Ep 2402438 A2

Total Page:16

File Type:pdf, Size:1020Kb

Ep 2402438 A2 (19) & (11) EP 2 402 438 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 04.01.2012 Bulletin 2012/01 C12N 9/64 (2006.01) C12N 15/10 (2006.01) C12N 9/50 (2006.01) C12N 9/72 (2006.01) (21) Application number: 11173353.1 (22) Date of filing: 05.07.2007 (84) Designated Contracting States: (72) Inventor: MADISON, Edwin AT BE BG CH CY CZ DE DK EE ES FI FR GB GR San Francisco, CA California 94121 (US) HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR (74) Representative: Baldock, Sharon Claire Designated Extension States: Boult Wade Tennant AL BA HR MK RS Verulam Gardens 70 Gray’s Inn Road (30) Priority: 05.07.2006 US 818804 P London WC1X 8BT (GB) 05.07.2006 US 818910 P Remarks: (62) Document number(s) of the earlier application(s) in •Thecomplete document including Reference Tables accordance with Art. 76 EPC: and the Sequence Listing can be downloaded from 07861330.4 / 2 046 951 the EPO website •This application was filed on 08-07-2011 as a (71) Applicants: divisional application to the application mentioned • Catalyst Biosciences, Inc. under INID code 62. South San Francisco, CA 94080 (US) • Torrey Pines Institute For Molecular Studies San Diego, CA 92121 (US) (54) Protease screening methods and proteases identified thereby (57) Methods for identifying modified proteases with modified substrate specificity or other properties are pro- vided. The methods screen candidate and modified pro- teases by contacting them with a substrate, such as a serpin, an alpha macro globulins or a p35 family protein or modified serpins and modified p35 family members or modified alpha macroglobulins, that, upon cleavage of the substrate, traps the protease by forming a stable com- plex. Also provided are modified proteases EP 2 402 438 A2 Printed by Jouve, 75001 PARIS (FR) EP 2 402 438 A2 Description RELATED APPLICATIONS 5 [0001] Benefit of priority is claimed to U.S. Provisional Application Serial No. 60/818,804, to Edwin Madison, entitled "Protease Screening Methods and Proteases Identified Thereby," filed July 05, 2006, and to U.S. Provisional Application Serial No. 60/818,910, to Edwin Madison, entitled "Modified Urinary- Plasminogen Activator (u-PA) Proteases," filed July 05, 2006. Where permitted, the subject matter of the above-noted applications are incorporated by reference in its entirety. [0002] This application is related to U.S. Application Serial No. 11/825,627 to Edwin Madison, entitled "Protease 10 Screening Methods and Proteases Identified Thereby," filed July 05, 2007, which claims priority to U.S. Provisional Application Serial No. 60/818,804 and to U.S. Provisional Application Serial No. 60/818,910. [0003] This application also is related to U.S. Application Serial No. 10/677,977, filed October 02, 2003 and published as U.S. Application No. US- 2004-0146938 on July 29, 2004, entitled " Methods of Generating a nd Screening for Proteases with Altered Specificity" to J Nguyen, C Thanos, S Waugh-Ruggles, and C Craik, and to corresponding published 15 International PCT Application No. WO2004/031733, published April 15, 2004, which claim benefit to U.S. Provisional Application Serial No. 60/415,388 filed October 02, 2002. [0004] This application also is related to U.S. Application Serial No. 11/104,110, filed April 12, 2005 and published as U.S. Application No. US- 2006-0002916 on January 05, 2006, entitled " Cleavage of VEGF and VEGF Receptor by Wild- Type and Mutant MTSP-1 " to J Nguyen and S Waugh-Ruggles, and to corresponding published International PCT 20 Application No. WO2005/110453, published November 24, 2005, which claim benefit to U.S. Provisional Application Serial No. 60/561,720 filed April 12, 2004. [0005] This application also is related to U.S. Application Serial No. 11/104,111, filed April 12, 2005 and published as U.S. Application No. US-2006-0024289 on February 02, 2006, entitled Cleavage" of YEGF and VEGF Receptor by Wild-Type and Mutant Proteases " to J Nguyen and S Waugh-Ruggles, and