Coordinating Locomotion and Manipulation of a Mobile Manipulator

Total Page:16

File Type:pdf, Size:1020Kb

Coordinating Locomotion and Manipulation of a Mobile Manipulator University of Pennsylvania ScholarlyCommons Technical Reports (CIS) Department of Computer & Information Science March 1992 Coordinating Locomotion and Manipulation of a Mobile Manipulator Yoshio Yamamoto University of Pennsylvania Xiaoping Yun University of Pennsylvania Follow this and additional works at: https://repository.upenn.edu/cis_reports Recommended Citation Yoshio Yamamoto and Xiaoping Yun, "Coordinating Locomotion and Manipulation of a Mobile Manipulator", . March 1992. University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-92-18. This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/407 For more information, please contact [email protected]. Coordinating Locomotion and Manipulation of a Mobile Manipulator Abstract A mobile manipulator in this study is a manipulator mounted on a mobile platform. Assuming the end point of the manipulator is guided, e.g., by a human operator to follow an arbitrary trajectory, it is desirable that the mobile platform is able to move as to position the manipulator in certain preferred configurations. Since the motion of the manipulator is unknown a priori, the platform has to use the measured joint position information of the manipulator for motion planning. This paper presents a planning and control algorithm for the platform so that the manipulator is always positioned at the preferred configurations measured by its manipulability. Simulation results are presented to illustrate the efficacy of the algorithm. The use of the resulting algorithm in a number of applications is also discussed. Comments University of Pennsylvania Department of Computer and Information Science Technical Report No. MS- CIS-92-18. This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/407 Coordinating Locomotion and Manipulation Of A Mobile Manipulator MS-CIS-92-18 GRASP LAB 304 Yoshio Yamamoto Xiaoping Yun University of Pennsylvania School of Engineering and Applied Science Computer and Information Science Department Philadelphia, PA 19104-6309 March 1992 Coordinating Locomotion and Manipulation of a Mobile Manipulator Yoshio Yamalnoto and Xiaoping Yun General Robotics and Active Sensory Perception (GRASP) Laboratory University of Pennsylvania 3401 Walnut Street, Room 301C Philadelphia, PA 19104-6228 ABSTRACT nipulator end point is unknown a priori, e.g., driven by a visual sensor or guided by a human operator, then the A mobile manipulator in this study is a manipulator path planning has to be made locally and in real time mounted on a mobile platform. Assuining the end rather than globally and off-line. This paper presents a point of the manipulator is guided , e.g., by a human planning and control algorithm for the platform in the operator to follow an arbitrary trajectory, it is desir- latter case, which takes the measured joint displace- able that the mobile platform is able to move as to ment of the maiiipulator as the input for inotion plan- position the manipulator in certain preferred configu- ning, and controls the platform in order to bring the rations. Since the motion of the manipulator is un- manipulator into a preferred operating region. While known a priori, the platform has to use the measured this region can be selected based on any meaningful joint position information of the manipulator for mo- criterion, the inanipulability measure [I] is utilized in tion planning. This paper presents a planning and con- this study. By using this algorithm, the mobile plat.- trol algorithm for the platfornl so that the manipula- form will be able to "understand the intention of its tor is always positioned at the preferred configurations inanipulator and respond accordingly." measured by its manipulability. Simulation results are This control algorithin has a number of iminidiate presented to illustrate the efficacy of t,he algorithm. applications. First, a human operator can easily move The use of the resulting algorithm in a number of ap- around the mobile manipulator by "dragging" the end plications is also discussed. point of the manipulator while the manipulator is in the free mode (compensating the gravity only). Sec- 1 Introduction ond, if the manipulator is force-controlled, the mobile manipulator will be able to push against and follow When a human writes across a board, he posit,ions his an external moving surface. Third, when two mobile arm in a comfortable writing configuration by mov- manipulators transport a large object with one being ing his body rather than reaching out his arm. Also the illaster and the other being slave, this algorithm when humans transport a large and/or heavy object can be used to control the slave mobile manip~lat~orto coorperatively, they tend to prefer certain configura- support the object and follow the motion of the mas- tions depending on various factors, e.g., the