Supporting Information

Medium to highly polar pesticides in seawater: Analysis and fate in coastal areas of Catalonia (NE Spain)

Marianne Köck-Schulmeyer1, Cristina Postigo1,2*, Marinella Farré1, Damià Barceló1,3, Miren

López de Alda1.

1Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona 18-26, 08034 Barcelona, Spain. 2 Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, SE-750 07 Uppsala, Sweden 3 Catalan Institute for Water Research (ICRA), Emili Grahit 101, Edifici H2O, Parc Científic i Tecnològic de la Universitat de Girona, 17003 Girona, Spain.

Table S1. Target pesticides and relevant physical-chemical properties…………………………………...2

Table S2. Relevant parameters for LC-ESI-MS/MS analysis of the target pesticides …………………....4

Table S3. Conductivity and pH value of seawater samples analyzed ………………………………...…..5

Table S4. Recovery and method repeatability at the lowest and the highest levels tested (5 ng/L and 100 ng/L), and instrumental sensitivity for the target analytes ………………………………………….……..6

Figure S1. Effect of the extracted sample volume on analyte breakthrough (each fortification level, i.e., R1=10 ng/L, R2=50 ng/L, and R3=100 ng/L, was evaluated in triplicate) .………………………………7

Figure S2. Extracted SRM chromatograms for the target analytes obtained after analysis of a seawater sample fortified at a concentration of 50 ng/L……………………………………………………………...8

Figure S3. Extent of matrix effects observed for each target analyte in the analysis of seawater………...9

1

Table S1. Target pesticides and relevant physical-chemical properties.

Average c Octanol-water partition c Solubility c Pesticide / Surrogate Abbrev molecular mass Type Substance group coefficient (mg/L) (Da) (Log Kow) 2,4-Dichlorophenoxyacetic acid 2,4-D 221.0 acid 24300 -0.82

2,4-Dichlorophenoxyacetic acid d3 2,4-D-d3 224.1 ALA 269.8 herbicide chloroacetanilid e 240 3.09

Alachlor d13 ALA-d13 282.9 ATR 215.7 herbicide triazine 35 2. 7

Atrazine d5 ATR-d5 220.7 Azinphos Ethyl AZET 345.4 insecticide /acaricide organophosphate 4.5 3.18

Azinphos Ethyl d10 AZET-d10 355.4 Bentazone BEN 240.3 herbicide benzothiazinone 7112 -0.46

Bentazone d6 BEN-d6 246.3 Chlorfenvinphos CFP 359.6 insecticide /acaricide organophosphate 145 3.8 0

Chlorfenvinphos d10 CFP-d10 369.6 Chlortoluron CHLO 212.7 herbicide phenylurea 74 2.50

Chlortoluron d6 CHLO-d6 218.7 CYA 240.7 herbicide acid 171 2.10

Cyanazine d5 CYA-d5 245.7 Desethylatrazine DEA 187.6 metabolite triazine 2700 1.51

Desethylatrazine d6 DEA-d6 193.6 Diazinon DIAZ 304.4 insecticide organophosphate 40 3.81

Diazinon d10 DIAZ-d10 314.4 Dimethoate DIME 229.3 insecticide organophosphate 25900 0.7 5

Dimethoate d6 DIME-d6 235.3 Diuron DIU 233.1 herbicide phenylurea 35.6 2.87

Diuron d6 DIU-d6 239.1 Fenitrothion FEN 277.2 insecticide organophosphate 19 3.3 2

Fenitrothion d6 FEN-d6 283.3 Fenthion oxon a FENOX 262.3 metabolite organophosphate 214 2.31 2

Table S1 (continued). Target pesticides and relevant physical-chemical properties. Average c Octanol-water c Solubility c Pesticide / Surrogate Abbrev molecular mass Type Substance group partition coefficient (mg/L) (Da) (Log P) Fenthion sulfone FENSN 310.3 metabolite organophosphate 190.4 2.25

Fenthion sulfone d6 FENSN-d6 316.4 Fenthion sulfoxide FENSX 294.3 metabolite organophosphate 3.72 1.92

Fenthion sulfoxide d6 FENSX-d6 300.4 Irgarol IRG 253.4 algicide/herb icide triazine 7.0 3.95

