Statistical Mechanics of Complex Networks

Total Page:16

File Type:pdf, Size:1020Kb

Statistical Mechanics of Complex Networks REVIEWS OF MODERN PHYSICS, VOLUME 74, JANUARY 2002 Statistical mechanics of complex networks Re´ka Albert* and Albert-La´szlo´ Baraba´si Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556 (Published 30 January 2002) Complex networks describe a wide range of systems in nature and society. Frequently cited examples include the cell, a network of chemicals linked by chemical reactions, and the Internet, a network of routers and computers connected by physical links. While traditionally these systems have been modeled as random graphs, it is increasingly recognized that the topology and evolution of real networks are governed by robust organizing principles. This article reviews the recent advances in the field of complex networks, focusing on the statistical mechanics of network topology and dynamics. After reviewing the empirical data that motivated the recent interest in networks, the authors discuss the main models and analytical tools, covering random graphs, small-world and scale-free networks, the emerging theory of evolving networks, and the interplay between topology and the network’s robustness against failures and attacks. CONTENTS C. Random graphs with power-law degree distribution 66 D. Bipartite graphs and the clustering coefficient 66 I. Introduction 48 VI. Small-World Networks 67 II. The Topology of Real Networks: Empirical Results 49 A. The Watts-Strogatz model 67 A. World Wide Web 49 B. Properties of small-world networks 68 B. Internet 50 1. Average path length 68 C. Movie actor collaboration network 52 2. Clustering coefficient 69 D. Science collaboration graph 52 3. Degree distribution 70 E. The web of human sexual contacts 52 4. Spectral properties 70 F. Cellular networks 52 VII. Scale-Free Networks 71 G. Ecological networks 53 A. The Baraba´si-Albert model 71 H. Phone call network 53 B. Theoretical approaches 71 I. Citation networks 53 C. Limiting cases of the Baraba´si-Albert model 73 J. Networks in linguistics 53 D. Properties of the Baraba´si-Albert model 74 K. Power and neural networks 54 1. Average path length 74 L. Protein folding 54 2. Node degree correlations 75 III. Random-Graph Theory 54 3. Clustering coefficient 75 A. The Erdo˝ s-Re´nyi model 54 4. Spectral properties 75 B. Subgraphs 55 VIII. The Theory of Evolving Networks 76 A. Preferential attachment ⌸(k)76 C. Graph evolution 56 1. Measuring ⌸(k) for real networks 76 D. Degree distribution 57 2. Nonlinear preferential attachment 77 E. Connectedness and diameter 58 3. Initial attractiveness 77 F. Clustering coefficient 58 B. Growth 78 G. Graph spectra 59 1. Empirical results 78 IV. Percolation Theory 59 2. Analytical results 78 A. Quantities of interest in percolation theory 60 C. Local events 79 B. General results 60 Ͻ 1. Internal edges and rewiring 79 1. The subcritical phase (p pc)60 Ͼ 2. Internal edges and edge removal 79 2. The supercritical phase (p pc)61 D. Growth constraints 80 C. Exact solutions: Percolation on a Cayley tree 61 1. Aging and cost 80 D. Scaling in the critical region 62 2. Gradual aging 81 E. Cluster structure 62 E. Competition in evolving networks 81 F. Infinite-dimensional percolation 62 1. Fitness model 81 G. Parallels between random-graph theory and 2. Edge inheritance 82 percolation 63 F. Alternative mechanisms for preferential V. Generalized Random Graphs 63 attachment 82 A. Thresholds in a scale-free random graph 64 1. Copying mechanism 82 B. Generating function formalism 64 2. Edge redirection 82 1. Component sizes and phase transitions 65 3. Walking on a network 83 2. Average path length 65 4. Attaching to edges 83 G. Connection to other problems in statistical mechanics 83 *Present address: School of Mathematics, University of Min- 1. The Simon model 83 nesota, Minneapolis, Minnesota 55455. 2. Bose-Einstein condensation 85 0034-6861/2002/74(1)/47(51)/$35.00 47 ©2002 The American Physical Society 48 R. Albert and A.-L. Baraba´si: Statistical mechanics of complex networks IX. Error and Attack Tolerance 86 condensed-matter physics, ranging from percolation to A. Numerical results 86 Bose-Einstein condensation. 