shape and ter, resulting in a cooperative control algorithm for two the weight of the object, the transportation velocity, mobile manipulators. the number of people iilvolved in a task, and so on. Altl~oughthere has been a vast amount of research Therefore when a mobile illanipulator perforins a ma- effort on mobile platforms (commonly referred to as nipulation task, it is desirable to bring the manipulator mobile robots) in the literature, the study on mobile into certain preferred configurations by appropriately inanip~lat~orsis very limited. Joshi and Desrochers planning the motion of the mobile platform. If the considered a two link manipulator on a moving plat- trajectory of the manipulator end point in a fixed co- form subject to random disturbances in its orientation ordinate system (world coordinate system) is known a [2]. Wien studied dynamic coupling between a planar priori, then the motion of the mobile platform can be vehicle and a one-link manipulator on the vehicle [3]. planned accordingly. However, if the inotioii of the ma- Dubowsky, Gu, and Deck derived the dynamic equa- tions of a fully spatial mobile manipulator with link 2 Nonholonomic Systems flexibility [4]. Recently, Hootsmans proposed a mobile manipulator control algorithm (the Mobile Manipula- 2.1 Dynamic Equations of Motion tor Jacobian Transpose Algorithm) for a dyilamically Consider a mechanical system with n generalized co- coupled mobile manipulator [5]. He showed that with ordinates q subject to m bilateral constraints whose the algorithm the manipulator could successfully com- equations of motion are described by pensate a trajectory error caused by vehicle's passive suspension with the help of limited sensory information from mobile vehicle. where M(q) is the n x n inertia matrix, V(q, q) is the What makes the coordination problem of locomo- vector of position and velocity dependent forces, E(y) tion and manipulation a difficult one is twofold. First, is the n x r input transformatioll matrix1, T is the 1.- a manipulator and a mobile platform, in general, have dimensional input vector, A(q) is the m x n Jacobian different dynamic characteristics, namely, a mobile matrix, and X is the vector of constraint forces. The platform has slower dynamic response than a manipu- m constraint equations of the mechanical system can lator. Second, a wheeled mobile platform is subject to be written in the form nonholonomic constraints while a manipulator is usu- ally unconstrained. These two issues must be taken into consideration in developing a planning and con- If a constraiilt equation is in the form Ci(y) = 0, or trol algorithm. call be integrated into this form, it is a l~olonomiccon- straint. Otherwise it is a kinematic (not geometric) Dynamic modeling of mechanical systenw with non- constraint and is termed nonholonomic. holonomic constraints is richly documented by work We assume that we have L holonomic and 712- L now ranging from Neimark and Fufaev's comprehensive holonomic independent constraints, all of which can be book [GI to more recent developments (see for example, written in the form of [7]). However, the literature on control properties of such systems is sparse [8]. The interest in control of nonholonomic systems has been stimulated by t.he re- Let s~(~),. ., s,-,(q) be a set of smooth and linearly cent research in robotics. The dynamics of a wheeled independent vector fields in the null space of A(y), z.e., mobile robot is nonholonoinic [9], and so is a multi-arm system manipulating an object through the .ivhole arm -4(q)si(q) = 0 i= 1,..., n-m.. manipulation [lo]. Let S(q) be the full rank matrix made up of these vectors Bloch and McClamroch [8] first deilloilstrated that S(q) = is1 (9) ~n-m(q)l (4) a nonholonomic system cannot be feedback stabilized . to a single equilibrium point by a smooth feedback. and let A be the distribution spanned by these vector In a follow-up paper [ll],they showed that the sys- fields tem is small-time locally controllable. Campion et a1 A = span{sl(q), . 3 sn-na(q) > [12] showed that the system is coiltrollable regardless It. follows that q E 4. A may or may not be involutive. of the structure of nonholonomic constraiiits. h'lotion For that reason, we let A* be the smallest involut.ive planning of mobile robots has been an active topic in distributioil containing A. It is clear that dim(4) 5 robotics in the past several years [13, 14, 9, 15, 161. dim(A*). There are three possible cases (as observed Nevertheless, much less is known about the dynamic by Campion, et al. in [12]). First, if L = m, that is. control of mobile robots with nonholonomic constraints all the const,raints are holonomic, then A is involutive and the developments in this area are very recent itself. Second, if k = 0, that is, all the coilstraints are [17, 18, 191. nonholonomic, then A" spans the entire space. Finally, if 0 < k < nz, the k constraints are integrable and In this paper, we first present the theoretic formula;.
