ESA-Bulletin-139.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cross-References ASTEROID IMPACT Definition and Introduction History of Impact Cratering Studies
18 ASTEROID IMPACT Tedesco, E. F., Noah, P. V., Noah, M., and Price, S. D., 2002. The identification and confirmation of impact structures on supplemental IRAS minor planet survey. The Astronomical Earth were developed: (a) crater morphology, (b) geo- 123 – Journal, , 1056 1085. physical anomalies, (c) evidence for shock metamor- Tholen, D. J., and Barucci, M. A., 1989. Asteroid taxonomy. In Binzel, R. P., Gehrels, T., and Matthews, M. S. (eds.), phism, and (d) the presence of meteorites or geochemical Asteroids II. Tucson: University of Arizona Press, pp. 298–315. evidence for traces of the meteoritic projectile – of which Yeomans, D., and Baalke, R., 2009. Near Earth Object Program. only (c) and (d) can provide confirming evidence. Remote Available from World Wide Web: http://neo.jpl.nasa.gov/ sensing, including morphological observations, as well programs. as geophysical studies, cannot provide confirming evi- dence – which requires the study of actual rock samples. Cross-references Impacts influenced the geological and biological evolu- tion of our own planet; the best known example is the link Albedo between the 200-km-diameter Chicxulub impact structure Asteroid Impact Asteroid Impact Mitigation in Mexico and the Cretaceous-Tertiary boundary. Under- Asteroid Impact Prediction standing impact structures, their formation processes, Torino Scale and their consequences should be of interest not only to Earth and planetary scientists, but also to society in general. ASTEROID IMPACT History of impact cratering studies In the geological sciences, it has only recently been recog- Christian Koeberl nized how important the process of impact cratering is on Natural History Museum, Vienna, Austria a planetary scale. -
Comet and Meteorite Traditions of Aboriginal Australians
Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures, 2014. Edited by Helaine Selin. Springer Netherlands, preprint. Comet and Meteorite Traditions of Aboriginal Australians Duane W. Hamacher Nura Gili Centre for Indigenous Programs, University of New South Wales, Sydney, NSW, 2052, Australia Email: [email protected] Of the hundreds of distinct Aboriginal cultures of Australia, many have oral traditions rich in descriptions and explanations of comets, meteors, meteorites, airbursts, impact events, and impact craters. These views generally attribute these phenomena to spirits, death, and bad omens. There are also many traditions that describe the formation of meteorite craters as well as impact events that are not known to Western science. Comets Bright comets appear in the sky roughly once every five years. These celestial visitors were commonly seen as harbingers of death and disease by Aboriginal cultures of Australia. In an ordered and predictable cosmos, rare transient events were typically viewed negatively – a view shared by most cultures of the world (Hamacher & Norris, 2011). In some cases, the appearance of a comet would coincide with a battle, a disease outbreak, or a drought. The comet was then seen as the cause and attributed to the deeds of evil spirits. The Tanganekald people of South Australia (SA) believed comets were omens of sickness and death and were met with great fear. The Gunditjmara people of western Victoria (VIC) similarly believed the comet to be an omen that many people would die. In communities near Townsville, Queensland (QLD), comets represented the spirits of the dead returning home. -
A European Cooperation Programme
