Insights from Aspergillus Species Paul S

Total Page:16

File Type:pdf, Size:1020Kb

Insights from Aspergillus Species Paul S REVIEW ARTICLE Sexual development and cryptic sexuality in fungi: insights from Aspergillus species Paul S. Dyer & Ce´ line M. O’Gorman School of Biology, University of Nottingham, Nottingham, UK Downloaded from https://academic.oup.com/femsre/article/36/1/165/534783 by guest on 24 September 2021 Correspondence: Paul S. Dyer, School of Abstract Biology, University of Nottingham, University Park, Nottingham NG7 2RD, UK. Tel.: Major insights into sexual development and cryptic sexuality within filamen- +44 115 9513251; fax: +44 115 9513251; tous fungi have been gained from investigations using Aspergillus species. Here, e-mail: [email protected] an overview is first given into sexual morphogenesis in the aspergilli, describing the different types of sexual structures formed and how their production is Received 12 May 2011; accepted 4 influenced by a variety of environmental and nutritional factors. It is argued September 2011. Final version published that the formation of cleistothecia and accessory tissues, such as Hu¨lle cells online 6 October 2011. and sclerotia, should be viewed as two independent but co-ordinated develop- DOI: 10.1111/j.1574-6976.2011.00308.x mental pathways. Next, a comprehensive survey of over 75 genes associated with sexual reproduction in the aspergilli is presented, including genes relating Editor: Gerhard Braus to mating and the development of cleistothecia, sclerotia and ascospores. Most of these genes have been identified from studies involving the homothallic Keywords Aspergillus nidulans, but an increasing number of studies have now in addition cleistothecia; sclerotia; mating type; characterized ‘sex-related’ genes from the heterothallic species Aspergillus Petromyces; sexual morphogenesis; fumigatus and Aspergillus flavus. A schematic developmental genetic network is asexuality. proposed showing the inter-relatedness between these genes. Finally, the dis- covery of sexual reproduction in certain Aspergillus species that were formerly considered to be strictly asexual is reviewed, and the importance of these find- ings for cryptic sexuality in the aspergilli as a whole is discussed. The genus Aspergillus comprises approximately 250 Introduction species (Samson & Varga, 2010) that are collectively ‘Sexuality in fungi has long been recognized as one of the termed the ‘aspergilli’. It should be noted that this num- more perplexing yet intriguing facets of the biology of ber is probably an underestimation, and conflicting this large and varied group of micro-organisms’ (Raper, reports exist on the actual number of accepted species 1966). Despite a further 40 years of research since John owing to the complex taxonomy of the genus (Peterson, Raper wrote this statement in his book Genetics of Sexual- 2008). Aspergillus species have traditionally been recog- ity in Higher Fungi, the process of sexual reproduction in nized by the presence of a common morphological fea- fungi is still perplexing mycologists. However, insights ture, the ‘aspergillum’, an asexual reproductive structure have been gained into many aspects of fungal sexuality consisting of a characteristic conidiophore culminating in following the application of modern molecular genetic an expanded bulbous region on which is borne phialides techniques. For example, genes involved in the determi- and metullae that generate chains of conidia (Bennett, nation of breeding systems have been identified together 2009). Phylogenetic analysis has shown that they are with a repertoire of genes involved in sexual develop- essentially a monophyletic group (Peterson, 2008). They ment, and such ‘sex-related’ genes have been used to have a ubiquitous distribution, being present in decaying MICROBIOLOGY REVIEWS MICROBIOLOGY investigate the genetic basis of sexuality and asexuality in vegetation, soils and dust worldwide (Klich, 2002b; Ben- fungi. Many of these advances have come through or nett, 2010). The aspergilli are of particular importance have been aided by the study of Aspergillus species, which because they include in their number species that are will form the focus of the present review. highly beneficial to mankind, but others that are highly FEMS Microbiol Rev 36 (2012) 165–192 ª 2011 Federation of European Microbiological Societies Published by Blackwell Publishing Ltd. All rights reserved 166 P.S. Dyer & C.M. O’Gorman detrimental. Thus, certain species are used in food pro- Table 1. Teleomorphic genera with known Aspergillus anamorphs duction, in industry for metabolite production including Number of Homothallic : as a source of drugs, and as laboratory model organisms Genus species* Examples heterothallic for basic and applied research. By contrast, other Aspergil- Chaetosartorya 