to corresponding published International 25 PCT Application No. WO2005/100556, published October 27, 2005, which claim benefit to U.S. Provisional Application Serial No. 60/561,671 filed April 12, 2004. [0006] This application also is related to U.S. Provisional Application Serial No. 60/729,817 filed October 21, 2005, entitled "Modified Proteases that Inhibit Complement Activation" to Edwin L. Madison. This application also is related to U.S. Application Serial No. 11/584,776 filed October 20, 2006, entitled " Modified Proteases that Inhibit Complement 30 Activation" to Edwin L. Madison, Jack Nguyen, Sandra Waugh Ruggles and Christopher Thanos, and to corresponding published International PCT Application No. WO2007/047995, published April 26, 2007, which each claim benefit to U.S. Provisional Application No. 60/729,817. [0007] Where permitted, the subject matter of each of the above- noted related applications is incorporated by reference in its entirety. 35 Incorporation by reference of Sequence Listing provided on compact discs [0008] An electronic version on compact disc (CD-R) of the Sequence Listing is filed herewith in four copies (labeled COPY 1, COPY 2, COPY 3, and CRF), the contents of which are incorporated by reference in their entirety. The computer- 40 readable file on each of the aforementioned compact discs, created on July 05, 2007, is identical, 1,809 kilobytes in size, and titled 4902SEQ.PC1.txt. FIELD OF THE INVENTION 45 [0009] Methods for identifying modified proteases with modified substrate specificity or other properties are provided. The methods screen candidate and modified proteases by contacting them with a substrate that traps them upon cleavage of the substrate. BACKGROUND 50 [0010] Proteases are protein-degrading enzymes. Because proteases can specifically interact with and inactivate or activate a target protein, they have been employed as therapeutics. Naturally-occurring proteases often are not optimal therapeutics since they do not exhibit the specificity, stability and/or catalytic activity that renders them suitable as biotherapeutics (see, e.g., Fernandez-Gacio et al. (2003) Trends in Biotech. 21: 408-414). Among properties of thera- 55 peutics that are important are lack of immunogenicity or reduced immunogenicity; specificity for a target molecule, and limited side-effects. Naturally-occurring proteases generally are deficient in one or more of these properties. [0011] Attempts have been made to engineer proteases with improved properties. Among these approaches include 1) rational design, which requires information about the structure, catalytic mechanisms, and molecular modeling of a 2 EP 2 402 438 A2 protease; and 2) directed evolution, which is a process that involves the generation of a diverse mutant repertoire for a protease, and selection of those mutants that exhibit a desired characteristic (Bertschinger et al. (2005) in Phage display in Biotech. and Drug Discovery (Sidhu s, ed), pp. 461-491). For the former approach, a lack of information regarding the structure-function relationship of proteases limits the ability to rationally design mutations for most proteases. Directed 5 evolution methodologies have been employed with limited success. [0012] Screening for improved protease activity often leads to a loss of substrate selectivity and vice versa. An optimal therapeutic protease should exhibit a high specificity for a target substrate and a high catalytic efficiency. Because of the limited effectiveness of available methods to select for proteases with optimized specificity and optimized activity, there remains a need to develop alternate methods of protease selection. Accordingly, it is among the objects herein to 10 provide methods for selection of proteases or mutant proteases with desired substrate specificities and activities. SUMMARY [0013] Provided are methods for selection or identification of proteases or mutant proteases or catalytically active 15 portions thereof with desired or predetermined substrate specificities