Year 32 • Issue #363 • July/August 2019 2,10 € ESPAÑOLA DE InternationalFirst Edition Defence of the REVISTA DEFEandNS SecurityFEINDEF ExhibitionA Future air combat system A EUROPEAN COOPERATION PROGRAMME BALTOPS 2019 Spain takes part with three vessels and a landing force in NATO’s biggest annual manoeuvres in the Baltic Sea ESPAÑOLA REVISTA DE DEFENSA We talk about defense NOW ALSO IN ENGLISH MANCHETA-INGLÉS-353 16/7/19 08:33 Página 1 CONTENTS Managing Editor: Yolanda Rodríguez Vidales. Editor in Chief: Víctor Hernández Martínez. Heads of section. Internacional: Rosa Ruiz Fernández. Director de Arte: Rafael Navarro. Parlamento y Opinión: Santiago Fernández del Vado. Cultura: Esther P. Martínez. Fotografía: Pepe Díaz. Sections. Nacional: Elena Tarilonte. Fuerzas Armadas: José Luis Expósito Montero. Fotografía y Archivo: Hélène Gicquel Pasquier. Maque- tación: Eduardo Fernández Salvador. Collaborators: Juan Pons. Fotografías: Air- bus, Armada, Dassault Aviation, Joaquín Garat, Iñaki Gómez, Latvian Army, Latvian Ministry of Defence, NASA, Ricardo Pérez, INDUSTRY AND TECHNOLOGY Jesús de los Reyes y US Navy. Translators: Grainne Mary Gahan, Manuel Gómez Pumares, María Sarandeses Fernández-Santa Eulalia y NGWS, Fuensanta Zaballa Gómez. a European cooperation project Germany, France and Spain join together to build the future 6 fighter aircraft. Published by: Ministerio de Defensa. Editing: C/ San Nicolás, 11. 28013 MADRID. Phone Numbers: 91 516 04 31/19 (dirección), 91 516 04 17/91 516 04 21 (redacción). Fax: 91 516 04 18. Correo electrónico:[email protected] def.es. Website: www.defensa.gob.es. Admi- ARMED FORCES nistration, distribution and subscriptions: Subdirección General de Publicaciones y 16 High-readiness Patrimonio Cultural: C/ Camino de Ingenieros, 6. -
L AUNCH SYSTEMS Databk7 Collected.Book Page 18 Monday, September 14, 2009 2:53 PM Databk7 Collected.Book Page 19 Monday, September 14, 2009 2:53 PM
databk7_collected.book Page 17 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS databk7_collected.book Page 18 Monday, September 14, 2009 2:53 PM databk7_collected.book Page 19 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS Introduction Launch systems provide access to space, necessary for the majority of NASA’s activities. During the decade from 1989–1998, NASA used two types of launch systems, one consisting of several families of expendable launch vehicles (ELV) and the second consisting of the world’s only partially reusable launch system—the Space Shuttle. A significant challenge NASA faced during the decade was the development of technologies needed to design and implement a new reusable launch system that would prove less expensive than the Shuttle. Although some attempts seemed promising, none succeeded. This chapter addresses most subjects relating to access to space and space transportation. It discusses and describes ELVs, the Space Shuttle in its launch vehicle function, and NASA’s attempts to develop new launch systems. Tables relating to each launch vehicle’s characteristics are included. The other functions of the Space Shuttle—as a scientific laboratory, staging area for repair missions, and a prime element of the Space Station program—are discussed in the next chapter, Human Spaceflight. This chapter also provides a brief review of launch systems in the past decade, an overview of policy relating to launch systems, a summary of the management of NASA’s launch systems programs, and tables of funding data. The Last Decade Reviewed (1979–1988) From 1979 through 1988, NASA used families of ELVs that had seen service during the previous decade. -
ISDEFE-Annual Report 2015.Pdf
ANNUAL REPORT ANNUAL REPORT 2015 This document is the 2015 Isdefe Annual Report on the corporate governance of the company and its performance over the course of the year in three main areas: financial, social and environmental. Isdefe publishes a corporate social responsibility (CSR) report annually based on the directives and principles of the Global Reporting Initiative (GRI), which specifies the methods for determining the content, scope and coverage of the report and ensures the quality of the information presented. In keeping with its environmental commitment, the paper versions of the 2015 Annual Report and the Executive Summary are issued in very limited quantities. The digital formats of both documents are available on our website, www.isdefe.es. The information contained in this document complies with the G4 “Comprehensive” requirements specified by the GRI. Business Development Directorate Tel.: 91 2711140 Corporate Social Responsibility Unit Fax: 91 4114703 Beatriz de Bobadilla, 3. 