Recommended publications
  • Modeling and Control of Underwater Robotic Systems
    Modeling and Control of Underwater Robotic Systems Dr.ing. thesis Ingrid Schj0lberg Department of Engineering Cybernetics Norwegian University of Science and Technology March 1996 Report 96-21-W Department of Engineering Cybernetics Norwegian University of Science and Technology N-7034 Trondheim, Norway OBmetmoN of im doombst b mwia DISCLAI R Portions of tins document may be Illegible in electronic image products. Images are produced from the best available original document Preface This thesis is submitted for the Doktor ingenipr degree at the Norwegian University of Science and Technology (NTNU). The research was carried out at the Norwegian Institute of Technology (NTH), Department of Engi ­ neering Cybernetics, in the period from January 1991 to March 1996. The work was funded by The Research Council of Norway (NFR) through the MOBATEL project. Professor Dr.ing. Olav Egeland was my supervisor. During the academic year 1992-1993 I worked at the European Organization for Nuclear Research (CERN). This stay was funded by TOTAL Norge. The work performed during this stay has not been included in this thesis. I am indebted to Professor Egeland for giving me the opportunity to take this study. I am also grateful for advice and comments during the writing of scientific articles and for the introduction to the fields of force control and vibration damping. I am thankful to the administrator of the MOBATEL project, Professor Jens G. Balchen, for letting me take part in this project. I am grateful to Professor Dr.ing. Thor I. Fossen for useful discussions on hydrodynamics. I want to express my gratitude to Dr.ing.
    [Show full text]
  • Robotic Manipulators Mechanical Project for the Domestic Robot HERA
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/333931156 Robotic Manipulators Mechanical Project For The Domestic Robot HERA Conference Paper · April 2019 CITATIONS READS 0 197 3 authors: Marina Gonbata Fabrizio Leonardi University Center of FEI University Center of FEI 3 PUBLICATIONS 0 CITATIONS 97 PUBLICATIONS 86 CITATIONS SEE PROFILE SEE PROFILE Plinio Thomaz Aquino Junior University Center of FEI 58 PUBLICATIONS 237 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Vehicle Coordination View project HERA: Home Environment Robot Assistant View project All content following this page was uploaded by Plinio Thomaz Aquino Junior on 21 June 2019. The user has requested enhancement of the downloaded file. BRAHUR-BRASERO 2019 II Brazilian Humanoid Robot Workshop and III Brazilian Workshop on Service Robotics Robotic Manipulators Mechanical Project For The Domestic Robot HERA Marina Yukari Gonbata1, Fabrizio Leonardi1 and Plinio Thomaz Aquino Junior1 Abstract— Robotics can ease peoples life, in the industrial that can ”read” the environment where it acts), ability to act and home environment. When talking about homes, robot may actuators and motors capable of producing actions, such as assist people in some domestic and tasks, done in repeat. To the displacement of the robot in the environment), robustness accomplish those tasks, a robot must have a robotic arm, so it can interact with the environment physically, therefore, a robot and intelligence (ability to handle the most diverse situations, must use its arm to do the tasks that are required by its user. in order to solve and perform tasks as complex as they are) [2].
    [Show full text]
  • Design and Evaluation of Modular Robots for Maintenance in Large Scientific Facilities
    UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES DESIGN AND EVALUATION OF MODULAR ROBOTS FOR MAINTENANCE IN LARGE SCIENTIFIC FACILITIES PRITHVI SEKHAR PAGALA, MSC 2014 DEPARTAMENTO DE AUTOMÁTICA, INGENIERÍA ELECTRÓNICA E INFORMÁTICA INDUSTRIAL ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES DESIGN AND EVALUATION OF MODULAR ROBOTS FOR MAINTENANCE IN LARGE SCIENTIFIC FACILITIES PhD Thesis Author: Prithvi Sekhar Pagala, MSC Advisors: Manuel Ferre Perez, PhD Manuel Armada, PhD 2014 DESIGN AND EVALUATION OF MODULAR ROBOTS FOR MAINTENANCE IN LARGE SCIENTIFIC FACILITIES Author: Prithvi Sekhar Pagala, MSC Tribunal: Presidente: Dr. Fernando Matía Espada Secretario: Dr. Claudio Rossi Vocal A: Dr. Antonio Giménez Fernández Vocal B: Dr. Juan Antonio Escalera Piña Vocal C: Dr. Concepción Alicia Monje Micharet Suplente A: Dr. Mohamed Abderrahim Fichouche Suplente B: Dr. José Maráa Azorín Proveda Acuerdan otorgar la calificación de: Madrid, de de 2014 Acknowledgements The duration of the thesis development lead to inspiring conversations, exchange of ideas and expanding knowledge with amazing individuals. I would like to thank my advisers Manuel Ferre and Manuel Armada for their constant men- torship, support and motivation to pursue different research ideas and collaborations during the course of entire thesis. The team at the lab has not only enriched my professionally life but also in Spanish ways. Thank you all the members of the ROMIN, Francisco, Alex, Jose, Jordi, Ignacio, Javi, Chema, Luis .... This research project has been supported by a Marie Curie Early Stage Initial Training Network Fellowship of the European Community’s Seventh Framework Program "PURESAFE". I wish to thank the supervisors and fellow research members of the project for the amazing support, fruitful interactions and training events.
