Integrated Pest Management Tactics for Control of Cabbage Looper and Diamondback Moth in Cabbage

Total Page:16

File Type:pdf, Size:1020Kb

Integrated Pest Management Tactics for Control of Cabbage Looper and Diamondback Moth in Cabbage Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1997 Integrated Pest Management Tactics for Control of Cabbage Looper and Diamondback Moth in Cabbage. Paul Wesley Ivey Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Ivey, Paul Wesley, "Integrated Pest Management Tactics for Control of Cabbage Looper and Diamondback Moth in Cabbage." (1997). LSU Historical Dissertations and Theses. 6541. https://digitalcommons.lsu.edu/gradschool_disstheses/6541 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. LJMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type o f computer printer. The quality o f this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send U M I a complete manuscript and there are missing pages, these will be noted. Also, i f unauthorized copyright material had to be removed, a note w ill indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back o f the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact U M I directly to order. UMI A Beil &. Howell Infbnnation Company 300 NoithZeeb Road, Ann Arbor MI 48106-1346 USA 313/761-4700 800/321-0600 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. INTEGRATED PEST MANAGEMENT TACTICS FOR CONTROL OF CABBAGE LOOPER AND DIAMONDBACK MOTH IN CABBAGE A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Entomology by Paul W. Ivey A.Sc., College of Agriculture, Jamaica, 1987 B.Sc., University of the West Indies, Trinidad, 1989 M.S., Louisiana State University, 1991 December 1997 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 9810829 UMI Microform 9810829 Copyright 1997, by UMI Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. UMI 300 North Zeeb Road Ann Arbor, MI 48103 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Dedication The late Harold Ivey was a quiet man; a good husband; a good father. A man, though he did not accumulate any great wealth, who supported, protected, and cared for his family as best he could, and who placed a premium on education for his children; that is his enduring legacy. I dedicate this dissertation to the memory of Harold Ivey; a quiet man; a good husband; a good father. My father. ii Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Acknowledgments One of the many lessons that I have learned while pursuing this degree is that there is no such thing as "a self-made man"; many persons have helped me to successfully complete this degree. My major professor. Dr. Seth James Johnson, has been very helpful. He has patiently, tactfully, and tenaciously guided me in the ways of science: generating ideas and testing them against facts, attention to details, critical thinking, scholarship, clarity of expression, and discipline; and sought to instill in me the higher levels of learning: analysis, evaluation, and synthesis. In addition, he was very instrumental in my getting a two-year tuition waiver award. It is difficult, indeed impossible, to exaggerate the gratitude that I extend to Dr. Johnson for his assistance and guidance in helping me make the best of my limited intellectual endowments. I thank the members of my advisory committee - Professors Jerry B. Graves, Thomas J. Riley, Richard N. Story, and Paul H. Templet (Institute for Environmental Studies) - for their many constructive comments, suggestions, and reviews of my research work. Thanks also to Professor Abner M. Hammond for loaning me some of his pesticide application equipment. Mr. Lloyd Bailey and other members of the staff at the College of Agriculture, Science and ill Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Education (formerly College of Agriculture), Jamaica, also are deserving of my thanks for their help with the portion of my work done in Jamaica. So too is Mr. Timothy Raiford and the field staff at Burden Research Plantation, Louisiana Agricultural Experiment Station, Baton Rouge, for their help with the part of my research conducted in Louisiana. X am thankful to the Department of Entomology, Louisiana State University, and especially its head, Dr. Frank Guillot, for financial assistance in the form of an assistantship. The Environmental Foundation of Jamaica (EFJ) provided substantial financial support for the studies I did in Jamaica. I am very grateful to the former Executive Director of the EFJ, Dr. Terrence Thomas, for his help and encouragement. Mr. Lenworth Fulton, Managing Director of the College of Agriculture Jamaica Foundation, also contributed to my success by assisting with the cost of my accommodation for the duration of the studies I did in Jamaica. Earlier in my life, Mrs. Marjorie Jackson provided me with guidance and direction for which I am very grateful. Also, Mr. Ralston Munn and Mrs. Floribel Morris-Barrett gave me opportunities which helped me to get on the path that led to where I am today; I thank them both. Thanks also to my family members, especially my mother, Mrs. Enid Ivey, and friends who have provided moral support iv Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. throughout the entire period of my work, study, and reflection here at Louisiana State University and Agricultural and Mechanical College. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Table of Contents Dedication............................................ ii Acknowledgment*...................................... iii List of Tables......................................viii List of Figures....................................... x Abstract............. xi Introduction........................................... 1 References Cited -Introduction..................... 4 Literature Review........... 8 Cabbage Looper.................................... 8 Biology and Life Cycle ....................... 8 Host Plants................................. 10 Migration and Distribution................... 10 Management of Cabbage Looper................. 12 Diamondback Moth.................. 13 Biology and Life Cycle....................... 14 Host Plants........... 16 Migration and Distribution................... 17 Management of Diamondback Moth............... 19 Pesticide Use Reduction: An Emerging Trend in Sustainable Agricultural Practices................ 28 The Integrated Pest Management Strategy and its Role in Contemporary Agricultural Systems............ ...32 The Integrated Pest Management Concept........ 34 IPM - A Definition........................... 35 Insect Migration and its Implications for Integrated Pest Management.................................. 36 References Cited - Literature Review...............38 Chapter One Integration of Plant Resistance, Intercropping, and Microbial Control for Management of cabbage Looper and Diamondback Moth in Jamaica................... 53 Introduction.................................54 Materials and Methods........................ 59 Results..................................... 63 Discussion.................................. 71 References cited - Chapter One............... 77 vi Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Chapter Two Potential of Plant Resistance and Bacillus thuringiensis for Control of Diamondback Moth in Janaica.......................................... 82 Introduction................................ 83 Materials and Methods........................ 87 Results................... ................. .88 Discussion.................................. 89 References cited - Chapter Two................ 95 chapter Three Toxicity of Three Fornulations of Bacillus thuringiensis Against Diamondback Moth..............98 Introduction......................
Recommended publications
  • Cabbage Looper, Trichoplusia Ni (Hübner) (Insecta: Lepidoptera: Noctuidae)1 John L
    EENY-116 Cabbage Looper, Trichoplusia ni (Hübner) (Insecta: Lepidoptera: Noctuidae)1 John L. Capinera2 Distribution stages. In Florida, continuous activity and reproduction occur only south of Orlando. The remainder of Florida and The cabbage looper is found throughout much of the world the portion of Georgia south of Byron, as well as southeast where crucifers are cultivated, and during the summer South Carolina, have intermittent adult activity during the months can be found throughout most of the USA. How- winter months, depending on weather.All points north of ever, overwintering in the US apparently occurs only in the this have no winter activity. southernmost states. It is somewhat erratic in occurrence, typically very abundant one year, and then scarce for two Egg to three years. This is likely due to the residual effects of Cabbage looper eggs are hemispherical in shape, with a nuclear polyhedrosis virus, which is quite lethal to this the flat side affixed to foliage. They are deposited singly insect. The cabbage looper is highly dispersive, and adults on either the upper or lower surface of the leaf, although have sometimes been found at high altitudes and far from clusters of six to seven eggs are not uncommon. The eggs shore. Flight ranges of approximately 200 km have been are yellowish white or greenish in color, bear longitudinal estimated. ridges, and measure about 0.6 mm in diameter and 0.4 mm in height. Eggs hatch in about two, three, and five days at Description and Life Cycle 32, 27, and 20°C, respectively, but require nearly 10 days at The number of generations completed per year varies from 15°C (Jackson et al.
    [Show full text]
  • Cabbage Looper Pest Fact Sheet 11 Dr
    Bringing information and education into the communities of the Granite State Cabbage Looper Pest Fact Sheet 11 Dr. Alan T. Eaton, Extension Specialist, Entomology Introduction The cabbage looper (Trichoplusia ni) is a North American native found throughout the U.S., Canada, and Mexico. It attacks all plants of the cabbage family, as well as lettuce, spinach, beets, peas, celery, parsley, potatoes, and some flower varieties. Description The larva of the cabbage looper is a small, green caterpillar with a thin white to yellow stripe on each side of the body and two stripes down the center of the back. It has three pairs of Adult cabbage looper. Credit: Whitney Cranshaw, legs near the head and three pairs of club-shaped legs (prolegs) Colorado State University, Bugwood.org. on the abdomen. The area between these legs humps into a loop during movement, giving the insect its name. The adults The cabbage looper does not overwinter are about 1" long and gray-brown in color with a 1½" wing outdoors in New Hampshire. span. The middle of the front of each wing has a silvery spot that resembles a figure 8. Life Cycle The cabbage looper does not overwinter outdoors in New Hampshire. It flies north from the south as early as mid-July, but often not until mid to late August. This accounts for the overlapping of stages in New Hampshire. Once the adult reaches New Hampshire, it lays eggs singly on the upper surfaces of the host plant. Each female lays 275-350 eggs. Upon hatching, the larva immediately feeds upon the host plant and completes development in 2-4 weeks.