Irgarol d9 IRG-d9 262.4 Isoproturon ISO 206.3 herbicide phenylurea 70.2 2. 5

Isoproturon d6 ISO-d6 212.3 LINU 249.1 herbicide phenylurea 63.8 3.00

Linuron d6 LINU-d6 255.1 MCPA MCPA 200.6 herbicide acid 29390 -0.81

MCPA d3 MCPA-d3 203.6 MECO 214.7 herbicide acid 250000 -0.19

Mecoprop d3 MECO-d3 217.7 METO 283.8 herbicide chloroacetanilid e 530 3. 4

Metolachlor d6 METO-d6 289.8 b PROP 218.1 herbicide anilide 95 2.29 SIMA 201.7 herbicide triazine 5.0 2.30

Simazine d10 SIMA-d10 211.7 TER 229.7 herbicide triazine 6.6 3.40

Terbuthylazine d5 TER-d5 234.7 Terbutryn TBT 241.4 herbicide triazine 25 3.66

Terbutryn d5 TBT-d5 246.4 a FENSX-d6 used as surrogate standard b FEN-d6 used as surrogate standard c Data extracted from Agriculture & Environment Research Unit (AERU). The PPDB, Pesticide Properties Database. University of Hertfordshire, UK (Online available at http://sitem.herts.ac.uk/aeru/footprint/index2.htm>)

3

Table S2. Relevant parameters for LC-ESI-MS/MS analysis of the target pesticides.

Cone (V) CE (eV) SRM1/ Rt ESI Pesticide / Surrogate Abbrev SRM1 / SRM2 (m/z) SRM1/ SRM1/ SRM2 (min) mode SRM2 SRM2 ratio Bentazone BEN 4.97 - 239>132/239>197 35/35 25/20 1.5 Bentazone d BEN-d - 245>132 35 25 6 6 Desethylatrazine DEA 5.50 + 188>146/188>79 30/30 15/25 3.5 Desethylatrazine d DEA-d + 194>147 25 20 6 6 MCPA MCPA 5.68 - 199>141/199>155 20/15 15/15 32.2 MCPA-d MCPA-d - 204>146 25 20 3 3 Dimethoate DIME 5.72 + 230>125/230>199 25/25 15/15 0.8 Dimethoate d DIME-d + 236>131 30 15 6 6 2,4-D 2,4-D 5.85 - 219>125/219>161 15/15 30/10. 15.6 2,4-D d 2,4-D d - 224>127 20 25 3 3 Mecoprop MECO 6.54 - 213>141/213>71 15/15 15/15 17.4 Mecoprop d MECO-d - 218>146 25 15 3 3 Simazine SIMA 7.09 + 202>124/202>71 30/30 20/25 1.0 Simazine d SIMA-d + 212>137 35 15 10 10 Cyanazine CYA 7.12 + 241>214/241>174 30/30 15/20 10.1 Cyanazine d CYA-d + 246>219 30 20 5 5 Fenthion sulfoxide FENSX 7.40 + 295>109/295>125 40/40 30/35 3.9 Fenthion sulfoxide d FENSX-d + 301>108 35 30 6 6 Chlortoluron CHLO 7.98 + 213>72/213>140 25/25 15/30 33.2 Chlortoluron d CHLO-d + 219>78 35 15 6 6 Isoproturon ISO 8.33 + 207>72/207>165 35/35 20/15 6.6 Isoproturon d ISO-d + 213>171 30 20 6 6 Atrazine ATR 8.46 + 216>174/216>132 35/35 15/20 6.7 Atrazine d ATR-d + 221>179 35 15 5 5 Diuron DIU 8.66 + 233>72/235>72 25/25 15/15 1.8 Diuron d6 DIU-d6 + 239>78 25 25 a Fenthion oxon FENOX 8.88 + 263>231/263>216 35/35 20/25 1.8 Fenthion sulfone FENSN 9.51 + 311>125/311>109 35/35 30/40 1.8 Fenthion sulfone d6 FENSN-d6 + 317>115 45 30 b Propanil PROP 10.30 - 216>160/218>162 30/30 15/15 1.6 Terbuthylazine TER 10.86 + 230>174/230>96 25/25 15/25 5.2 Terbuthylazine d TER-d + 235>179 30 20 5 5 Linuron LINU 11.27 + 249>160/249>192 25/25 15/15 1.3 Linuron d LINU-d + 255>184 30 30 6 6 Irgarol IRG 12.81 + 254>108/254>125 35/30 30/25 2.8 Irgarol d IRG-d + 263>199 40 20 9 9 Terbutryn TBT 12.93 + 242>71/242>91 30/30 30/30 1.1 Terbutryn d TBT-d + 247>191 35 20 5 5 Metolachlor METO 13.55 + 284>176/284 73 25/25 25/25 8.4 Metolachlor d METO-d + 290>258 25 15 6 6 Alachlor ALA 13.72 + 270>238/270>162 30/30 15/15 2.3 Alachlor d ALA-d + 283>251 15 10 13 13 Fenitrothion FEN 13.98 - 262>152/262>122 25/25 30/20 19.9 Fenitrothion d FEN-d - 265>152 30 15 6 6 Azinphos Ethyl AZET 14.34 + 346>132/346>104 15/15 20/35 4.2 Azinphos Ethyl d AZET-d + 356>132 15 20 10 10 Chlorfenvinphos CFP 14.58 + 359>155/359>170 25/25 15/40 1.3 Chlorfenvinphos d CFP-d + 369>101 25 30 10 10 Diazinon DIAZ 17.24 + 305>153/305>97 35/35 20/30 1.7 Diazinon d10 DIAZ-d10 + 315 >170 35 20 a FENSX-d6 used as surrogate standard b FEN-d6 used as surrogate standard