3 C. chrysella, 3:0 lus species can cause contamination of food stocks and C. cremea give rise to life-threatening infections in immunocompro- Dichotomomyces 2 D. albu, D. cejpii 2:0 mised hosts (Bennett, 2009, 2010). Emericella 43 E. nidulans, 42 : 1 The aspergilli have proved especially valuable in studies E. heterothallica of fungal sexuality because they include species with a Eurotium 64 E. herbariorum, 64 : 0 range of different reproductive modes. Some ‘mitosporic’ E. chevalieri Fennellia 3 F. flavipes, F. nivea 3:0 species are only known to reproduce by asexual means Downloaded from https://academic.oup.com/femsre/article/36/1/165/534783 by guest on 24 September 2021 Neocarpenteles 1 N. acanthosporum 1:0 and have been traditionally classified in the fungal phylum Neopetromyces 1 N. muricatus 1:0 the Deuteromycota, which encompasses fungi lacking a Neosartorya 40 (46)† N. fischeri, 33 : 7 known sexual state (Taylor et al., 1999). By contrast, ‘mei- N. fumigata osporic’ species can also reproduce by sexual means and Penicilliopsis 2 P. dybowskii, 2:0 so have been traditionally classified in the fungal phylum P. flavidus the Ascomycota, whose characteristic feature is sexual Petromyces 5 P. alliaceus, 1:4 P. flavus reproduction involving the production of ascospores Sclerocleista 2 S. ornata, 2:0 within asci. In the case of meiosporic Aspergillus species, S. thaxteri they exhibit either heterothallic (obligate outbreeding) or Warcupiella 1 W. spinulosa 1:0 homothallic (self-fertile) sexual breeding systems. The *All legitimate species registered at MycoBank (www.mycobank.org) division of Aspergillus species into either the Deuteromy- on 5 May 2011. Note that the number of Aspergillus species regis- cotina or the Ascomycotina is arguably misleading because tered at MycoBank is higher than the figure reported by Samson & phylogenetic analysis shows that they form a united group Varga (2010). (Peterson, 2008), and the term ‘Deuteromycotina’ has †The number in parentheses includes six unconfirmed species pro- now largely been replaced by the mitosporic or meiosporic posed by Peterson (2008). terminology (Ku¨ck & Po¨ggeler, 2009). The majority of accepted Aspergillus species (approximately two-thirds of Overview of sexual development in the taxa) are only known to reproduce by asexual means, aspergilli whilst those that do exhibit sexual cycles are overwhelm- ingly homothallic in nature with few heterothallic species Morphology of teleomorph states described (Table 1) (Dyer, 2007; Kwon-Chung & Sugui, 2009). Elucidating the genetic basis of such differences in The Pezizomycotina encompasses those Ascomycota that reproductive mode is proving a fascinating challenge. grow by production of filamentous hyphae. In this sub- There have been a number of dedicated reviews over phylum, sexual spores (ascospores) are housed in one of the past decade dealing with different aspects of sexual four main types of fruiting body (ascomata/ascocarps): reproduction in Aspergillus species, some reviewing the cleistothecia, perithecia, apothecia or pseudothecia. They aspergilli in general (e.g. Dyer, 2007; Geiser, 2008) whilst differ in their size, shape, style and organization of the others have focussed specifically on Aspergillus nidulans asci, and presence and type of interascal sterile hyphae (e.g. Braus et al., 2002; Han et al., 2008a; Han, 2009; Han (Po¨ggeler et al., 2006). Members of the genus Aspergillus & Han, 2010). The present review will first give an over- produce their ascospores in cleistothecia, which are the view of sexual reproduction in the aspergilli as a whole only ascomatal type that fully encloses the asci and and then provide a summary of the current state of ascospores (Gre. kleistos, closed + Gre. the¯kion, small knowledge of genes involved with sexual development in case). Cleistothecia may contain up to 100 000 asci, each Aspergillus species. This includes updating information enclosing (with very rare exceptions) eight ascospores; in from previous reviews and covering new material relating the case of A. nidulans, an average cleistothecium may to recently characterized genes, and the involvement of contain around 80 000 viable ascospores (Pontecorvo, sex-related genes in sclerotial development. Finally it will 1953; Braus et al., 2002). Rather than being forcefully dis- describe the recent discoveries of sexual cycles in Aspergil- charged, ascospores are released following the natural lus fumigatus, Aspergillus flavus, Aspergillus parasiticus and breakdown of the ascus wall and the outer wall (perid- Aspergillus nomius and discuss the significance of these ium) of the cleistothecium in their natural environment findings in terms of cryptic sexuality in the aspergilli such as soil or decaying vegetation. One exception is given their economic and medical importance.