and activities. In particular, provided herein are protease screening methods that identify proteases that have an altered, improved, or optimized or otherwise altered substrate specificity and/or activity for a target substrate or substrates. The methods can be used, for example, to screen for proteases that have an altered substrate specificity and/or activity for a target substrate involved in the etiology of a disease or disorder. By virtue of the altered, typically increased, specificity and/or activity for a target substrate, the 20 proteases identified or selected in the methods provided herein are candidates for use as reagents or therapeutics in the treatment of diseases or conditions for which the target substrate is involved. In practicing the methods provided herein, a collection of proteases or catalytically active portion thereof is contacted with a protease trap polypeptide resulting in the formation of stable complexes of the protease trap polypeptide with proteases or catalytically active portion thereof in the collection. In some examples, the protease trap polypeptide is modified to be cleaved by a protease 25 having a predetermined substrate specificity and/or activity for a target substrate, for example, a target substrate involved in a disease or disorder. The method can further comprise screening the complexes for substrate specificity for the cleavage sequence of the target substrate. In such examples, the identified or selected protease has an altered activity and/or specificity towards the target substrate. In one example, the stable complex is formed by covalent linkage of a selected protease with a protease trap polypeptide. The selected proteases or catalytically active portion thereof are 30 identified or selected from the complex in the methods provided herein. The methods provided herein can further include the step of separating the complexed proteases from the uncomplexed protease members of the collection. In one example, the protease trap polypeptide is labeled for detection or separation and separation is effected by capture of complexes containing the detectable protease trap polypeptide and the protease or catalytically active portion thereof.
Recommended publications
  • Serpinb1 Controls Encephalitogenic T Helper Cells in Neuroinflammation
    SerpinB1 controls encephalitogenic T helper cells in neuroinflammation Lifei Houa,b,1,2, Deepak A. Raoc,d, Koichi Yukie,f, Jessica Cooleya, Lauren A. Hendersonb,g, A. Helena Jonssonc,d, Dion Kaisermanh, Mark P. Gormanb,i, Peter A. Nigrovicc,d,g, Phillip I. Birdh, Burkhard Becherj, and Eileen Remold-O’Donnella,b,k,2 aThe Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115; bDepartment of Pediatrics, Harvard Medical School, Boston, MA 02115; cDivision of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA 02115; dDepartment of Medicine, Harvard Medical School, Boston, MA 02115; eDepartment of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA 02115; fDepartment of Anesthesiology, Harvard Medical School, Boston, MA 02115; gDivision of Immunology, Boston Children’s Hospital, Boston, MA 02115; hDepartment of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia; iDepartment of Neurology, Boston Children’s Hospital, Boston, MA 02115; jInflammation Unit, Institute of Experimental Immunology, University of Zurich, CH-8057 Zurich, Switzerland; and kDepartment of Hematology/Oncology, Harvard Medical School, Boston, MA 02115 Edited by Jean Laurent-Casanova, Rockefeller University, New York, NY, and approved August 27, 2019 (received for review April 5, 2019) SerpinB1, a protease inhibitor and neutrophil survival factor, was flammatory tissue injury and neutrophil death, and in naïve mice, recently linked with IL-17–expressing T cells. Here, we show that preserves the bone marrow reserve of mature neutrophils by serpinB1 (Sb1) is dramatically inducedinasubsetofeffector restricting spontaneous cell death mediated by the granule serine CD4 cells in experimental autoimmune encephalomyelitis (EAE).