    [Show full text]
  • Twenty-Five Pests You Don't Want in Your Garden
    Twenty-five Pests You Don’t Want in Your Garden Prepared by the PA IPM Program J. Kenneth Long, Jr. PA IPM Program Assistant (717) 772-5227 [email protected] Pest Pest Sheet Aphid 1 Asparagus Beetle 2 Bean Leaf Beetle 3 Cabbage Looper 4 Cabbage Maggot 5 Colorado Potato Beetle 6 Corn Earworm (Tomato Fruitworm) 7 Cutworm 8 Diamondback Moth 9 European Corn Borer 10 Flea Beetle 11 Imported Cabbageworm 12 Japanese Beetle 13 Mexican Bean Beetle 14 Northern Corn Rootworm 15 Potato Leafhopper 16 Slug 17 Spotted Cucumber Beetle (Southern Corn Rootworm) 18 Squash Bug 19 Squash Vine Borer 20 Stink Bug 21 Striped Cucumber Beetle 22 Tarnished Plant Bug 23 Tomato Hornworm 24 Wireworm 25 PA IPM Program Pest Sheet 1 Aphids Many species (Homoptera: Aphididae) (Origin: Native) Insect Description: 1 Adults: About /8” long; soft-bodied; light to dark green; may be winged or wingless. Cornicles, paired tubular structures on abdomen, are helpful in identification. Nymph: Daughters are born alive contain- ing partly formed daughters inside their bodies. (See life history below). Soybean Aphids Eggs: Laid in protected places only near the end of the growing season. Primary Host: Many vegetable crops. Life History: Females lay eggs near the end Damage: Adults and immatures suck sap from of the growing season in protected places on plants, reducing vigor and growth of plant. host plants. In spring, plump “stem Produce “honeydew” (sticky liquid) on which a mothers” emerge from these eggs, and give black fungus can grow. live birth to daughters, and theygive birth Management: Hide under leaves.
    [Show full text]
  • Relative Attraction of the Cabbage Looper Moth (Trichoplusia Ni (Hübner)) to Wild-Type and Transgenic Tomato (Solanum Lycopersicum L.)
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 11-10-2017 9:00 AM Relative Attraction of the Cabbage Looper Moth (Trichoplusia ni (Hübner)) to Wild-type and Transgenic Tomato (Solanum lycopersicum L.) William J. Laur The University of Western Ontario Supervisor Dr. Ian Scott The University of Western Ontario Co-Supervisor Dr. Jeremy McNeil The University of Western Ontario Graduate Program in Biology A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © William J. Laur 2017 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Entomology Commons Recommended Citation Laur, William J., "Relative Attraction of the Cabbage Looper Moth (Trichoplusia ni (Hübner)) to Wild-type and Transgenic Tomato (Solanum lycopersicum L.)" (2017). Electronic Thesis and Dissertation Repository. 5078. https://ir.lib.uwo.ca/etd/5078 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract The cabbage looper moth (CLM), Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae) is an agricultural pest that has developed resistance to many frequently used insecticides, so alternative methods are required to reduce greenhouse CLM populations. Host plant volatile organic chemicals (VOCs) are used by female CLMs as cues for host location and oviposition. I hypothesized that changes in host plant VOC production, through genetic modification, could alter host location behaviour by CLMs. These changes in VOCs have potential to give rise to highly attractive transgenic trap crops.