1. Random network, random node removal 87 Traditionally the study of complex networks has been 2. Scale-free network, random node removal 87 3. Preferential node removal 87 the territory of graph theory. While graph theory ini- B. Error tolerance: analytical results 88 tially focused on regular graphs, since the 1950s large- C. Attack tolerance: Analytical results 89 scale networks with no apparent design principles have D. The robustness of real networks 90 been described as random graphs, proposed as the sim- 1. Communication networks 90 plest and most straightforward realization of a complex 2. Cellular networks 91 network. Random graphs were first studied by the Hun- 3. Ecological networks 91 garian mathematicians Paul Erdo˝ s and Alfre´dRe´nyi. X. Outlook 91 According to the Erdo˝ s-Re´nyi model, we start with N A. Dynamical processes on networks 91 B. Directed networks 92 nodes and connect every pair of nodes with probability Ϫ C. Weighted networks, optimization, allometric p, creating a graph with approximately pN(N 1)/2 scaling 92 edges distributed randomly. This model has guided our D. Internet and World Wide Web 93 thinking about complex networks for decades since its E. General questions 93 introduction. But the growing interest in complex sys- F. Conclusions 94 tems has prompted many scientists to reconsider this Acknowledgments 94 modeling paradigm and ask a simple question: are the References 94 real networks behind such diverse complex systems as the cell or the Internet fundamentally random? Our in- tuition clearly indicates that complex systems must dis- I. INTRODUCTION play some organizing principles, which should be at some level encoded in their topology. But if the topology Complex weblike structures describe a wide variety of of these networks indeed deviates from a random graph, systems of high technological and intellectual impor- we need to develop tools and measurements to capture tance. For example, the cell is best described as a com- in quantitative terms the underlying organizing prin- plex network of chemicals connected by chemical reac- ciples. tions; the Internet is a complex network of routers and In the past few years we have witnessed dramatic ad- computers linked by various physical or wireless links; vances in this direction, prompted by several parallel de- fads and ideas spread on the social network, whose velopments. First, the computerization of data acquisi- nodes are human beings and whose edges represent tion in all fields led to the emergence of large databases various social relationships; the World Wide Web is an on the topology of various real networks. Second, the enormous virtual network of Web pages connected by increased computing power allowed us to investigate hyperlinks. These systems represent just a few of the networks containing millions of nodes, exploring ques- many examples that have recently prompted the scien- tions that could not be addressed before. Third, the slow tific community to investigate the mechanisms that de- but noticeable breakdown of boundaries between disci- termine the topology of complex networks. The desire plines offered researchers access to diverse databases, to understand such interwoven systems has encountered allowing them to uncover the generic properties of com- significant challenges as well. Physics, a major benefi- plex networks. Finally, there is an increasingly voiced ciary of reductionism, has developed an arsenal of suc- need to move beyond reductionist approaches and try to cessful tools for predicting the behavior of a system as a understand the behavior of the system as a whole. Along whole from the properties of its constituents. We now this route, understanding the topology of the interac- understand how magnetism emerges from the collective tions between the components, i.e., networks, is un- behavior of millions of spins, or how quantum particles avoidable. lead to such spectacular phenomena as Bose-Einstein Motivated by these converging developments and cir- condensation or superfluidity. The success of these mod- cumstances, many new concepts and measures have eling efforts is based on the simplicity of the interactions been proposed and investigated in depth in the past few between the elements: there is no ambiguity as to what years. However, three concepts occupy a prominent interacts with what, and the interaction strength is place in contemporary thinking about complex net- uniquely determined by the physical distance. We are at works. Here we define and briefly discuss them, a discus- a loss, however, to describe systems for which physical sion to be expanded in the coming sections. distance is irrelevant or for which there is ambiguity as Small worlds: The small-world concept in simple to whether two components interact. While for many terms describes the fact that despite their often large complex systems with nontrivial network topology such size, in most networks there is a relatively short path ambiguity is naturally present, in the past few years we between any two nodes. The distance between two have increasingly recognized that the tools of statistical nodes is defined as the number of edges along the short- mechanics offer an ideal framework for describing these est path connecting them. The most popular manifesta- interwoven systems as well. These developments have tion of small worlds is the ‘‘six degrees of separation’’ introduced new and challenging problems for statistical concept, uncovered by the social psychologist Stanley physics and unexpected links to major topics in Milgram (1967), who concluded that there was a path of Rev. Mod. Phys., Vol. 74, No. 1, January 2002 R. Albert and A.