    [Show full text]
  • The Role of Streptococcal and Staphylococcal Exotoxins and Proteases in Human Necrotizing Soft Tissue Infections
    toxins Review The Role of Streptococcal and Staphylococcal Exotoxins and Proteases in Human Necrotizing Soft Tissue Infections Patience Shumba 1, Srikanth Mairpady Shambat 2 and Nikolai Siemens 1,* 1 Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, University of Greifswald, D-17489 Greifswald, Germany; [email protected] 2 Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland; [email protected] * Correspondence: [email protected]; Tel.: +49-3834-420-5711 Received: 20 May 2019; Accepted: 10 June 2019; Published: 11 June 2019 Abstract: Necrotizing soft tissue infections (NSTIs) are critical clinical conditions characterized by extensive necrosis of any layer of the soft tissue and systemic toxicity. Group A streptococci (GAS) and Staphylococcus aureus are two major pathogens associated with monomicrobial NSTIs. In the tissue environment, both Gram-positive bacteria secrete a variety of molecules, including pore-forming exotoxins, superantigens, and proteases with cytolytic and immunomodulatory functions. The present review summarizes the current knowledge about streptococcal and staphylococcal toxins in NSTIs with a special focus on their contribution to disease progression, tissue pathology, and immune evasion strategies. Keywords: Streptococcus pyogenes; group A streptococcus; Staphylococcus aureus; skin infections; necrotizing soft tissue infections; pore-forming toxins; superantigens; immunomodulatory proteases; immune responses Key Contribution: Group A streptococcal and Staphylococcus aureus toxins manipulate host physiological and immunological responses to promote disease severity and progression. 1. Introduction Necrotizing soft tissue infections (NSTIs) are rare and represent a more severe rapidly progressing form of soft tissue infections that account for significant morbidity and mortality [1].
    [Show full text]
  • Chymotrypsin: a Serine Protease Reaction Mechanism Step
    CHEM464/Medh,J.D. Catalytic Strategies Chymotrypsin: A serine protease • Covalent catalysis: temporary covalent modification of reactive • Hydrolyzes peptide bonds on the carboxyl side of group on enzyme active site Tyr, Phe, Trp, Met, Leu • Acid-Base catalysis: A molecule other than water is proton • Since peptide bond is highly unreactive, a strong donor or acceptor (nucleophilic or electrophilic attack) nucleophile is required for its hydrolysis • Metal ion catalysis: Involvement of metal ion in catalysis. A metal ion is an electrophile and (i) may stabilize a negative • Catalytic strategy is covalent modification and charge on an intermediate; (ii) by attracting electrons from acid-base catalysis water, renders water more acidic (prone to loose a proton); (iii) • Contains catalytic triad of Ser, His and Asp. Ser is may bind to substrate and reduce activation energy a nucleophile and participates in covalent • Catalysis by approximation: In reactions requiring more than modification, His is a proton acceptor (base), Asp one substrate, the enzyme facilitates their interaction by serving stabilizes His (and active site) by electrostatic as an adapter that increases proximity of the substrates to each interactions other Reaction Mechanism Step-wise reaction • Hydrolysis by chymotrypsin is a 2-step process • Enzyme active site is stabilized by ionic interactions • Step 1: serine reacts with substrate to form covalent between Asp and His and H-bond between His and Ser. ES complex • In the presence of a substrate, His accepts a proton from • Step 2: release of products from ES complex and Ser, Ser makes a nucleophilic attack on the peptide’s regeneration of enzyme carbonyl C converting its geometry to tetrahedral.
