π bility. At 25°C one gram of water can dissolve 1.3 grams of GABA. 2 Such a hydrophilic molecule (log P = -2.13, PSA = 63.3 Å ) cannot In the meantime all GABA A receptor binding sites have been eluci - cross the blood brain barrier. It is produced in the brain by decarb- dated in great detail. The GABA site is located at the interface oxylation of L-glutamic acid by the enzyme glutamic acid decarb- between and subunits. Benzodiazepines interact with subunit α β oxylase (GAD, EC 4.1.1.15). It is a neutral amino acid with pK = combinations ( ) ( ) , which is the most abundant combi - 1 α1 2 β2 2 γ2 4.23 and pK = 10.43. -
Survival and Differentiation of Adult Neuronal Progenitor Cells Transplanted to the Adult Brain FRED H
Proc. Natl. Acad. Sci. USA Vol. 92, pp. 11879-11883, December 1995 Neurobiology Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain FRED H. GAGE*t, PENELOPE W. COATESt, THEO D. PALMER*, H. GEORG KUHN*, LISA J. FISHER*, JAANA 0. SUHONEN*, DANIEL A. PETERSON*, STEVE T. SUHR*, AND JASODHARA RAY* *Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037; and tDepartment of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430 Communicated by Stephen Heinemann, The Salk Institute for Biological Studies, La Jolla, CA, August 22, 1995 ABSTRACT The dentate gyrus ofthe hippocampus is one exploring cues that influence the proliferation and differenti- of the few areas of the adult brain that undergoes neurogen- ation of neuronal progenitor cells and for neuronal replace- esis. In the present study, cells capable of proliferation and ment strategies for the damaged brain. neurogenesis were isolated and cultured from the adult rat hippocampus. In defined medium containing basic fibroblast growth factor (FGF-2), cells can survive, proliferate, and MATERIALS AND METHODS express neuronal and glial markers. Cells have been main- Cell Culture Conditions. Adult (>3 months) female Fischer tained in culture for 1 year through multiple passages. These 344 rats were anesthetized with a mixture of ketamine (44 cultured adult cells were labeled in vitro with bromodeoxyuri- mg/kg), acepromazine (0.75 mg/kg), and xylozine (4 mg/kg) dine and adenovirus expressing ,i-galactosidase and were in 0.9% NaCl and sacrificed in accordance with procedures transplanted to the adult rat hippocampus. -
NINDS Custom Collection II
ACACETIN ACEBUTOLOL HYDROCHLORIDE ACECLIDINE HYDROCHLORIDE ACEMETACIN ACETAMINOPHEN ACETAMINOSALOL ACETANILIDE ACETARSOL ACETAZOLAMIDE ACETOHYDROXAMIC ACID ACETRIAZOIC ACID ACETYL TYROSINE ETHYL ESTER ACETYLCARNITINE ACETYLCHOLINE ACETYLCYSTEINE ACETYLGLUCOSAMINE ACETYLGLUTAMIC ACID ACETYL-L-LEUCINE ACETYLPHENYLALANINE ACETYLSEROTONIN ACETYLTRYPTOPHAN ACEXAMIC ACID ACIVICIN ACLACINOMYCIN A1 ACONITINE ACRIFLAVINIUM HYDROCHLORIDE ACRISORCIN ACTINONIN ACYCLOVIR ADENOSINE PHOSPHATE ADENOSINE ADRENALINE BITARTRATE AESCULIN AJMALINE AKLAVINE HYDROCHLORIDE ALANYL-dl-LEUCINE ALANYL-dl-PHENYLALANINE ALAPROCLATE ALBENDAZOLE ALBUTEROL ALEXIDINE HYDROCHLORIDE ALLANTOIN ALLOPURINOL ALMOTRIPTAN ALOIN ALPRENOLOL ALTRETAMINE ALVERINE CITRATE AMANTADINE HYDROCHLORIDE AMBROXOL HYDROCHLORIDE AMCINONIDE AMIKACIN SULFATE AMILORIDE HYDROCHLORIDE 3-AMINOBENZAMIDE gamma-AMINOBUTYRIC ACID AMINOCAPROIC ACID N- (2-AMINOETHYL)-4-CHLOROBENZAMIDE (RO-16-6491) AMINOGLUTETHIMIDE AMINOHIPPURIC ACID AMINOHYDROXYBUTYRIC ACID AMINOLEVULINIC ACID HYDROCHLORIDE AMINOPHENAZONE 3-AMINOPROPANESULPHONIC ACID AMINOPYRIDINE 9-AMINO-1,2,3,4-TETRAHYDROACRIDINE HYDROCHLORIDE AMINOTHIAZOLE AMIODARONE HYDROCHLORIDE AMIPRILOSE AMITRIPTYLINE HYDROCHLORIDE AMLODIPINE BESYLATE AMODIAQUINE DIHYDROCHLORIDE AMOXEPINE AMOXICILLIN AMPICILLIN SODIUM AMPROLIUM AMRINONE AMYGDALIN ANABASAMINE HYDROCHLORIDE ANABASINE HYDROCHLORIDE ANCITABINE HYDROCHLORIDE ANDROSTERONE SODIUM SULFATE ANIRACETAM ANISINDIONE ANISODAMINE ANISOMYCIN ANTAZOLINE PHOSPHATE ANTHRALIN ANTIMYCIN A (A1 shown) ANTIPYRINE APHYLLIC -
Degradation of Junctional and Extrajunctional Acetylcholine