28040 Madrid Website: www.Isdefe.es Tax id number: A78085719 E-mail: [email protected] CONTENTS LETTER FROM THE LETTER FROM 05 PRESIDENT 07 THE CEO ACTIVITIES THE ORGANIZATION 09 25 REPORT COMMITMENT TO CORPORATE 73 OUR STAKEHOLDERS 105 GOVERNANCE ANNUAL ABOUT THIS 119 ACCOUNTS 125 REPORT LETTER FROM THE PRESIDENT I am pleased to present the 2015 Isdefe Annual Corporate Social Responsibility Report, which reflects Management’s efforts to achieve its sustainability objectives. Isdefe, which in 2015 marked the 30th anniversary of its founding in 1985, has evolved positively to become the benchmark in-house public sector provider of outstanding technology and strategic consulting services in every area where it conducts its business, but particularly in the Defence and Security industries, from which Isdefe has been able to expand its know-how, synergies and experience to other areas of government. -
ESA's New Cebreros Station Ready to Support Venus Express
ESAE ’s New Cebre ere oso S b r N s A r e w C StationS Ready to t a t i o n R e a d y t SupporS t Venuse u nV p u p s o r Express Cebreros Station Manfred Warhaut, Rolf Martin & Valeriano Claros ESA Directorate of Operations and Infrastructure, ESOC, Darmstadt, Germany SA’s new deep-space radio antenna at Cebreros (near Avila) in Spain was Eofficially inaugurated on 28 September. The new 35 metre antenna is the Agency’s second facility devoted to communications with spacecraft on interplanetary missions or in very distant orbits; the first is at New Norcia in Western Australia. Cebreros’s first task is the tracking of ESA’s Venus Express spacecraft, launched on 9 November. Introduction The construction of ESA's deep-space antenna at Cebreros was completed in record time. The site-selection process began in April 2002, the procurement activities began in February 2003, and the building work began in Spring 2004 on the site of a former NASA ground station. After successful assembly of the antenna structure in November 2004 and the almost flawless acceptance testing of the various infrastructure elements and the radio- frequency components, the new antenna was completed in August 2005, which provided just sufficient time for final testing before being used for the first time to support Venus Express. esa bulletin 124 - november 2005 39 Infrastructure Technical Specifications of the Cebreros Antenna REFLECTOR DISH Diameter: 35 metres Depth: 8 metres Surface contour: shaped parabola Number of panels: 304 on 7 rings Surface accuracy: 0.3 mm rms Weight: 100 tons ANTENNA PEDESTAL Height: 40 metres Weight movable part: 500 tons Total weight: 620 tons OPERATING ENVIRONMENT The novel Cebreros antenna feed concept Temperature: -20°C to + 50°C Relative humidity: 0 – 100% including condensation Wind: up to 50 km/h constant, gusting to 70 km/h Rain: up to 35 mm/h Solar heat: up to 1200 W/m2 MECHANICAL PERFORMANCE Slew range: Azimuth 0 to 540 deg Elevation 0 to 90 deg Slew rate: Both axes 1.0 deg/s max. -
Vladimir Pletser Gravity, Weight and Their Absence
SPRINGER BRIEFS IN PHYSICS Vladimir Pletser Gravity, Weight and Their Absence 123 SpringerBriefs in Physics Editorial Board B. Ananthanarayan, Centre for High Energy Physics, Indian Institute of Science, Bangalore, India Egor Babaev, Amherst, MA, USA Malcolm Bremer, Bristol, UK Xavier Calmet, Department of Physics and Astronomy, University of Sussex, Brighton, UK Francesca Di Lodovico, London, UK Pablo D. Esquinazi, Institute for Experimental Physics II, University of Leipzig, Leipzig, Germany Maarten Hoogerland, Auckland, New Zealand Eric Le Ru, School of Chemical and Physical Sciences, Victoria University of Wellington, Kelburn, Wellington, New Zealand Hans-Joachim Lewerenz, Pasadena, CA, USA James Overduin, Towson, MD, USA Vesselin Petkov, Montreal, QC, Canada Charles H.-T. Wang, Department of Physics, The University of Aberdeen, Aberdeen, UK Andrew Whitaker, Belfast, UK Stefan Theisen, Max-Planck-Institut für Gravitationsphys, Potsdam, Germany More information about this series at http://www.springer.com/series/8902 Vladimir Pletser Gravity, Weight and Their Absence 123 Vladimir Pletser Technology and Engineering Centre for Space Utilization Chinese Academy of Sciences Beijing China ISSN 2191-5423 ISSN 2191-5431 (electronic) SpringerBriefs in Physics ISBN 978-981-10-8695-3 ISBN 978-981-10-8696-0 (eBook) https://doi.org/10.1007/978-981-10-8696-0 Library of Congress Control Number: 2018934907 © The Author(s) 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. -