-L. Baraba´si: Statistical mechanics of complex networks 49 acquaintances with a typical length of about six between P͑k͒ϳkϪ␥. (2) most pairs of people in the United States (Kochen, Such networks are called scale free (Baraba´si and Al- 1989).
Recommended publications
  • Random Graphs Associated to Some Discrete and Continuous Time
    Random Graphs Associated to some Discrete and Continuous Time Preferential Attachment Models Angelica Pachon, Federico Polito & Laura Sacerdote Mathematics Department “G. Peano”, University of Torino, Italy September 4, 2021 Abstract We give a common description of Simon, Barab´asi–Albert, II-PA and Price growth mod- els, by introducing suitable random graph processes with preferential attachment mechanisms. Through the II-PA model, we prove the conditions for which the asymptotic degree distribu- tion of the Barab´asi–Albert model coincides with the asymptotic in-degree distribution of the Simon model. Furthermore, we show that when the number of vertices in the Simon model (with parameter α) goes to infinity, a portion of them behave as a Yule model with parame- ters (λ, β) = (1 α, 1), and through this relation we explain why asymptotic properties of a − random vertex in Simon model, coincide with the asymptotic properties of a random genus in Yule model. As a by-product of our analysis, we prove the explicit expression of the in-degree distribution for the II-PA model, given without proof in [16]. References to traditional and recent applications of the these models are also discussed. Keywords: Preferential attachment; Random graph growth; Discrete and continuous time models; Stochastic processes. MSC2010 : 05C80, 90B15. 1 Introduction A large group of networks growth models can be classified as preferential attachment models. In the simplest preferential attachment mechanism an edge connects a newly created node to one of those already present in the network with a probability proportional to the number of their edges. Typically what is analyzed for these models are properties related both to the growth of the number of edges for each node and to the growth of the number of nodes.
    [Show full text]
  • Glossary of Terms Used for Network Analysis
    Defined Vocabulary for Nervous System Network Analysis This is a working vocabulary compiled mostly from the pioneering work of Olaf Sporns and colleagues (see bibliography at the end). It complements the defined vocabulary in our Foundational Model of Nervous System Structural Connectivity (Swanson & Bota 2010). Preferred synonyms are bolded. Also see Wikipedia articles, Glossary of graph theory and List of graph theory topics. Adjacency matrix: See connection matrix, although strictly speaking, the term may refer only to a matrix with binary connections (see Sporns 2012a, p. 16). Allometric scaling: “Allometric scaling concerns the relationships between body size (scale) and other anatomical, functional or metabolic properties of organisms. These scaling relationships are often described by power laws” (Bullmore & Sporns 2012, p. 338). See Wikipedia Allometry. Anatomical connections: See structural connections. Arc: See connection. Assortativity: “A measure of the tendency for nodes to be connected to other nodes of the same or similar degree” (Bullmore & Sporns 2009, p. 195). More specifically, it is “The correlation between the degrees of connected nodes. Positive assortativity indicates that high-degree nodes tend to connect to each other.” (Bullmore & Sporns 2009, p. 188). “The correlation coefficient for the degrees of neighboring nodes. Positive assortativity indicates that edges tend to link nodes of similar degree, while negative assortativity indicates that high-degree nodes preferentially connect with low-degree nodes.” (Sporns 2011, p. 9). Betweenness centrality: “The betweenness centrality of an individual node is defined as the fraction of all shortest paths in the network that pass through the node. A node with high betweenness centrality can control information flow because it is at the intersection of many short paths.” (Sporns 2011, p.