Proc. Natl. Acad. Sci. USA Vol. 76, No. 7, pp. 3547-3551, July 1979 Neurobiology Degradation of junctional and extrajunctional acetylcholine receptors by developing rat skeletal muscle (synapse development) JOE HENRY STEINBACH*, JOHN MERLIEt, STEPHEN HEINEMANN*, AND ROBERT BLOCH* *Neurobiology Department, The Salk Institute, P. 0. Box 1809, San Diego, California 92112; and tDepartment of Biological Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 Communicated by Stephen W. Kuffler, April 20, 1979 ABSTRACT We have examined the rate of degradation of studied this question more thoroughly in diaphragms from rats, the total acetylcholine receptor content of diaphragm muscles 1 day old to adult, and found that junctional AcChoRs are of young rats and have found that even in muscles from 1-day- metabolically more stable than extrajunctional AcChoRs at all old rats some receptors are metabolically more stable than adult extrajunctional receptors. Further experiments have shown that ages examined. acetylcholine receptors at junctional regions from young rats are degraded slowly, whereas those in extrajunctional regions MATERIALS AND METHODS are degraded rapidly. The results demonstrate that junctional Preparation of t25I-Labeled a-Bungarotoxin. a-Bungaro- acetylcholine receptors in rat diaphragm are degraded at a slow rate characteristic of adult junctional receptors at all ages after toxin was purified from the venom of the krait Bungarus birth. multicinctus (Ross Allen Serpentarium, Miami, FL). It was iodinated with 125I by the iodine monochloride method, and The neuromuscular junction is well suited for studies of the the labeled diiodo a-BuTx (1251-aBuTx) was purified by development of chemically transmitting synapses. Only three chromatography (11). -
Loss of Acetylcholine Receptor Clusters Induced by Treatment of Cultured Rat Myotubes with Carbachol
The Journal of Neuroscience March 1966, 6(3): 691-700 Loss of Acetylcholine Receptor Clusters Induced by Treatment of Cultured Rat Myotubes with Carbachol Robert J. Bloch Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201 Prolonged exposure to carbachol disrupts the acetylcholine re- of carbachol; (2) the cation flux into myotubes following the ceptor (AChR) clusters of cultured rat myotubes without causing conformational change; (3) the depolarization following cation myotube loss. The effect is reversible, and is dependent on tem- flux. I show that the second possibility, cation flux through the perature. Half-maximal cluster loss is achieved at 3 PM car- receptor channel, accounts for the destabilizing effect of car- bachol. Cluster loss is also caused by other agonists of the AChR bachol on AChR clusters. These results are consistent with the and is blocked by receptor antagonists. QX314 (a lidocaine de- idea that the stability of the AChR clusters of cultured rat myo- rivative), meproadifen, and fluphenazine also completely block tubes is dependent on the intracellular ionic milieu. cluster loss caused by carbachol. These results are consistent with the idea that cluster loss caused by carbachol and other Materials and Methods receptor agonists results from their interaction with the AChR, Methods for preparing myotube cultures, for staining them with tetra- and the consequent influx of cations into the myotubes. Several methylrhodamine-cu-bungarotoxin (R-BT; Ravdin and Axelrod, 1977), experiments suggest that extracellular Na+ and Ca*+ are re- and for analyzing AChR clusters have been presented in detail elsewhere quired, and that at least Na+ must permeate the AChR ion chan- (Bloch, 1979, 1983). -
No Evidence of Altered in Vivobenzodiazepine Receptor Binding in Schizophrenia