Recommended publications
  • Distribution of Methionine Sulfoxide Reductases in Fungi and Conservation of the Free- 2 Methionine-R-Sulfoxide Reductase in Multicellular Eukaryotes
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.26.433065; this version posted February 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Distribution of methionine sulfoxide reductases in fungi and conservation of the free- 2 methionine-R-sulfoxide reductase in multicellular eukaryotes 3 4 Hayat Hage1, Marie-Noëlle Rosso1, Lionel Tarrago1,* 5 6 From: 1Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, 7 Marseille, France. 8 *Correspondence: Lionel Tarrago ([email protected]) 9 10 Running title: Methionine sulfoxide reductases in fungi 11 12 Keywords: fungi, genome, horizontal gene transfer, methionine sulfoxide, methionine sulfoxide 13 reductase, protein oxidation, thiol oxidoreductase. 14 15 Highlights: 16 • Free and protein-bound methionine can be oxidized into methionine sulfoxide (MetO). 17 • Methionine sulfoxide reductases (Msr) reduce MetO in most organisms. 18 • Sequence characterization and phylogenomics revealed strong conservation of Msr in fungi. 19 • fRMsr is widely conserved in unicellular and multicellular fungi. 20 • Some msr genes were acquired from bacteria via horizontal gene transfers. 21 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.02.26.433065; this version posted February 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • In Tetrahymena Thermophila Jacek Gaertig,* Manuel A
    Acetylation of Lysine 40 in ot-tubulin Is Not Essential in Tetrahymena thermophila Jacek Gaertig,* Manuel A. Cruz, Josephine Bowen, Long Gu, David G. Pennock,* and Martin A. Gorovsky Department of Biology, University of Rochester, Rochester, New York 14627; and *Department of Zoology, Miami University, Oxford, Ohio 45056 Abstract. In Tetrahymena, at least 17 distinct microtu- acetylated tubulin was detectable in these transform- bule structures are assembled from a single primary se- ants using a monoclonal antibody specific for acety- quence type of oL- and 13-tubulin heterodimer, preclud- lated lysine 40. Surprisingly, mutants lacking detectable ing distinctions among microtubular systems based on acetylated tubulin are indistinguishable from wild-type tubulin primary sequence isotypes. Tetrahymena tubu- cells. Thus, acetylation of o~-tubulin at lysine 40 is non- lins also are modified by several types of posttransla- essential in Tetrahymena. In addition, isoelectric focus- tional reactions including acetylation of a-tubulin at ing gel analysis of axonemal tubulin from cells unable lysine 40, a modification found in most eukaryotes. In to acetylate o~-tubulin leads us to conclude that: (a) Tetrahyrnena, axonemal o~-tubulin and numerous other most or all ciliary ot-tubulin is acetylated, (b) other microtubules are acetylated. We completely replaced lysines cannot be acetylated to compensate for loss of the single type of a-tubulin gene in the macronucleus acetylation at lysine 40, and (c) acetylated o~-tubulin with a version encoding arginine instead of lysine 40 molecules in wild-type cells contain one or more addi- and therefore cannot be acetylated at this position. No tional charge-altering modifications.