    [Show full text]
  • Propranolol-Mediated Attenuation of MMP-9 Excretion in Infants with Hemangiomas
    Supplementary Online Content Thaivalappil S, Bauman N, Saieg A, Movius E, Brown KJ, Preciado D. Propranolol-mediated attenuation of MMP-9 excretion in infants with hemangiomas. JAMA Otolaryngol Head Neck Surg. doi:10.1001/jamaoto.2013.4773 eTable. List of All of the Proteins Identified by Proteomics This supplementary material has been provided by the authors to give readers additional information about their work. © 2013 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 10/01/2021 eTable. List of All of the Proteins Identified by Proteomics Protein Name Prop 12 mo/4 Pred 12 mo/4 Δ Prop to Pred mo mo Myeloperoxidase OS=Homo sapiens GN=MPO 26.00 143.00 ‐117.00 Lactotransferrin OS=Homo sapiens GN=LTF 114.00 205.50 ‐91.50 Matrix metalloproteinase‐9 OS=Homo sapiens GN=MMP9 5.00 36.00 ‐31.00 Neutrophil elastase OS=Homo sapiens GN=ELANE 24.00 48.00 ‐24.00 Bleomycin hydrolase OS=Homo sapiens GN=BLMH 3.00 25.00 ‐22.00 CAP7_HUMAN Azurocidin OS=Homo sapiens GN=AZU1 PE=1 SV=3 4.00 26.00 ‐22.00 S10A8_HUMAN Protein S100‐A8 OS=Homo sapiens GN=S100A8 PE=1 14.67 30.50 ‐15.83 SV=1 IL1F9_HUMAN Interleukin‐1 family member 9 OS=Homo sapiens 1.00 15.00 ‐14.00 GN=IL1F9 PE=1 SV=1 MUC5B_HUMAN Mucin‐5B OS=Homo sapiens GN=MUC5B PE=1 SV=3 2.00 14.00 ‐12.00 MUC4_HUMAN Mucin‐4 OS=Homo sapiens GN=MUC4 PE=1 SV=3 1.00 12.00 ‐11.00 HRG_HUMAN Histidine‐rich glycoprotein OS=Homo sapiens GN=HRG 1.00 12.00 ‐11.00 PE=1 SV=1 TKT_HUMAN Transketolase OS=Homo sapiens GN=TKT PE=1 SV=3 17.00 28.00 ‐11.00 CATG_HUMAN Cathepsin G OS=Homo
    [Show full text]
  • Natural Single-Nucleotide Deletion in Chymotrypsinogen C Gene Increases Severity of Secretagogue-Induced Pancreatitis in C57BL/6 Mice
    Natural single-nucleotide deletion in chymotrypsinogen C gene increases severity of secretagogue-induced pancreatitis in C57BL/6 mice Andrea Geisz, … , Eszter Hegyi, Miklós Sahin-Tóth JCI Insight. 2019;4(14):e129717. https://doi.org/10.1172/jci.insight.129717. Research Article Gastroenterology Inflammation Genetic susceptibility to chronic pancreatitis in humans is frequently associated with mutations that increase activation of the digestive protease trypsin. Intrapancreatic trypsin activation is an early event in experimental acute pancreatitis in rodents, suggesting that trypsin is a key driver of pathology. In contrast with trypsin, the pancreatic protease chymotrypsin serves a protective function by mitigating trypsin activation through degradation. In humans, loss-of-function mutations in chymotrypsin C (CTRC) are common risk factors for chronic pancreatitis; however, the pathogenic effect of CTRC deficiency has not been corroborated in animal models yet. Here we report that C57BL/6 mice that are widely used for genetic manipulations do not express functional CTRC because of a single-nucleotide deletion in exon 2 of the Ctrc gene. We restored a functional Ctrc locus in C57BL/6N mice and demonstrated that in the Ctrc+ strain, the severity of cerulein- induced experimental acute and chronic pancreatitis was significantly ameliorated. Improved disease parameters were associated with reduced intrapancreatic trypsin activation, suggesting a causal link between CTRC-mediated trypsinogen degradation and protection against pancreatitis.