    [Show full text]
  • Topology Analysis of China's Port Shipping Network
    JOURNAL OF SOFTWARE, VOL. 8, NO. 10, OCTOBER 2013 2581 Topology Analysis of China's Port Shipping Network Beibei Hu 1Department of management science and engineering, Beijing University of Technology, Beijing100124, P.R. China. Email: [email protected] Gang Zong 2Department of management science and engineering, Beijing University of Technology, Beijing100124, P.R. China. Email:[email protected] Abstract—Based on China's port shipping statistical data social networks, such as social network, information from 2006 to 2010, the paper constructs China's port network, technology network and biological network [3], shipping network structure chart, and analyzes the degree are neither regular network nor random network, but the distribution, average path length, network density and network with some or all of the these properties like network clustering coefficient of the network. The results self-organizing, self-similarity, attractor, small-world show that China's port shipping network has scale-free phenomena and scale-free phenomena. As a powerful tool characteristic with short average path length, high network density, and its degree distribution follows a power law. used to analyze complex system’s topological structure Through the computer simulation, the higher correlation and dynamic evolvement, complex network [4-7] is coefficient also shows that data fitting is satisfactory, which gradually becoming a hot area of research. In recent years, further validates that China’s port shipping network is a based on the small-world network theory and scale-free scale-free network. network theory, domestic and foreign scholars have already analyzed aviation network, and gained some Index Terms—Complex network; shipping network; degree achievements [8-9].
    [Show full text]
  • Tuning the Average Path Length of Complex Networks and Its Influence to the Emergent Dynamics of the Majority-Rule Model
    Tuning the average path length of complex networks and its influence to the emergent dynamics of the majority-rule model Andreas I. Reppas *, Konstantinos Spiliotis, Constantinos I. Siettos † School of Applied Mathematics and Physical Sciences, National Technical University of Athens, Greece, GR 157 80 Preprint version of the paper published in Mathematics and Computers in Simulation, 109 , March 2015, Pages 186–196. Abstract. We show how appropriate rewiring with the aid of Metropolis Monte Carlo computational experiments can be exploited to create network topologies possessing prescribed values of the average path length (APL) while keeping the same connectivity degree and clustering coefficient distributions. Using the proposed rewiring rules, we illustrate how the emergent dynamics of the celebrated majority-rule model are shaped by the distinct impact of the APL attesting the need for developing efficient algorithms for tuning such network characteristics. Keywords : Complex Networks; Average Path Length; Clustering Coefficient; Prescribed Network Characteristics; Monte Carlo Simulations; Nonlinear Dynamics; Majority-Rule Model 1. Introduction. The strong interplay between the emergent complex dynamics of many real-world systems and the underlying topology of the networks that pertain to their structure has been illustrated by many studies: the dynamics of electrical power transmission systems including cascade failures leading to blackouts [54], the evolution of the world wide web, various social phenomena such as mimesis and herding [55], brain cognitive, neurological disorders and motor functions [8, 11, 54] are typical paradigms of such cases. Thus, the modelling and the systematic investigation of the topological properties of complex networks are of great importance. Towards this aim, various algorithms for generating networks aspiring to approximate the actual ones have been proposed [2, 46, 57].