795-Rib NASA TECHNICAL MEMORANDUM NASA TM-88477
795-Rib NASA TECHNICAL MEMORANDUM NASA TM-88477 B.A. Ivanov Translation of: "Mekhanika krateroobrazovaniya," IN: Itogi nauki i teckhniki, Seriya: Mekhanika deformi- ruyemogo tverdogo tela, Vol. 14, 1981, Moscow, pp. 60-128 (UDC 624.131:551.215.6) NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D.C. 20546 AUGUST 1986 (NASA-TM-08417) CHATERING HECHANICS (Naticnal Aercnautics and SFace N 8 7- 1 55 62 Bduinistration) 55 p CSCL O8G Unclas 53/46 40340 I Translation of: "Mekhanika krateroobrazovaniya," IN: Itogi nauki i Tekhniki, Seriya: Mekhanika deformiruyemogo tverdogo tela, Vol. 14, 1981, Moscow, pp. 60-128 (UDC 624.131:551.215.6 t Main concepts and theoretical models which are used for studying the mechanics of cratering are discussed. Numerical two-dimensional calculations are made of explosions near a surface and high- speed impact. Models are given for the motion of a medium during cratering. Gata from laboratory modeling are given. The effect of gravitational force and scales of cratering phenomena is analyzed. MECHANICS OF DEFORMABLE SOLID BODY UDC 624.131:551.215.6 CRATERING 'MECHANICS By B. A. Ivanov Introduction /E* One can define mechanics of craterins as a discipline , studying the formation of an indentation (crater or funnel) on the surface of a solid deformable body as a result of high-speed collision or explosion near the surface with regard for the resulting shock waves, high-speed plastic deformation of the destroyed materials, scattering of the ejecta and other concomitant phenomena. The mechanics of cratering thus applied is an applied dis- cipline using results of the physics of shock waves and high pressures, mechanics of a solid deformable bodyr hydro gas dynamicsr etc. -
Hi This Is Steve Nerlich from Cheap Astronomy and This Is the Dreamtime Meteor Crater
Hi this is Steve Nerlich from Cheap Astronomy www.cheapastro.com and this is The dreamtime meteor crater. The following is an interview between myself and Mr Duane Hamacher who originates from Missouri, but is currently undertaking a PhD at Macquarie University in Sydney, Australia. Duane I understand you have discovered a meteor crater on Google Earth. I imagine that’s a fairly elite club. Do you know how many other people might have achieved that? I know in Australia there were two. The first guy discovered one in 2007, his name was Hickman, so the crater is named Hickman Crater in Western Australia – and last year there was a retired geologist who discovered an impact crater outside White Cliffs, New South Wales. So, I don’t know about the rest of the world, but in Australia I’m actually third in line. Congratulations, that’s quite exciting and I understand there’s a particular story behind your find that involves an Indigenous Australian dreamtime story. Can you tell us about that? Yes, for the last year I’ve been looking at Aboriginal accounts and descriptions of comets, meteors and cosmic impacts in the literature – and I found several that described stars falling out of the sky and crashing to the Earth, in some cases causing death and destruction. In several of the stories, it seemed to indicate that these were actually witnessed – they closely paralleled with scientific explanation. So I decided to look at these areas on Google Maps as some of the stories gave specific locations – or at least we knew the particular Aboriginal community that the story came from. -
ESTRACK Facilities Manual (EFM) Issue 1 Revision 1 - 19/09/2008 S DOPS-ESTR-OPS-MAN-1001-OPS-ONN 2Page Ii of Ii
fDOCUMENT document title/ titre du document ESA TRACKING STATIONS (ESTRACK) FACILITIES MANUAL (EFM) prepared by/préparé par Peter Müller reference/réference DOPS-ESTR-OPS-MAN-1001-OPS-ONN issue/édition 1 revision/révision 1 date of issue/date d’édition 19/09/2008 status/état Approved/Applicable Document type/type de document SSM Distribution/distribution see next page a ESOC DOPS-ESTR-OPS-MAN-1001- OPS-ONN EFM Issue 1 Rev 1 European Space Operations Centre - Robert-Bosch-Strasse 5, 64293 Darmstadt - Germany Final 2008-09-19.doc Tel. (49) 615190-0 - Fax (49) 615190 495 www.esa.int ESTRACK Facilities Manual (EFM) issue 1 revision 1 - 19/09/2008 s