    [Show full text]
  • A Truncating Mutation in SERPINB6 Is Associated with Autosomal-Recessive Nonsyndromic Sensorineural Hearing Loss
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector REPORT A Truncating Mutation in SERPINB6 Is Associated with Autosomal-Recessive Nonsyndromic Sensorineural Hearing Loss Aslı Sırmacı,1,2 Seyra Erbek,3 Justin Price,1,2 Mingqian Huang,4 Duygu Duman,5 F. Basxak Cengiz,5 Gu¨ney Bademci,1,2 Suna Tokgo¨z-Yılmaz,5 Burcu Hisxmi,5 Hilal O¨ zdag˘,6 Banu O¨ ztu¨rk,7 Sevsen Kulaksızog˘lu,8 Erkan Yıldırım,9 Haris Kokotas,10 Maria Grigoriadou,10 Michael B. Petersen,10 Hashem Shahin,11 Moien Kanaan,11 Mary-Claire King,12 Zheng-Yi Chen,4 Susan H. Blanton,1,2 Xue Z. Liu,2,13 Stephan Zuchner,1,2 Nejat Akar,5 and Mustafa Tekin1,2,* More than 270 million people worldwide have hearing loss that affects normal communication. Although astonishing progress has been made in the identification of more than 50 genes for deafness during the past decade, the majority of deafness genes are yet to be identified. In this study, we mapped a previously unknown autosomal-recessive nonsyndromic sensorineural hearing loss locus (DFNB91) to chromo- some 6p25 in a consanguineous Turkish family. The degree of hearing loss was moderate to severe in affected individuals. We subsequently identified a nonsense mutation (p.E245X) in SERPINB6, which is located within the linkage interval for DFNB91 and encodes for an intra- cellular protease inhibitor. The p.E245X mutation cosegregated in the family as a completely penetrant autosomal-recessive trait and was absent in 300 Turkish controls. The mRNA expression of SERPINB6 was reduced and production of protein was absent in the peripheral leukocytes of homozygotes, suggesting that the hearing loss is due to loss of function of SERPINB6.
    [Show full text]
  • Molecular Markers of Serine Protease Evolution
    The EMBO Journal Vol. 20 No. 12 pp. 3036±3045, 2001 Molecular markers of serine protease evolution Maxwell M.Krem and Enrico Di Cera1 ment and specialization of the catalytic architecture should correspond to signi®cant evolutionary transitions in the Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Box 8231, St Louis, history of protease clans. Evolutionary markers encoun- MO 63110-1093, USA tered in the sequences contributing to the catalytic apparatus would thus give an account of the history of 1Corresponding author e-mail: [email protected] an enzyme family or clan and provide for comparative analysis with other families and clans. Therefore, the use The evolutionary history of serine proteases can be of sequence markers associated with active site structure accounted for by highly conserved amino acids that generates a model for protease evolution with broad form crucial structural and chemical elements of applicability and potential for extension to other classes of the catalytic apparatus. These residues display non- enzymes. random dichotomies in either amino acid choice or The ®rst report of a sequence marker associated with serine codon usage and serve as discrete markers for active site chemistry was the observation that both AGY tracking changes in the active site environment and and TCN codons were used to encode active site serines in supporting structures. These markers categorize a variety of enzyme families (Brenner, 1988). Since serine proteases of the chymotrypsin-like, subtilisin- AGY®TCN interconversion is an uncommon event, it like and a/b-hydrolase fold clans according to phylo- was reasoned that enzymes within the same family genetic lineages, and indicate the relative ages and utilizing different active site codons belonged to different order of appearance of those lineages.
    [Show full text]
  • Structural and Functional Diversity of Caspase Homologues in Non-Metazoan Organisms
    Protoplasma DOI 10.1007/s00709-017-1145-5 REVIEW ARTICLE Structural and functional diversity of caspase homologues in non-metazoan organisms Marina Klemenčič1,2 & Christiane Funk1 Received: 1 June 2017 /Accepted: 5 July 2017 # The Author(s) 2017. This article is an open access publication Abstract Caspases, the proteases involved in initiation and supports the role of metacaspases and orthocaspases as im- execution of metazoan programmed cell death, are only pres- portant contributors to cell homeostasis during normal physi- ent in animals, while their structural homologues can be ological conditions or cell differentiation and ageing. found in all domains of life, spanning from simple prokary- otes (orthocaspases) to yeast and plants (metacaspases). All members of this wide protease family contain the p20 do- Keywords Algae . Cyanobacteria . Cell death . Cysteine main, which harbours the catalytic dyad formed by the two protease . Metacaspase . Orthocaspase amino acid residues, histidine and cysteine. Despite the high structural similarity of the p20 domain, metacaspases and orthocaspases were found to exhibit different substrate speci- ficities than caspases. While the former cleave their substrates Introduction after basic amino acid residues, the latter accommodate sub- strates with negative charge. This observation is crucial for BOut of life’s school of war: What does not destroy me, the re-evaluation of non-metazoan caspase homologues being makes me stronger.^ wrote the German philosopher involved in processes of programmed cell death. In this re- Friedrich Nietzsche in his book Twilight of the Idols or view, we analyse the structural diversity of enzymes contain- how to philosophize with a hammer. Even though ing the p20 domain, with focus on the orthocaspases, and reformatted to more common use, this phrase has been summarise recent advances in research of orthocaspases and used to describe the dual nature of caspase homologues metacaspases of cyanobacteria, algae and higher plants.