    [Show full text]
  • Insect Pest Management in Soybeans 12 by G
    Chapter Insect Pest Management in Soybeans 12 by G. Lorenz, D. Johnson, G. Studebaker, C. Allen and S. Young, III he importance of insect pests in Arkansas Finally, it is important to determine what soybeans is extremely variable from year to management tactics are available and whether or year due in large part to environmental not they are economically feasible. T conditions. For example, hot, dry years favor many lepidopterous pests such as the soybean Insect Identification podworm and the beet armyworm; and when drought conditions occur, these pests usually are The three types of insect pests found in soybeans abundant. Many other lepidopterous pests, such as in Arkansas are: the velvetbean caterpillar and the soybean looper, 1. Foliage feeders, which comprise the biggest may cause problems following migrations from group of insect pests, southern areas, particularly in concurrence with winds out of the Gulf region where they are a 2. Pod feeders, which are probably the most common problem. Generally, insect pressure is detrimental to yield, and greater in the southern part of the state compared to 3. Stem, root and seedling feeders, which are northern Arkansas due to warmer temperatures and often the hardest to sample and are not detected closeness to the aforementioned migration sources. until after they have caused damage. Production practices also have an impact on the Some insects, such as the bean leaf beetle, may feed GEMENT occurrence of pest insects in soybeans. For example, on both foliage and pods but are primarily insects such as the Dectes stem borer and grape considered foliage feeders.
    [Show full text]
  • Soybean Insects Loopers
    W199 Soybean Insects Loopers Scott Stewart, Professor, Entomology and Plant Pathology Angela Thompson McClure, Associate Professor, Plant Sciences and Russ Patrick, Professor, Entomology and Plant Pathology Classification and Description: Two kinds of with a characteristic inch-worm, looping fashion. Both loopers often infest soybeans grown in Tennessee. The soybean and cabbage loopers can be distinguished cabbage looper from other caterpillars commonly found in soybean (Trichoplusia because they have three pairs of prolegs on the ni) and abdomen (one pair at the tip of the abdomen and two soybean looper additional pairs). Unlike the larvae of cabbage loopers, (Pseudoplusia soybean loopers often have black true legs (located includens) both behind the head) and/or black spots on the body. belong to the same family Hosts and Distribution: Both species of loopers have of insects a relatively wide host range and may be found on a (Lepidoptera: number of wild hosts, vegetables and other field crops Noctuidae) and such as cotton. Cabbage loopers are native to most are difficult to distinguish from each other. The moths of North America. Soybean loopers are subtropical of both species range from brown to black with a in origin, and infestations in Tennessee result from wing span of about 1 1/3 inches. The forewings of the migration of moths from southern latitudes. both species are normally mottled, often with a gold Consequently, soybean looper infestations are more or bronze sheen and prominent silver markings near common in states bordering the Gulf Coast and during the center. Eggs are typically laid singly and are late season in Tennessee.
    [Show full text]
  • Biology of Diamondback Moth, Plutellae Xylostella (Lepidoptera: Plutellidae) of Cauliflower Under Laboratory Condition
    Int.J.Curr.Microbiol.App.Sci (2019) 8(1): 866-873 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 8 Number 01 (2019) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2019.801.094 Biology of Diamondback Moth, Plutellae xylostella (Lepidoptera: Plutellidae) of Cauliflower under Laboratory Condition G. Harika1*, S. Dhurua2, N. Sreesandhya2, M. Suresh2 and S. Govinda Rao2 1DAATTC, Vizianagaram, AP, India 2ANGRAU, Agricultural College, Naira, A.P, India *Corresponding author ABSTRACT K e yw or ds Biological studies conducted during 2017-18 at the Post Graduation Research laboratory, Department of Entomology, Agricultural College, Naira on Diamondback moth, Plutellae Biology, Plutellae xylostella (L.) (Lepidoptera: Plutellidae) revealed that the egg period (incubation period) xylostella , varies from 2 to 4 days (Av. 3 ± 0.5 days). The larva passed through four different instars. Cauliflower The first, second, third and fourth instar larva lived for 2 to 3 days (Av. 2.5 days), 2 days (Av. 1.5 days), 1 to 3 days (Av. 1.75 ± 0.25 days) and 2 to 4 days (Av. 2.75 ± 0.25 days), Article Info respectively with a total larval period of 7 to 12 days (Av. 9 days). The pre-pupal and Accepted: pupal stage lasted for 1 - 2 days (Av. 1.5 ± 0.5 days) and 3 to 5 days (Av. 4.25 ± 0.25 07 December 2018 days), respectively. The adults lived for 3 to 7 days (Av. 4.5 ± 1 days) and the entire life Available Online: span under laboratory conditions varied from 13 to 22 days (Av.