No Evidence of Altered In Vivo Benzodiazepine Receptor Binding in Schizophrenia Anissa Abi-Dargham, M.D., Marc Laruelle, M.D., John Krystal, M.D., Cyril D’Souza, M.D., Sami Zoghbi, Ph.D., Ronald M. Baldwin, Ph.D., John Seibyl, M.D., Osama Mawlawi, Ph.D., Gabriel de Erasquin, M.D., Ph.D., Dennis Charney, M.D., and Robert B. Innis, M.D., Ph.D. Deficits in gamma-amino-butyric acid (GABA) of this measurement was established in four healthy neurotransmitter systems have been implicated in the volunteers. No differences in regional BDZ VT were pathophysiology of schizophrenia for more than two observed between 16 male schizophrenic patients and 16 decades. Previous postmortem and in vivo studies of matched controls. No relationships were observed between benzodiazepine (BDZ) receptor density have reported BDZ VT and severity of psychotic symptoms in any of the alterations in several brain regions of schizophrenic regions examined. In conclusion, this study failed to patients. The goal of this study was to better characterize identify alterations of BDZ receptors density in possible alterations of the in vivo regional distribution schizophrenia. If this illness is associated with deficits in volume (VT) of BDZ receptors in schizophrenia, using the GABA transmission, these deficits do not substantially selective BDZ antagonist [123I]iomazenil and single photon involve BDZ receptor expression or regulation. emission computerized tomography (SPECT). Regional [Neuropsychopharmacology 20:650-661, 1999] BDZ VT was measured under sustained radiotracer © 1999 American College of Neuropsychopharmacology. equilibrium conditions. The reproducibility and reliability Published by Elsevier Science Inc. KEY WORDS: Schizophrenia; Benzodiazepine receptors; that disinhibition of dopamine function in schizophre- [123I]iomazenil; SPECT nia may stem from a deficit in inhibitory, GABA medi- ated systems (Roberts 1972; Stevens 1975; van Kammen Alterations of gamma-amino-butyric acid (GABA) sys- 1977). -
Degradation of Junctional and Extrajunctional Acetylcholine
Proc. Natl. Acad. Sci. USA Vol. 76, No. 7, pp. 3547-3551, July 1979 Neurobiology Degradation of junctional and extrajunctional acetylcholine receptors by developing rat skeletal muscle (synapse development) JOE HENRY STEINBACH*, JOHN MERLIEt, STEPHEN HEINEMANN*, AND ROBERT BLOCH* *Neurobiology Department, The Salk Institute, P. 0. Box 1809, San Diego, California 92112; and tDepartment of Biological Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 Communicated by Stephen W. Kuffler, April 20, 1979 ABSTRACT We have examined the rate of degradation of studied this question more thoroughly in diaphragms from rats, the total acetylcholine receptor content of diaphragm muscles 1 day old to adult, and found that junctional AcChoRs are of young rats and have found that even in muscles from 1-day- metabolically more stable than extrajunctional AcChoRs at all old rats some receptors are metabolically more stable than adult extrajunctional receptors. Further experiments have shown that ages examined. acetylcholine receptors at junctional regions from young rats are degraded slowly, whereas those in extrajunctional regions MATERIALS AND METHODS are degraded rapidly. The results demonstrate that junctional Preparation of t25I-Labeled a-Bungarotoxin. a-Bungaro- acetylcholine receptors in rat diaphragm are degraded at a slow rate characteristic of adult junctional receptors at all ages after toxin was purified from the venom of the krait Bungarus birth. multicinctus (Ross Allen Serpentarium, Miami, FL). It was iodinated with 125I by the iodine monochloride method, and The neuromuscular junction is well suited for studies of the the labeled diiodo a-BuTx (1251-aBuTx) was purified by development of chemically transmitting synapses. Only three chromatography (11). -
Transporters
Alexander, S. P. H., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Sharman, J. L., Southan, C., Davies, J. A., & CGTP Collaborators (2019). The Concise Guide to Pharmacology 2019/20: Transporters. British Journal of Pharmacology, 176(S1), S397-S493. https://doi.org/10.1111/bph.14753 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1111/bph.14753 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Wiley at https://bpspubs.onlinelibrary.wiley.com/doi/full/10.1111/bph.14753. Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Transporters. British Journal of Pharmacology (2019) 176, S397–S493 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Transporters Stephen PH Alexander1 , Eamonn Kelly2, Alistair Mathie3 ,JohnAPeters4 , Emma L Veale3 , Jane F Armstrong5 , Elena Faccenda5 ,SimonDHarding5 ,AdamJPawson5 , Joanna L Sharman5 , Christopher Southan5 , Jamie A Davies5 and CGTP Collaborators 1School of Life Sciences, -