    [Show full text]
  • Complex Transportation Networks: Resilience, Modelling and Optimization Taras Holovatch
    Complex transportation networks: resilience, modelling and optimization Taras Holovatch To cite this version: Taras Holovatch. Complex transportation networks: resilience, modelling and optimization. Physics and Society [physics.soc-ph]. Université Henri Poincaré - Nancy 1, 2011. English. NNT : 2011NAN10090. tel-01746249v2 HAL Id: tel-01746249 https://tel.archives-ouvertes.fr/tel-01746249v2 Submitted on 16 Dec 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Faculté des Sciences & Techniques Faculty of Engineering and Computing École Doctorale Energie Mécanique Applied Mathematics Research Centre et Matériaux (EMMA) Formation Doctorale Physique et Chimie de la Matière et des Matériaux (PCMM) Thèse présentée pour l'obtention du titre de Docteur de l'Université Henri Poincaré, Nancy I en Sciences Physiques par Taras Holovatch Réseaux de Transport Complexes: Résilience, Modélisation et Optimisation Complex Transportation Networks: Resilience, Modelling and Optimisation Soutenance publique eectuée le 19 octobre 2011 Membres du Jury: Rapporteurs :
    [Show full text]
  • Random Walk Models, Preferential Attachment, and Sequential Monte Carlo Methods for Analysis of Network Data
    Random Walk Models, Preferential Attachment, and Sequential Monte Carlo Methods for Analysis of Network Data Benjamin Bloem-Reddy Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2017 c 2017 Benjamin Bloem-Reddy All Rights Reserved ABSTRACT Random Walk Models, Preferential Attachment, and Sequential Monte Carlo Methods for Analysis of Network Data Benjamin Bloem-Reddy Networks arise in nearly every branch of science, from biology and physics to sociology and economics. A signature of many network datasets is strong local dependence, which gives rise to phenomena such as sparsity, power law degree distributions, clustering, and structural heterogeneity. Statistical models of networks require a careful balance of flexi- bility to faithfully capture that dependence, and simplicity, to make analysis and inference tractable. In this dissertation, we introduce a class of models that insert one network edge at a time via a random walk, permitting the location of new edges to depend explicitly on the structure of the existing network, while remaining probabilistically and computationally tractable. Connections to graph kernels are made through the probability generating func- tion of the random walk length distribution. The limiting degree distribution is shown to exhibit power law behavior, and the properties of the limiting degree sequence are studied analytically with martingale methods. In the second part of the dissertation, we develop a class of particle Markov chain Monte Carlo algorithms to perform inference for a large class of sequential random graph models, even when the observation consists only of a single graph.
    [Show full text]
  • Albert and Barabasi.Pdf
    Statistical Mechanics of Complex Networks R´eka Albert1;2 and Albert-L´aszl´o Barab´asi2 1School of Mathematics, 127 Vincent Hall, University of Minnesota, Minneapolis, Minnesota 55455 2Department of Physics, 225 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556 Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled as random graphs, it is increasingly recognized that the topology and evolution of real networks is governed by robust organizing principles. Here we review the recent advances in the field of complex networks, focusing on the statistical mechanics of network topology and dynamics. After reviewing the empirical data that motivated the recent interest in networks, we discuss the main models and analytical tools, covering random graphs, small-world and scale-free networks, as well as the interplay between topology and the network's robustness against failures and attacks. CONTENTS 1. Average path length 24 2. Clustering coefficient 25 I. INTRODUCTION 2 3. Degree distribution 26 II. THE TOPOLOGY OF REAL NETWORKS: 4. Spectral properties 26 EMPIRICAL RESULTS 3 VII. THE SCALE-FREE MODEL 27 1. World-Wide Web 3 A. Definition of the scale-free (SF) model 27 2. Internet 5 B. Theoretical approaches 28 3. Movie actor collaboration network 5 C. Limiting cases of the SF model 29 4. Science collaboration graph 5 D. Properties of the SF model 30 5.