    [Show full text]
  • Effects of Glycosylation on the Enzymatic Activity and Mechanisms of Proteases
    International Journal of Molecular Sciences Review Effects of Glycosylation on the Enzymatic Activity and Mechanisms of Proteases Peter Goettig Structural Biology Group, Faculty of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria; [email protected]; Tel.: +43-662-8044-7283; Fax: +43-662-8044-7209 Academic Editor: Cheorl-Ho Kim Received: 30 July 2016; Accepted: 10 November 2016; Published: 25 November 2016 Abstract: Posttranslational modifications are an important feature of most proteases in higher organisms, such as the conversion of inactive zymogens into active proteases. To date, little information is available on the role of glycosylation and functional implications for secreted proteases. Besides a stabilizing effect and protection against proteolysis, several proteases show a significant influence of glycosylation on the catalytic activity. Glycans can alter the substrate recognition, the specificity and binding affinity, as well as the turnover rates. However, there is currently no known general pattern, since glycosylation can have both stimulating and inhibiting effects on activity. Thus, a comparative analysis of individual cases with sufficient enzyme kinetic and structural data is a first approach to describe mechanistic principles that govern the effects of glycosylation on the function of proteases. The understanding of glycan functions becomes highly significant in proteomic and glycomic studies, which demonstrated that cancer-associated proteases, such as kallikrein-related peptidase 3, exhibit strongly altered glycosylation patterns in pathological cases. Such findings can contribute to a variety of future biomedical applications. Keywords: secreted protease; sequon; N-glycosylation; O-glycosylation; core glycan; enzyme kinetics; substrate recognition; flexible loops; Michaelis constant; turnover number 1.
    [Show full text]
  • Hud Binds to Three AU-Rich Sequences in the 3′-UTR of Neuroserpin Mrna and Promotes the Accumulation of Neuroserpin Mrna and Protein
    2202–2211 Nucleic Acids Research, 2002, Vol. 30, No. 10 © 2002 Oxford University Press HuD binds to three AU-rich sequences in the 3′-UTR of neuroserpin mRNA and promotes the accumulation of neuroserpin mRNA and protein Ana Cuadrado, Cristina Navarro-Yubero, Henry Furneaux1,JochenKinter2, Peter Sonderegger2 and Alberto Muñoz* Instituto de Investigaciones Biomédicas ‘Alberto Sols’, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Arturo Duperier 4, E-28029 Madrid, Spain, 1Department of Physiology, University of Connecticut Health Center, Farmington, CT, USA and 2Department of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland Received December 30, 2001; Revised and Accepted March 18, 2002 ABSTRACT the predominant serpins are nexin-1, which is expressed in neurons and glia (3), and neuroserpin, which is mainly found in Neuroserpin is an axonally secreted serine protease neurons (4,5). Neuroserpin is well conserved, and it was first inhibitor expressed in the nervous system that purified from the ocular vitreous fluid of chicken embryos protects neurons from ischemia-induced apoptosis. (4,6). It has the typical structure of serpin family members, as Mutant neuroserpin forms have been found polymerized recently demonstrated by X-ray crystallography (7). Neuroserpin in inclusion bodies in a familial autosomal encephalo- is secreted from the neurites of neurons cultured in a compart- pathy causing dementia, or associated with epilepsy. mental system (8). In embryonic and adult mice, the expression of Regulation of neuroserpin expression is mostly neuroserpin overlaps with that of tPA (5,9), which implicates it unknown. Here we demonstrate that neuroserpin in the regulation of neural tPA activity.