    [Show full text]
  • Genetics of Polyketide Metabolism in Aspergillus Nidulans
    Metabolites 2012, 2, 100-133; doi:10.3390/metabo2010100 OPEN ACCESS metabolites ISSN 2218-1989 www.mdpi.com/journal/metabolites/ Review Genetics of Polyketide Metabolism in Aspergillus nidulans Marie L. Klejnstrup 1, Rasmus J. N. Frandsen 2, Dorte K. Holm 2, Morten T. Nielsen 2, Uffe H. Mortensen 2, Thomas O. Larsen 1 and Jakob B. Nielsen 2,* 1 Department of Systems Biology, Center for Microbial Biotechnology, Technical University of Denmark, Søltofts Plads B221, DK-2800 Kgs. Lyngby, Denmark; E-Mails: [email protected] (M.L.K.); [email protected] (T.O.L) 2 Department of Systems Biology, Center for Microbial Biotechnology, Technical University of Denmark, Søltofts Plads B223, DK-2800 Kgs. Lyngby, Denmark; E-Mails: [email protected] (R.J.N.F.); [email protected] (D.K.H.); [email protected] (M.T.N.); [email protected] (U.H.M.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +45-4525-2657; Fax: +45-4588-4148. Received: 1 November 2011; in revised form: 23 December 2011 / Accepted: 17 January 2012 / Published: 30 January 2012 Abstract: Secondary metabolites are small molecules that show large structural diversity and a broad range of bioactivities. Some metabolites are attractive as drugs or pigments while others act as harmful mycotoxins. Filamentous fungi have the capacity to produce a wide array of secondary metabolites including polyketides. The majority of genes required for production of these metabolites are mostly organized in gene clusters, which often are silent or barely expressed under laboratory conditions, making discovery and analysis difficult.
    [Show full text]
  • ABSTRACT LEWIS, MARY HUNT. Genetic Structure of Soil
    ABSTRACT LEWIS, MARY HUNT. Genetic Structure of Soil Populations of Aspergillus Section Flavi and Efficacy of Biocontrol of Aflatoxin Contamination in Corn. (Under the direction of Dr. Ignazio Carbone and Dr. Peter S. Ojiambo). Corn is contaminated with aflatoxin, a carcinogenic mycotoxin, when aflatoxigenic strains within Aspergillus section Flavi infect corn kernels. Biocontrol using non- aflatoxigenic strains of A. flavus have been shown to have the greatest potential to control aflatoxin contamination in corn. However, factors that influence the efficacy of biocontrol agents in different locations are not fully understood. One factor affecting the effectiveness biocontrol could be the genetic structure of the native soil populations of Aspergillus section Flavi. In this study, we investigated how the genetic structure of native soil populations of Aspergillus section Flavi could impact the effectiveness of two commercially available biological control products in different locations in the southeastern US. Field trials were conducted in Alabama, Georgia and North Carolina in the 2012 and 2013 growing seasons. Biocontrol products AF36 and Afla-Guard® were applied to the corn at the VT stage. Soil samples were collected prior to and 1-week after biocontrol application and at harvest to determine the genetic structure of soil populations. In all states, A. flavus (61-100%) was the most dominant species within section Flavi, with A. parasiticus (<35%) being the second- most frequently isolated species. A. nomius, A. caelatus and A. tamarii were detected only in Alabama, but at very low frequencies (<5%). Multi-locus sequence typing revealed that prior to biocontrol application in North Carolina in 2012, 48% of the isolates were the same haplotype as the biocontrol strain Afla-Guard, which belongs to lineage IB, while only 6% were of the same haplotype as AF36, which belongs to lineage IC.
    [Show full text]
  • Paula Cristina Azevedo Rodrigues S L T I F U N O N R T O I S P T
    Universidade do Minho Escola de Engenharia m o f r o f e Paula Cristina Azevedo Rodrigues s l t i f u n o n r t o i s p t e a c i h s i c n l e a d i g n i c r x a e o s t m d a l n f m o a o c m d l Mycobiota and aflatoxigenic profile of n o a t a e n a s t o Portuguese almonds and chestnuts from e i o t u i c g b u u o production to commercialisation t d c r o y o r M P p s e u g i r d o R o d e v e z A a n i t s i r C a l u a P 0 1 0 2 | o h n i M U November 2010 Universidade do Minho Escola de Engenharia Paula Cristina Azevedo Rodrigues Mycobiota and aflatoxigenic profile of Portuguese almonds and chestnuts from production to commercialisation Dissertation for PhD degree in Chemical and Biological Engineering Supervisors Professor Doutor Nelson Lima Doutor Armando Venâncio November 2010 The integral reproduction of this thesis or parts thereof is authorized only for research purposes provided a written declaration for permission of use Universidade do Minho, November 2010 Assinatura: THIS THESIS WAS PARTIALLY SUPPORTED BY FUNDAÇÃO PARA A CIÊNCIA E A TECNOLOGIA AND THE EUROPEAN SOCIAL FUND THROUGH THE GRANT REF . SFRH/BD/28332/2006, AND BY FUNDAÇÃO PARA A CIÊNCIA E A TECNOLOGIA AND POLYTECHNIC INSTITUTE OF BRAGANÇA THROUGH THE GRANT REF .