4

Table S3. Conductivity and pH value of the seawater samples analyzed.

Conductivity Sample code pH value (µS/cm) 1-in 8.02 51,351 1-out 8.00 48,835 2-in 7.90 50,606 2-out 7.80 60,692 3-in n/a n/a 3-out n/a n/a 4-in 7.94 49,471 4-out 7.69 50,961 5-in 7.95 47,360 5-out 8.11 50,423 6-in 8.05 48,823 6-out 8.07 50,491 7-in 8.05 50,271 7-out 8.00 50,817 8-in 7.97 49,772 8-out 7.97 50,545 9-in 8.13 50,537 9-out 8.20 50,623 10-in 8.17 50,676 10-out 8.14 50,300 11-in n/a n/a 11-out n/a n/a 12-in 8.09 49,823 12-out 7.93 50,428 13-in 7.96 49,867 13-out 8.04 50,575 14-in 7.73 33,660 14-out 8.10 50,044 15-in 7.97 49,223 15-out 8.01 49,821 16-in 8.09 49,909 16-out 8.10 50,507 17-in 8.00 49,386 17-out 8.06 50,006 18-in 7.91 34,932 18-out 8.22 32,141 19-in 7.71 1,198 19-out 7.64 563 20-in 7.92 38,571 20-out 7.91 45,271 n/a: data not available.

5

Table S4. Recovery and method repeatability at the lowest and the highest levels tested (5 ng/L and 100 ng/L), and instrumental sensitivity for the target analytes.

a a Instrumental Recovery (n=5, 5 ng/L) Recovery (n=5, 100 ng/L) b Pesticide sensitivity (ng/L) AR (%) RR (%) RSD (%) AR (%) RR (%) RSD (%) LOD LDet 2,4-D 74 104 20 55 107 29 0.04 0.61 ALA 115 112 12 78 102 5 0.17 0.57 ATR 81 110 3 64 104 5 0.01 0.07 AZET 58 64 22 80 117 7 0.27 0.93 BEN 83 109 22 60 117 18 0.03 0.09 CFP 79 84 12 68 98 4 0.11 0.37 CHLO 67 92 10 68 103 10 0.03 0.17 CYA 44 99 10 42 102 2 0.02 0.14 DEA 26 105 12 21 99 2 0.08 0.26 DIAZ 59 99 3 66 103 3 0.01 0.04 DIME 53 90 21 58 93 9 0.30 1.01 DIU 77 129 28 67 91 10 0.02 0.07 FEN < LDet < LDet < LDet 81 130 13 1.15 13.2 FENOXc 58 66 30 67 83 19 0.03 0.10 FENSN < LDet < LDet < LDet 49 128 17 1.16 3.85 FENSX 81 93 28 82 103 26 0.05 0.26 IRG 118 103 3 86 103 2 0.04 0.29 ISO 89 103 12 81 104 18 0.01 0.49 LINU 63 89 10 74 101 9 0.48 1.60 MCPA < LDet < LDet < LDet 56 96 9 0.05 3.59 MECO 106 105 12 77 99 6 0.03 0.54 METO 117 101 5 81 102 3 0.03 0.50 PROPc 86 160 23 72 116 11 0.05 0.15 SIMA 56 117 21 44 108 1 0.02 0.08 TER 69 101 4 62 105 11 0.01 0.04 TBT 113 98 2 86 104 1 0.02 0.06 a AR: absolute recovery, RR: relative recovery, RSD: relative standard deviation of n=5 replicate analysis b Lowest concentration of the analyte that can be detected (LOD) and quantified (SRM1>LOQ and SRM2>LOD), LDet) by LC-ES-MS/MS analysis. c analyte quantified using a structurally related or closely eluting deuterated compound.