DOPS-ESTR-OPS-MAN-1001-OPS-ONN 2page ii of ii Distribution/distribution D/EOP D/EUI D/HME D/LAU D/SCI EOP-B EUI-A HME-A LAU-P SCI-A EOP-C EUI-AC HME-AA LAU-PA SCI-AI EOP-E EUI-AH HME-AT LAU-PV SCI-AM EOP-S EUI-C HME-AM LAU-PQ SCI-AP EOP-SC EUI-N HME-AP LAU-PT SCI-AT EOP-SE EUI-NA HME-AS LAU-E SCI-C EOP-SM EUI-NC HME-G LAU-EK SCI-CA EOP-SF EUI-NE HME-GA LAU-ER SCI-CC EOP-SA EUI-NG HME-GP LAU-EY SCI-CI EOP-P EUI-P HME-GO LAU-S SCI-CM EOP-PM EUI-S HME-GS LAU-SF SCI-CS EOP-PI EUI-SI HME-H LAU-SN SCI-M EOP-PE EUI-T HME-HS LAU-SP SCI-MM EOP-PA EUI-TA HME-HF LAU-CO SCI-MR EOP-PC EUI-TC HME-HT SCI-S EOP-PG EUI-TL HME-HP SCI-SA EOP-PL EUI-TM HME-HM SCI-SM EOP-PR EUI-TP HME-M SCI-SD EOP-PS EUI-TS HME-MA SCI-SO EOP-PT EUI-TT HME-MP SCI-P EOP-PW EUI-W HME-ME SCI-PB EOP-PY HME-MC SCI-PD EOP-G HME-MF SCI-PE EOP-GC HME-MS SCI-PJ EOP-GM HME-MH SCI-PL EOP-GS HME-E SCI-PN EOP-GF HME-I SCI-PP EOP-GU HME-CO SCI-PR -
The International Astronautical Federation (IAF)
www.iac2008.co.uk Call for papers & registration of Interest Contents Welcome by the President of the British Interplanetary Society .......................................... 02 Message from the President of the IAF .................................................................................. 03 Message from the Chairman of the Local Organising Committee ........................................ 03 Message from the IPC Co-Chairs ............................................................................................ 04 The International Astronautical Federation (IAF).................................................................... 05 IAF Member Organisations ...................................................................................................... 06 The International Academy of Astronautics (IAA).................................................................... 09 The International Institute of Space Law (IISL) ...................................................................... 09 The Technical Programme - Summary of IAC sessions ........................................................ 10 The Technical Programme - by Category................................................................................ 14 Instructions for submitting an abstract .................................................................................. 34 How to submit an abstract ...................................................................................................... 35 Welcome to the IAF web site user restricted area................................................................. -
Dark Matter and Background Light
Dark Matter and Background Light J.M. Overduin Gravity Probe B, Hansen Experimental Physics Laboratory, Stanford University, Stanford, California, U.S.A. 94305-4085 and P.S. Wesson Department of Physics, University of Waterloo, Ontario, Canada N2L 3G1 Abstract Progress in observational cosmology over the past five years has established that the Universe is dominated dynamically by dark matter and dark energy. Both these new and apparently independent forms of matter-energy have properties that are inconsistent with anything in the existing standard model of particle physics, and it appears that the latter must be extended. We review what is known about dark matter and energy from their impact on the light of the night sky. Most of the candidates that have been proposed so far are not perfectly black, but decay into or otherwise interact with photons in characteristic ways that can be accurately modelled and compared with observational data. We show how experimental limits on the intensity of cosmic background radiation in the microwave, infrared, optical, arXiv:astro-ph/0407207v1 10 Jul 2004 ultraviolet, x-ray and γ-ray bands put strong limits on decaying vacuum energy, light axions, neutrinos, unstable weakly-interacting massive particles (WIMPs) and objects like black holes. Our conclusion is that the dark matter is most likely to be WIMPs if conventional cosmology holds; or higher-dimensional sources if spacetime needs to be extended. Key words: Cosmology, Background radiation, Dark matter, Black holes, Higher-dimensional field theory PACS: 98.80.-k, 98.70.Vc, 95.35.+d, 04.70.Dy, 04.50.+h Email addresses: [email protected] (J.M.