    [Show full text]
  • Neutrophil Phagocyte Oxidase Activity Controls Invasive Fungal Growth and Inflammation in Zebrafish Taylor J
    © 2019. Published by The Company of Biologists Ltd | Journal of Cell Science (2020) 133, jcs236539. doi:10.1242/jcs.236539 RESEARCH ARTICLE Special Issue: Cell Biology of the Immune System Neutrophil phagocyte oxidase activity controls invasive fungal growth and inflammation in zebrafish Taylor J. Schoen1,2, Emily E. Rosowski1,*, Benjamin P. Knox1, David Bennin1, Nancy P. Keller1,3 and Anna Huttenlocher1,4,‡ ABSTRACT aspergillosis is increased in people with inherited Neutrophils are primary phagocytes of the innate immune system that immunodeficiency or medically-induced immunosuppression that generate reactive oxygen species (ROS) and mediate host defense. impairs innate immune cell function, especially those with Deficient phagocyte NADPH oxidase (PHOX) function leads to neutropenia, i.e. neutrophil deficiency (King et al., 2016; Segal chronic granulomatous disease (CGD) that is characterized by et al., 2010). Relative to other inherited immune disorders, CGD is invasive infections, including those by the generally non-pathogenic the most significant predisposing condition for developing invasive fungus Aspergillus nidulans. The role of neutrophil ROS in this aspergillosis (Blumental et al., 2011), and invasive aspergillosis is specific host–pathogen interaction remains unclear. Here, we exploit responsible for many of the infection-related mortalities of CGD the optical transparency of zebrafish to image the effects of neutrophil patients (Henriet et al., 2012; Marciano et al., 2015), with ROS on invasive fungal growth and neutrophil behavior in response to A. fumigatus as the primary causative agent (Marciano et al., Aspergillus nidulans. In a wild-type host, A. nidulans germinates 2015). Despite its rare occurrence in other immunocompromised rapidly and elicits a robust inflammatory response with efficient fungal populations, A.
    [Show full text]
  • Taxonomy and Evolution of Aspergillus, Penicillium and Talaromyces in the Omics Era – Past, Present and Future
    Computational and Structural Biotechnology Journal 16 (2018) 197–210 Contents lists available at ScienceDirect journal homepage: www.elsevier.com/locate/csbj Taxonomy and evolution of Aspergillus, Penicillium and Talaromyces in the omics era – Past, present and future Chi-Ching Tsang a, James Y.M. Tang a, Susanna K.P. Lau a,b,c,d,e,⁎, Patrick C.Y. Woo a,b,c,d,e,⁎ a Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong b Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong c State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong d Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong e Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong article info abstract Article history: Aspergillus, Penicillium and Talaromyces are diverse, phenotypically polythetic genera encompassing species im- Received 25 October 2017 portant to the environment, economy, biotechnology and medicine, causing significant social impacts. Taxo- Received in revised form 12 March 2018 nomic studies on these fungi are essential since they could provide invaluable information on their Accepted 23 May 2018 evolutionary relationships and define criteria for species recognition. With the advancement of various biological, Available online 31 May 2018 biochemical and computational technologies, different approaches have been adopted for the taxonomy of Asper- gillus, Penicillium and Talaromyces; for example, from traditional morphotyping, phenotyping to chemotyping Keywords: Aspergillus (e.g. lipotyping, proteotypingand metabolotyping) and then mitogenotyping and/or phylotyping. Since different Penicillium taxonomic approaches focus on different sets of characters of the organisms, various classification and identifica- Talaromyces tion schemes would result.