Expression Cloning of an ATP Receptor from Mouse Neuroblastoma Cells
Proc. Natl. Acad. Sci. USA Vol. 90, pp. 5113-5117, June 1993 Pharmacology Expression cloning of an ATP receptor from mouse neuroblastoma cells KEVIN D. LUSTIG, ANDREW K. SHIAU, ANTHONY J. BRAKE, AND DAVID JULIUS* Department of Pharmacology, Programs in Cell Biology and Neuroscience, University of California, San Francisco, CA 94143 Communicated by Stephen Heinemann, March 1, 1993 ABSTRACT Extracellular ATP activates cell-surface me- A more complete characterization ofthis putative family of tabotropic and ionotropic nucleotide (P2) receptors in vascular, P2 purinergic receptors has been hampered by the complete neural, connective, and immune tissues. These P2 receptors lack of specific P2 receptor antagonists, radioligands, and mediate a wealth of physiological processes, including nitric cloned receptor cDNAs. To circumvent this difficulty, we oxide-dependent vasodilation of vascular smooth muscle and have used a Xenopus laevis oocyte expression cloning strat- fast excitatory neurotransmission in sensory afferents. Al- egy (19, 20) to isolate a cDNA encoding a functional P2U though ATP is now recognized as a signaling molecule, the receptor from NG108-15 neuroblastoma x glioma hybrid cellular and molecular mechanisms underlying its actions have cells.t We have examined the agonist selectivity, signaling been difficult to study due to the absence ofselective P2 receptor properties, species origin, and tissue distribution of the antagonists and cloned receptor genes. Nonetheless, five mam- cloned P2U receptor. malian P2 receptor subtypes have been tentatively assigned based solely on agonist specificity and signaling properties. EXPERIMENTAL PROCEDURES Here we report the cloning of a mouse cDNA encoding a P2 receptor that shares striking homology with several G protein- Expression Cloning. -
Alcohol and Violence: Neuropeptidergic Modulation of Monoamine Systems
Ann. N.Y. Acad. Sci. ISSN 0077-8923 ANNALS OF THE NEW YORK ACADEMY OF SCIENCES Issue: Addiction Reviews Alcohol and violence: neuropeptidergic modulation of monoamine systems Klaus A. Miczek,1,2 Joseph F. DeBold,2 Lara S. Hwa,2 Emily L. Newman,2 and Rosa M. M. de Almeida3 1Departments of Pharmacology, Psychiatry, and Neuroscience, Tufts University, Boston, Massachusetts. 2Department of Psychology, Tufts University, Medford, Massachusetts. 3Department of Psychology, LPNeC, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil Address for correspondence: Klaus A. Miczek, Department of Psychology, Tufts University, 530 Boston Ave (Bacon Hall), Medford, MA 02155. [email protected] Neurobiological processes underlying the epidemiologically established link between alcohol and several types of social, aggressive, and violent behavior remain poorly understood. Acute low doses of alcohol, as well as withdrawal from long-term alcohol use, may lead to escalated aggressive behavior in a subset of individuals. An urgent task will be to disentangle the host of interacting genetic and environmental risk factors in individuals who are predisposed to engage in escalated aggressive behavior. The modulation of 5-hydroxytryptamine impulse flow by gamma- aminobutyric acid (GABA) and glutamate, acting via distinct ionotropic and metabotropic receptor subtypes in the dorsal raphe nucleus during alcohol consumption, is of critical significance in the suppression and escalation of aggressive behavior. In anticipation and reaction to aggressive behavior, neuropeptides such as corticotropin- releasing factor, neuropeptide Y, opioid peptides, and vasopressin interact with monoamines, GABA, and glutamate to attenuate and amplify aggressive behavior in alcohol-consuming individuals. These neuromodulators represent novel molecular targets for intervention that await clinical validation. -