6

2,4D ALA ATR AZET BEN CFP CHLO CYA DEA DIAZ DIME DIU FEN FENOX FENSN FENSX IRG ISO LINU MCPA MECO METO PROP SIMA TER TBT AVERAGE 350

300 (%) 250

200

recovery 150

100

50 Average

0 R1-0.5LR1 R2-0.5L R2 R3-0.5L R3 R1-1.0LR1 R2-1.0L R2 R3-1.0L R3 R1-2.0L R1 R2-2.0L R2 R3-2.0L R3 R1-3.0L R1 R2-3.0L R2 R3-3.0L R3 0.5 L 1.0 L 2.0 L 3.0 L

Figure S1. Effect of the extracted sample volume on analyte breakthrough (each fortification level, i.e., R1=10 ng/L, R2=50 ng/L, and R3=100 ng/L, was evaluated in triplicate).

7

ES+ 4.84 279.3 > 263.9 (FENOXSX)

% 5.86e4

ES+ ES- 8.88 263.3 > 230.9 (FENOX) 4.97 239 > 132 (BEN) % 6.46e4

% 4.25e4

ES+ ES+ 9.51 311.3 > 124.9 (FENSN) 5.50 188 > 146 (DEA) % 5.81e3

% 1.07e5

ES- ES- 10.30 216 > 160 (PROP) 5.68 199 > 141 (MCPA) % 4.11e4

% 4.58e4

ES+ ES+ 10.86 230 > 174 (TER) 5.72 230 > 125 (DIME) % 9.55e5

% 3.91e4

ES+ ES- 11.27 249 > 160 (LINU) 5.85 219 > 125 (2,4D) % 1.52e4

% 2.65e3

ES+ ES- 12.81 254 > 108 (IRG) 6.54 213 > 141 (MECO)

% 1.14e5

% 6.75e4

ES+ ES+ 12.93 242 > 71 (TBT) 7.09 202 > 124 (SIMA) % 6.21e5

% 1.80e5

ES+ ES+ 13.55 284 > 176 (METO) 7.12 241 > 214 (CYA)

% 6.98e4

% 9.79e4

ES+ ES+ 13.72 270 > 238 (ALA) 7.40 295 > 108.9 (FENSX) % 1.24e4

% 2.19e5

ES+ ES- 7.98 213 > 72 (CHLO) 13.98 262 > 152 (FEN)

5.64e5 % 1.15e3 %

ES+ ES+ 14.34 346.4 > 132 (AZET) 8.33 207 > 72 (ISO) % 6.55e3

6.12e5 %

ES+ 14.58 ES+ 8.46 216 > 174 (ATR) 359 > 155 (CFP)

1.11e6 % 3.12e4 %

ES+ 17.24 ES+ 8.66 233 > 72 (DIU) 305 > 153 (DIAZ) 1.62e5 %

% 4.23e5 Time Time 10.00 15.00 20.00 5.00 10.00 15.00

Figure S2. Extracted SRM chromatograms for the target analytes obtained after analysis of a seawater sample fortified at a concentration of 50 ng/L.

8

2,4-D ALA ATR AZET BEN CFP CHLO CYA DEA DIAZ DIME DIU FEN FENOX FENSN FENSX IRG ISO LINU MCPA MECO METO PROP SIMA TER TBT -100 -80 -60 -40 -20 0 Matrix effect (%)

Figure S3. Extent of matrix effects observed for each target analyte in the analysis of seawater.

9