    [Show full text]
  • FGN 46 Aspergillus Bibliography
    Fungal Genetics Reports Volume 46 Article 16 FGN 46 Aspergillus Bibliography John Clutterbuck Follow this and additional works at: https://newprairiepress.org/fgr This work is licensed under a Creative Commons Attribution-Share Alike 4.0 License. Recommended Citation Clutterbuck, J. (1999) "FGN 46 Aspergillus Bibliography," Fungal Genetics Reports: Vol. 46, Article 16. https://doi.org/10.4148/1941-4765.1244 This Bibliography is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Fungal Genetics Reports by an authorized administrator of New Prairie Press. For more information, please contact [email protected]. FGN 46 Aspergillus Bibliography Abstract This bibliography attempts to cover genetical and biochemical publications on Aspergillus nidulans and also includes selected references to related species and topics. This bibliography is available in Fungal Genetics Reports: https://newprairiepress.org/fgr/vol46/iss1/16 Clutterbuck: FGN 46 Aspergillus Bibliography FGN 46 Aspergillus Bibliography This bibliography attempts to cover genetical and biochemical publications on Aspergillus nidulans and also includes selected references to related species and topics. I would be grateful for publication lists and reprints , especially for papers in books and less readily available periodicals. Entries have been checked as far as possible, but please tell me of any errors. Authors are requested to send a copy of each publication to the FGSC. John Clutterbuck View the Aspergillus Keyword index View the Aspergillus Author index 1. Aleksenko, A. & Ivanova, L. 1998 In vivo linearization and autonomous replication of plasmids containing human telomeric DNA in Aspergillus nidulans. Mol. Gen. Genet. 260: 159- 164 2.
    [Show full text]
  • Functional Characterization of Aspergillus Nidulans Homologues of Saccharomyces Cerevisiae Spa2 and Bud6
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Plant Pathology Plant Pathology Department June 2006 Functional Characterization of Aspergillus nidulans Homologues of Saccharomyces cerevisiae Spa2 and Bud6 Aleksandra Virag University of Nebraska-Lincoln, [email protected] Steven D. Harris University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/plantpathpapers Part of the Plant Pathology Commons Virag, Aleksandra and Harris, Steven D., "Functional Characterization of Aspergillus nidulans Homologues of Saccharomyces cerevisiae Spa2 and Bud6" (2006). Papers in Plant Pathology. 48. https://digitalcommons.unl.edu/plantpathpapers/48 This Article is brought to you for free and open access by the Plant Pathology Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Plant Pathology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. EUKARYOTIC CELL, June 2006, p. 881–895 Vol. 5, No. 6 1535-9778/06/$08.00ϩ0 doi:10.1128/EC.00036-06 Copyright © 2006, American Society for Microbiology. All Rights Reserved. Functional Characterization of Aspergillus nidulans Homologues of Saccharomyces cerevisiae Spa2 and Bud6 Aleksandra Virag and Steven D. Harris* Plant Science Initiative and Department of Plant Pathology, University of Nebraska, Lincoln, Nebraska Received 6 February 2006/Accepted 12 April 2006 The importance of polarized growth for fungi has elicited significant effort directed at better understanding underlying mechanisms of polarization, with a focus on yeast systems. At sites of tip growth, multiple protein complexes assemble and coordinate to ensure that incoming building material reaches the appropriate destination sites, and polarized growth is maintained.
    [Show full text]
  • Aspergillus Bibliography
    Fungal Genetics Reports Volume 52 Article 8 Aspergillus Bibliography John Clutterbuck University of Glasgow Follow this and additional works at: https://newprairiepress.org/fgr This work is licensed under a Creative Commons Attribution-Share Alike 4.0 License. Recommended Citation Clutterbuck, J. (2005) "Aspergillus Bibliography," Fungal Genetics Reports: Vol. 52, Article 8. https://doi.org/10.4148/1941-4765.1127 This Bibliography is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Fungal Genetics Reports by an authorized administrator of New Prairie Press. For more information, please contact [email protected]. Aspergillus Bibliography Abstract This bibliography attempts to cover genetical and biochemical publications on Aspergillus nidulans and also includes selected references to related species and topics. Entries have been checked as far as possible, but please tell me of any errors and omissions. Authors are kindly requested to send a copy of each article to the FGSC for its reprint collection. This bibliography is available in Fungal Genetics Reports: https://newprairiepress.org/fgr/vol52/iss1/8 Clutterbuck: Aspergillus Bibliography ASPERGILLUS BIBLIOGRAPHY This bibliography attempts to cover genetical and biochemical publications on Aspergillus nidulans and also includes selected references to related species and topics. Entries have been checked as far as possible, but please tell me of any errors and omissions. Authors are kindly requested to send a copy of each article to the FGSC for its reprint collection. John Clutterbuck. Institute of Biomedical and Life Sciences, Anderson College, University of Glasgow, Glasgow G11 6NU, Scotland, UK. Email: [email protected] 1.