Tamás F. Freund
BK-SFN-NEUROSCIENCE_V11-200147-Freund.indd 50 6/19/20 2:08 PM Tamás F. Freund BORN: Zirc, Hungary June 14, 1959 EDUCATION: Loránd Eötvös University, Budapest, Hungary, Biologist (1983) Semmelweis University, Budapest and Hungarian Academy of Sciences, PhD (1986) APPOINTMENTS: Postdoctoral Fellow, Anatomy, Semmelweis University–Hungarian Academy of Sciences (1986–1990) Visiting Research Fellow, MRC Unit, Pharmacology, Oxford University (1986–1988) Head of Department, Institute of Experimental Medicine, Hungarian Academy of Sciences (IEM-HAS), Budapest (1990–1994) Professor, IEM-HAS, Deputy Director (1994–2002) and Director (2002–present) Professor and Head of Department, Péter Pázmány Catholic University, Budapest (2000–present) HONORS AND AWARDS (SELECTED): Drs. C. and F. Demuth Swiss Medical Research Foundation Award, Switzerland (1991) KRIEG Cortical Kudos Cortical Explorer Award of the Cajal Club (1991, USA) KRIEG Cortical Kudos Cortical Discoverer Award and the Cajal Medal (1998, USA) Dargut and Milena Kemali Foundation Award, FENS Forum, Berlin (1998) Fellow, Hungarian Academy of Sciences (1998), Vice President (since 2014) Bolyai Prize (2000), Széchenyi Prize, (2005), Prima Primissima Award (2013, Hungary) Fellow, Academia Europaea (2000, London) and Academia Scientiarum et Artium Europaea (2001) Fellow, German Academy of Sciences Leopoldina (2001) President, Federation of European Neuroscience Societies (FENS, 2004–2006) The Brain Prize (2011, Grete Lundbeck Foundation, Denmark) Fellow, American Academy of Arts and Sciences (2014) Doctor Honoris Causa, University of Southern Finland (2015) Tamás Freund’s main achievements include the discovery of new molecular pathways in nerve cell communication, identity and principles of neuron connectivity fundamental to cortical circuitry, and the generation of network activity patterns underlying multiple stages of information processing and storage in the brain. -
Diverse Small Molecules Prevent Macrophage Lysis During Pyroptosis Wendy P
Loomis et al. Cell Death and Disease (2019) 10:326 https://doi.org/10.1038/s41419-019-1559-4 Cell Death & Disease ARTICLE Open Access Diverse small molecules prevent macrophage lysis during pyroptosis Wendy P. Loomis1, Andreas B. den Hartigh1,BradT.Cookson1,2 and Susan L. Fink 1 Abstract Pyroptosis is a programmed process of proinflammatory cell death mediated by caspase-1-related proteases that cleave the pore-forming protein, gasdermin D, causing cell lysis and release of inflammatory intracellular contents. The amino acid glycine prevents pyroptotic lysis via unknown mechanisms, without affecting caspase-1 activation or pore formation. Pyroptosis plays a critical role in diverse inflammatory diseases, including sepsis. Septic lethality is prevented by glycine treatment, suggesting that glycine-mediated cytoprotection may provide therapeutic benefit. In this study, we systematically examined a panel of small molecules, structurally related to glycine, for their ability to prevent pyroptotic lysis. We found a requirement for the carboxyl group, and limited tolerance for larger amino groups and substitution of the hydrogen R group. Glycine is an agonist for the neuronal glycine receptor, which acts as a ligand- gated chloride channel. The array of cytoprotective small molecules we identified resembles that of known glycine receptor modulators. However, using genetically deficient Glrb mutant macrophages, we found that the glycine receptor is not required for pyroptotic cytoprotection. Furthermore, protection against pyroptotic lysis is independent of extracellular chloride conductance, arguing against an effect mediated by ligand-gated chloride channels. Finally, we conducted a small-scale, hypothesis-driven small-molecule screen and identified unexpected ion channel modulators that prevent pyroptotic lysis with increased potency compared to glycine.