    [Show full text]
  • SERPINB3/4 Polyclonal Antibody
    PRODUCT DATA SHEET Bioworld Technology,Inc. SERPINB3/4 polyclonal antibody Catalog: BS60990 Host: Rabbit Reactivity: Human,Mouse,Rat BackGround: Swiss-Prot: Metastasis of a primary tumor to a distant site is deter- P29508/P48594 mined through signaling cascades that break down inter- Purification&Purity: actions between the cell and extracellular matrix proteins. The antibody was affinity-purified from rabbit antiserum Among the proteins mediating metastasis are serine by affinity-chromatography using epitope-specific im- prote-ases, such as neutrophil elastase. In 1985, Dr. Jim munogen and the purity is > 95% (by SDS-PAGE). Travis and Dr. R.W. Carrell designated an emerging fam- Applications: ily of serine protease inhibitors as the serpin fam-ily, WB: 1:500~1:1000 which share homology in both primary amino acid se- Storage&Stability: quence and tertiary structure. Serpins contain a stretch of Store at 4°C short term. Aliquot and store at -20°C long peptide that mimics a true substrate for a corresponding term. Avoid freeze-thaw cycles. serine protease. Serine proteases bind to this substrate Specificity: mimic in a 1:1 stoichiometric fashion and become cata- SERPINB3/4 polyclonal antibody detects endogenous lytically inactive. Aberrant ex-pression of serpin family levels of SERPINB3/4 protein. members can contribute to a number of conditions, in- DATA: cluding emphysema (a-1 antitrypsin deficiency), fatal bleeding (elastase to thrombin specificity) and thrombosis (antithrombin deficiency), and are indicators of cancer stage phenotypes (circulating levels of squamous cell car- cinoma antigen, known as SCCA1, increase in advancing stages of some cervical, lung, esophageal and head and neck cancers).
    [Show full text]
  • NS3 Protease from Flavivirus As a Target for Designing Antiviral Inhibitors Against Dengue Virus
    Genetics and Molecular Biology, 33, 2, 214-219 (2010) Copyright © 2010, Sociedade Brasileira de Genética. Printed in Brazil www.sbg.org.br Review Article NS3 protease from flavivirus as a target for designing antiviral inhibitors against dengue virus Satheesh Natarajan Department of Biochemistry, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malayasia. Abstract The development of novel therapeutic agents is essential for combating the increasing number of cases of dengue fever in endemic countries and among a large number of travelers from non-endemic countries. The dengue virus has three structural proteins and seven non-structural (NS) proteins. NS3 is a multifunctional protein with an N-terminal protease domain (NS3pro) that is responsible for proteolytic processing of the viral polyprotein, and a C-terminal region that contains an RNA triphosphatase, RNA helicase and RNA-stimulated NTPase domain that are essential for RNA replication. The serine protease domain of NS3 plays a central role in the replicative cycle of den- gue virus. This review discusses the recent structural and biological studies on the NS2B-NS3 protease-helicase and considers the prospects for the development of small molecules as antiviral drugs to target this fascinating, multifunctional protein. Key words: antiviral inhibitor, drug discovery, multifunctional protein, NS3, protease. Received: March 4, 2009; Accepted: November 1, 2009. Introduction seven non-structural proteins involved in viral replication The genus Flavivirus in the family Flaviviridae con- and maturation (Henchal and Putnak, 1990; Kautner et al., tains a large number of viral pathogens that cause severe 1996). The virus-encoded protease complex NS2B-NS3 is morbidity and mortality in humans and animals (Bancroft, responsible for cleaving the NS2A/NS2B, NS2B/NS3, 1996).
    [Show full text]