    [Show full text]
  • Scale Free Information Systems Networks
    SCALE FREE INFORMATION SYSTEMS NETWORKS Wee Horng Ang Working Paper CISL#2006-04 May 2006 Composite Information System Laboratory (CISL) Sloan School of Management E53-320 Massachusetts Institute of Technology Cambridge, MA 02142 SCALE-FREE INFORMATION SYSTEMS NETWORKS By Wee Horng Ang B. Sc. (Hons) Computer Engineering University of Illinois at Urbana-Champaign 2004 Submitted to the Engineering System Division in Partial Fulfillment of the Requirements for the degree of Masters of Science in Engineering Systems At the Massachusetts Institute of Technology May 2006 © 2006 Massachusetts Institute of Technology All Rights Reserved. Signature of Author……………………………………………………………………………..………. Engineering Systems Engineering Systems Division May 17, 2006 Certified by……………...………………………………………………………………………………. Stuart Madnick John Norris Maguire Professor of Information Technology & Professor of Engineering Systems Thesis Supervisor Accepted by…………...………………………………………………………………………………… Richard de Neufville Chair, Engineering Systems Division Education Committee Professor of Engineering Systems - 2 - SCALE-FREE INFORMATION SYSTEM NETWORKS By Wee Horng Ang Abstract Many real, complex networks have been shown to be scale-free. Scale-free in networks mean that their degree distribution is independent of the network size, have short path lengths and are highly clustered. We identify the qualities of scale-free networks, and discuss the mathematical derivations and numerically simulated outcomes of various deterministic scale-free models. Information Systems networks
    [Show full text]
  • Can Simple Models Explain Zipf's Law for All Exponents?
    Glottometrics 11, 2005, 1-8 Can simple models explain Zipf’s law for all exponents? Ramon Ferrer i Cancho*, Rome Vito D. P. Servedio, Rome Abstract. H. Simon proposed a simple stochastic process for explaining Zipf’s law for word fre- quencies. Here we introduce two similar generalizations of Simon’s model that cover the same range of exponents as the standard Simon model. The mathematical approach followed minimizes the amount of mathematical background needed for deriving the exponent, compared to previous ap- proaches to the standard Simon’s model. Reviewing what is known from other simple explanations of Zipf’s law, we conclude there is no single radically simple explanation covering the whole range of variation of the exponent of Zipf’s law in humans. The meaningfulness of Zipf’s law for word fre- quencies remains an open question. Keywords: Zipf’s law, Simon model, intermittent silence INTRODUCTION Zipf’s law for word frequencies is one of the most striking statistical regularities found in human language. If f is the frequency of a word, the proportion of words having frequency f follows −β (,~) ffP (1) where β ≈ 2 in normal adult speakers (Zipf, 1932; Zipf, 1949; Ferrer i Cancho, 2005a). β is the exponent of Zipf’s law. For simplicity, here we assume Eq. 1 for word frequencies, al- though other functional forms have been proposed (Chitashvili & Baayen, 1993; Tuldava, 1996; Naranan & Balasubrahmanyan, 1998). H. A. Simon proposed a process constructing a random text for explaining Zipf’s law (Simon, 1955; Simon, 1957). At each iteration step, the text grows by one word.
    [Show full text]
  • The Graph Structure of the Internet at the Autonomous Systems Level During Ten Years
    Journal of Computer and Communications, 2019, 7, 17-32 https://www.scirp.org/journal/jcc ISSN Online: 2327-5227 ISSN Print: 2327-5219 The Graph Structure of the Internet at the Autonomous Systems Level during Ten Years Agostino Funel ICT Lab, Energy Technologies Department, ENEA, Rome, Italy How to cite this paper: Funel, A. (2019) Abstract The Graph Structure of the Internet at the Autonomous Systems Level during Ten We study how the graph structure of the Internet at the Autonomous Systems Years. Journal of Computer and Commu- (AS) level evolved during a decade. For each year of the period 2008-2017 we nications, 7, 17-32. consider a snapshot of the AS graph and examine how many features related https://doi.org/10.4236/jcc.2019.78003 to structure, connectivity and centrality changed over time. The analysis of Received: July 25, 2019 these metrics provides topological and data traffic information and allows to Accepted: August 23, 2019 clarify some assumptions about the models concerning the evolution of the Published: August 26, 2019 Internet graph structure. We find that the size of the Internet roughly Copyright © 2019 by author(s) and doubled. The overall trend of the average connectivity is an increase over Scientific Research Publishing Inc. time, while that of the shortest path length is a decrease over time. The inter- This work is licensed under the Creative nal core of the Internet is composed of a small fraction of big AS and is more Commons Attribution International License (CC BY 4.0). stable and connected the external cores.