    [Show full text]
  • RNA Silencing in Aspergillus Nidulans Is Independent of RNA-Dependent RNA Polymerases
    Copyright © 2005 by the Genetics Society of America DOI: 10.1534/genetics.104.035964 RNA Silencing in Aspergillus nidulans Is Independent of RNA-Dependent RNA Polymerases T. M. Hammond and N. P. Keller1 Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin 53706 Manuscript received September 4, 2004 Accepted for publication November 5, 2004 ABSTRACT The versatility of RNA-dependent RNA polymerases (RDRPs) in eukaryotic gene silencing is perhaps best illustrated in the kingdom Fungi. Biochemical and genetic studies of Schizosaccharomyces pombe and Neurospora crassa show that these types of enzymes are involved in a number of fundamental gene-silencing processes, including heterochromatin regulation and RNA silencing in S. pombe and meiotic silencing and RNA silencing in N. crassa. Here we show that Aspergillus nidulans, another model fungus, does not require an RDRP for inverted repeat transgene (IRT)-induced RNA silencing. However, RDRP requirements may vary within the Aspergillus genus as genomic analysis indicates that A. nidulans, but not A. fumigatus or A. oryzae, has lost a QDE-1 ortholog, an RDRP associated with RNA silencing in N. crassa. We also provide evidence suggesting that 5Ј → 3Ј transitive RNA silencing is not a significant aspect of A. nidulans IRT- RNA silencing. These results indicate a lack of conserved kingdom-wide requirements for RDRPs in fungal RNA silencing. NA silencing refers to a group of very similar post- ases (RDRPs) are essential components of RNA silenc- R transcriptional gene-silencing mechanisms that ing (e.g., protists, nematodes; Smardon et al. 2000; Sijen have been discovered in a diverse range of eukaryotes et al.
    [Show full text]
  • Sequencing Abstracts Msa Annual Meeting Berkeley, California 7-11 August 2016
    M S A 2 0 1 6 SEQUENCING ABSTRACTS MSA ANNUAL MEETING BERKELEY, CALIFORNIA 7-11 AUGUST 2016 MSA Special Addresses Presidential Address Kerry O’Donnell MSA President 2015–2016 Who do you love? Karling Lecture Arturo Casadevall Johns Hopkins Bloomberg School of Public Health Thoughts on virulence, melanin and the rise of mammals Workshops Nomenclature UNITE Student Workshop on Professional Development Abstracts for Symposia, Contributed formats for downloading and using locally or in a Talks, and Poster Sessions arranged by range of applications (e.g. QIIME, Mothur, SCATA). 4. Analysis tools - UNITE provides variety of analysis last name of primary author. Presenting tools including, for example, massBLASTer for author in *bold. blasting hundreds of sequences in one batch, ITSx for detecting and extracting ITS1 and ITS2 regions of ITS 1. UNITE - Unified system for the DNA based sequences from environmental communities, or fungal species linked to the classification ATOSH for assigning your unknown sequences to *Abarenkov, Kessy (1), Kõljalg, Urmas (1,2), SHs. 5. Custom search functions and unique views to Nilsson, R. Henrik (3), Taylor, Andy F. S. (4), fungal barcode sequences - these include extended Larsson, Karl-Hnerik (5), UNITE Community (6) search filters (e.g. source, locality, habitat, traits) for 1.Natural History Museum, University of Tartu, sequences and SHs, interactive maps and graphs, and Vanemuise 46, Tartu 51014; 2.Institute of Ecology views to the largest unidentified sequence clusters and Earth Sciences, University of Tartu, Lai 40, Tartu formed by sequences from multiple independent 51005, Estonia; 3.Department of Biological and ecological studies, and for which no metadata Environmental Sciences, University of Gothenburg, currently exists.
    [Show full text]