    [Show full text]
  • Vegetable Insects Department of Entomology
    E-99-W Vegetable Insects Department of Entomology MANAGING INSECT PESTS OF COMMERCIALLY GROWN CRUCIFERS Ricky E. Foster, Extension Entomologist The crucifers include cabbage, caulifl ower, broccoli, The following practices will reduce cabbage maggot injury. Brussels sprouts, turnips, radishes, kale, rutabaga, mustard, • Disk crop residues immediately after harvest to reduce collards, horseradish, and other crucifers. All of the crucifers overwintering populations. are subject to attack by insects. Some, such as radishes, can • Plant in well-drained soils when soil temperatures exceed usually be grown without insect damage and others, such as 50°F. cabbage, must be managed carefully to avoid serious insect • Do not plant in fi elds to which animal manure has been damage. recently applied or in which a cover crop has been plowed down within 3-4 weeks of planting. CABBAGE MAGGOTS • Use the soil insecticides diazinon, Lorsban, or Capture LFR in the seed furrow or as transplant drenches. The fi rst insect of concern on crucifers is usually the cab- bage maggot. Cabbage maggot overwinters as pupae in the FLEA BEETLES soil. The fl ies, slightly smaller than a housefl y, emerge from the soil in late April or early May and lay white eggs at the Flea beetles are almost always a pest of crucifers, es- bases of newly set plants. Emergence usually coincides with pecially early in the growing season. Flea beetles are small, the time when yellow rocket, a common weed, is in full bloom. hard-shelled insects, so named because their enlarged hind Larvae from this fi rst generation tunnel in the roots of legs allow them to jump like fl eas when disturbed.
    [Show full text]
  • U.S. EPA, Pesticide Product Label, FORAY 48BC, 02/27/2008
    Mr. Warren L. Smith International Regulatory Manager Vaient Biosciences Corporation 870 Technology Way, Suite 100 ·FEB 27 2DD8 Libertyville, IL 60048-6316 . Subject: Valent Biosciences Corporation, Foray® 48BC EP A Registration #73049-46 Label amendments to revise the First Aid, Precautionary Statements, and Environmental Hazards sections, change the primary brand name from Foray® 48 Eto Fora'y® 48BC, and add the alternate brand name, Foray® Urban Application Date: October 23, 2007 EP A Receipt Date: October 24, 2007 I' OPP Decision Number: D-385420 Dear Mr. Smith: The amendments referred ~o above, submitted in connection with registration under FIFRA section 3(c)(5), are acceptabl~ provided th,!-t you: 1. Submit andlor cite all data required for registration of your product under FIFRA section 3( c)( 5) when the Agency requires all registrants of similar products to submit such data. 2. Submit two (2) copies of your final printed labeling before you release the product for shipment. Refer to the A-79 enclosure for a further description of a final printed label. Your release for shipment of the product bearing the amended labeling constitutes acceptance of these conditions. If you hav~ any questions contact Jeannine Kausch at 703-347- 8920 or by email at: [email protected]. A stainped copy of the label is enclosed for your records.· Sincerely, ~~(}.d/J Sheryl Rellly, Ph.ri.~ Microbial Pesticides Branch Biopesticides and Pollution Prevention Division (7511P) Enclosures CONCURRENCES SYMBOL .....:1:?U.e .......... :15JJf.............. ~ .......... ;................................................................................................ ;................ SURNAME.... \C. '. fi. ; 0 . -. '. '. ~ ...... ~~.?~.H ......... v~lf: .......... :.......................... ~.; .............................. ............. ;i ...... ..................... ...... ;............ i •. DATE • o-z./Z'1/ ~oi . ') ...17.>1'10 Cl \.
    [Show full text]
  • Metabolism of Fatty Acids in Ips Paraconfusus Lanier
    METABOLISM OF FATTY ACIDS IN IPS PARACONFUSUS LANIER (COLEOPTERA:SCOLYTIDAE): VIVO S~THESISOF FATTY ACIDS FROM ACETATE-1 -14C IN FRESHLY EMERGED FEMALES Kenneth Robert Penner B. Sc., ~imonFraser university, 1969 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in the Department Biological Sciences KENNETH ROBERT PENNER 1970 SIMON FRASER UNIVERSITY August, 1970 APPROVAL Name : Kenneth Robert Penner Degree: Master of Science Title of ~hesis: Metabolism of fatty acids in ~ps paraconfusus Lanier (Coleoptera: Scolytidae): In Vivo synthesis of fatty acids from ~cetate-l-1~~in freshly emerged females Examining committee : J. S, Barlow Senior Supervisor Jr-TI. Borden Examining Comrni ttee G. R. Lister . -. -mcmitKGig -committee A. H.' Burr Examining Committee Date ~pproved: August 7, 1970. ABSTRACT The fatty acid composition of freshly emerged male and female Ips paraconfusus Lanier (Coleoptera: Scolytidae) was 1 similar, however the levels of C 14: 0 and C 16:O were signi- ficantly higher in the males (P = .lo). In the female the composition was found to be C 14: 0, 0 -4%; c 16: 0, 22.4%; C 16~1,5.8%; C 18:0, 3.1%; C l8:l, 55.3%; C 18:2, 9.6%; c 18~3,2.2%. The composition of the male was C 14:0, 0.7%; C 16~0,24.1%; C 16:1, 6.2%; C 18:0, 3.0%; C 18:1, 54.9%; C 18:2, 8.9%; C 18:3, 2.1%. The quantitative fatty acid composition was significantly changed in reproducing adults excised from Ponderosa pine logs after six days.