    [Show full text]
  • Network Science the Scale-Free Property
    4 ALBERT-LÁSZLÓ BARABÁSI NETWORK SCIENCE THE SCALE-FREE PROPERTY ACKNOWLEDGEMENTS MÁRTON PÓSFAI SARAH MORRISON GABRIELE MUSELLA AMAL HUSSEINI MAURO MARTINO PHILIPP HOEVEL ROBERTA SINATRA INDEX Introduction 1 Power Laws and Scale-Free Networks 2 Hubs 3 The Meaning of Scale-Free 4 Universality 5 Ultra-Small Property 6 The Role of the Degree Exponent 7 Generating Networks with Arbitrary Degree Distribution 8 Summary 9 Homework 10 ADVANCED TOPICS 4.A Power Laws 11 ADVANCED TOPICS 4.B Plotting Power-laws 12 ADVANCED TOPICS 4.C Estimating the Degree Exponent 13 Figure 4.0 (cover image) “Art and Networks” by Tomás Saraceno Bibliography 14 Tomás Saraceno creates art inspired by spider webs and neural networks. Trained as an ar- chitect, he deploys insights from engineering, physics, chemistry, aeronautics, and materi- als science, using networks as a source of in- spiration and metaphor. The image shows his work displayed in the Miami Art Museum, an example of the artist’s take on complex net- works. This book is licensed under a Creative Commons: CC BY-NC-SA 2.0. PDF V53 09.09.2014 SECTION 4.1 INTRODUCTION The World Wide Web is a network whose nodes are documents and the links are the uniform resource locators (URLs) that allow us to “surf” with a click from one web document to the other. With an estimated size of over one trillion documents (N≈1012), the Web is the largest network humanity has ever built. It exceeds in size even the human brain (N ≈ 1011 neurons). > It is difficult to overstate the importance of the World Wide Web in our daily life.
    [Show full text]
  • Delft University of Technology Exploring
    Delft University of Technology Exploring the topology of the maritime transport network in a large-scale archipelago: a complex network approach Destyanto, A.R.; Huang, Yilin; Verbraeck, A. DOI 10.46354/i3m.2020.hms.006 Publication date 2020 Document Version Final published version Published in Proceedings of the 22nd International Conference on Harbor, Maritime and Multimodal Logistic Modeling & Simulation (HMS 2020) Citation (APA) Destyanto, A. R., Huang, Y., & Verbraeck, A. (2020). Exploring the topology of the maritime transport network in a large-scale archipelago: a complex network approach. In E. Bottani, A. G. Bruzzone, F. Longo, Y. Merkuryev, & M. A. Piera (Eds.), Proceedings of the 22nd International Conference on Harbor, Maritime and Multimodal Logistic Modeling & Simulation (HMS 2020) (pp. 37-45). [10.46354/i3m.2020.hms.006] (22nd International Conference on Harbor, Maritime and Multimodal Logistics Modelling and Simulation, HMS 2020). International Multidisciplinary Modeling & Simulation Multiconference (I3M). https://doi.org/10.46354/i3m.2020.hms.006 Important note To cite this publication, please use the final published version (if applicable). Please check the document version above. Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim. This work is downloaded from Delft University of Technology.
    [Show full text]