    [Show full text]
  • Cabbage Looper Karen Delahaut, UW-Madison Fresh Market Vegetable Program
    XHT1029 Provided to you by: Cabbage Looper Karen Delahaut, UW-Madison Fresh Market Vegetable Program The cabbage looper (Trichoplusia ni) is a lepidopteran insect and an important pest of cole crops in Wisconsin. All cole crops, including cabbage, broccoli, Brussels sprouts, cauliflower, and rutabaga, are susceptible to attack by this insect. In addition, cabbage loopers will also attack beets, celery, lettuce, peas, potatoes, spinach and tomato. Appearance: The cabbage looper is named for the way in which the caterpillar stage of the insect arches its body while moving. When fully grown, the caterpillar 1 has a greenish body that is 1 ⁄2 inches long and tapers near the head. There is a thin white line along each side of the caterpillar and two white lines along its back. The cabbage looper adult is greyish-brown, night-flying moth with a 1 wingspan of 1 ⁄2 inches. The mottled brown forewings are marked near the middle with a small, silver-white figure “8: or letter “Y”. Symptoms and Effects: Cabbage looper larvae feed on cole crop leaves A cabbage looper larva. between the large veins and midribs. Feeding occurs primarily on the upper leaf surface near the midrib producing large, irregular holes. Severe feeding damage will stunt cabbage and cauliflower heads. Larval damage to the developing of Wisconsin Garden Facts buds on young cabbages can cause heads to abort. Cabbage loopers can also bore into the heads of early cabbage and can result in heads that are unmarketable. y Cabbage looper damage to root crops is generally of little economic importance.
    [Show full text]
  • PCHHAX Nano Entomopathogenic Fungi As
    Available online a t www.derpharmachemica.com ISSN 0975-413X Der Pharma Chemica, 2016, 8(17):10-14 CODEN (USA): PCHHAX (http://derpharmachemica.com/archive.html) Nano Entomopathogenic Fungi As biological Control Agents on Cabbage Worm, Pieris rapae L. (Lepidoptera: Pieridae) Abdel-Raheem M. A. 1, Naglaa F. Reyad 2, Al-Shuraym Laila. A. 3 and Abdel-Rahman I. E. 4 1Pests & Plant Protection Department, National Research Centre, 33 rd El Bohouth St, (Postal code: 12622) Dokki, Giza, Egypt 2Plant Protection Research Institute A. R. C. Dokki. Giza. Egypt 3Department of Biology College of Arts and Sciences in Buraydah, Qassim University Saudi Arabia 4Department of Plant Protection, Faculty of Agriculture, Al-Azhar Uni., Egypt _____________________________________________________________________________________________ ABSTRACT The present investigation was carried out during two successive Cabbage seasons (2014-2015 and 2015- 2016), to study the impact of entomopathogenic fungi on Cabbage worm, Pieris rapae L. The Pieris rapae Populations were evaluated in the field early in the season in October 2014.which began to appear on cabbage plants. Thereafter number of Pieris rapae increased gradually to reach a peak of abundance during November 2014 and November 2015. ). Three concentrations were used (1 x10 3, 1 x 10 4 and 1 x 10 5 spores/ ml.). Under laboratory conditions the results showed that B. bassiana, M. anisopliae and V. lecanii have a latent toxicity because mortalities were occurred after the third day from treatment. The maximum percent of mortality (100 %) was occurred after the tenth day from treatment with the third concentration in V. lecanii. The Second concentration (1 x 10 4spores/ ml.) was the highly toxic in B.
    [Show full text]