    [Show full text]
  • History of Robotics: Timeline
    History of Robotics: Timeline This history of robotics is intertwined with the histories of technology, science and the basic principle of progress. Technology used in computing, electricity, even pneumatics and hydraulics can all be considered a part of the history of robotics. The timeline presented is therefore far from complete. Robotics currently represents one of mankind’s greatest accomplishments and is the single greatest attempt of mankind to produce an artificial, sentient being. It is only in recent years that manufacturers are making robotics increasingly available and attainable to the general public. The focus of this timeline is to provide the reader with a general overview of robotics (with a focus more on mobile robots) and to give an appreciation for the inventors and innovators in this field who have helped robotics to become what it is today. RobotShop Distribution Inc., 2008 www.robotshop.ca www.robotshop.us Greek Times Some historians affirm that Talos, a giant creature written about in ancient greek literature, was a creature (either a man or a bull) made of bronze, given by Zeus to Europa. [6] According to one version of the myths he was created in Sardinia by Hephaestus on Zeus' command, who gave him to the Cretan king Minos. In another version Talos came to Crete with Zeus to watch over his love Europa, and Minos received him as a gift from her. There are suppositions that his name Talos in the old Cretan language meant the "Sun" and that Zeus was known in Crete by the similar name of Zeus Tallaios.
    [Show full text]
  • Special Feature on Advanced Mobile Robotics
    applied sciences Editorial Special Feature on Advanced Mobile Robotics DaeEun Kim School of Electrical and Electronic Engineering, Yonsei University, Shinchon, Seoul 03722, Korea; [email protected] Received: 29 October 2019; Accepted: 31 October 2019; Published: 4 November 2019 1. Introduction Mobile robots and their applications are involved with many research fields including electrical engineering, mechanical engineering, computer science, artificial intelligence and cognitive science. Mobile robots are widely used for transportation, surveillance, inspection, interaction with human, medical system and entertainment. This Special Issue handles recent development of mobile robots and their research, and it will help find or enhance the principle of robotics and practical applications in real world. The Special Issue is intended to be a collection of multidisciplinary work in the field of mobile robotics. Various approaches and integrative contributions are introduced through this Special Issue. Motion control of mobile robots, aerial robots/vehicles, robot navigation, localization and mapping, robot vision and 3D sensing, networked robots, swarm robotics, biologically-inspired robotics, learning and adaptation in robotics, human-robot interaction and control systems for industrial robots are covered. 2. Advanced Mobile Robotics This Special Issue includes a variety of research fields related to mobile robotics. Initially, multi-agent robots or multi-robots are introduced. It covers cooperation of multi-agent robots or formation control. Trajectory planning methods and applications are listed. Robot navigations have been studied as classical robot application. Autonomous navigation examples are demonstrated. Then services robots are introduced as human-robot interaction. Furthermore, unmanned aerial vehicles (UAVs) or autonomous underwater vehicles (AUVs) are shown for autonomous navigation or map building.
    [Show full text]
  • Special Issue On
    FACTA UNIVERSITATIS Series: Mechanics, Automatic Control and Robotics Vol. 6, Special Issue, 2007, pp. I - VIII Special Issue on Advanced Controls And Signal Processing in Active And Robotic Systems Foreword by the Guest Editor For quite some time the idea about this special cross-disciplinary issue has been both puz- zling as well as troubling me until finally I came to a positive conclusion. To my joy, Prof. Dr. Katica R. (Stevanović) Hedrih, Madam Editor-in-Chief of Facta Universitaties Series on Mechanics, Automatics Control and Robotics, embraced this idea frankly and not only devoted her efforts and time but also her passionate co-operation in all respects. Furthermore, to even greater joy of mine, a number of distinguished colleagues as well as young researchers have embraced the idea too. They all co-operated with me on this special issue with patience, for which I remain indebted to them for life. Here it is now this special issue before the competent research communities for final evaluation. For indeed their words are the final ones. This special issue begins with the article "Nanorobots for Microfactories to Operations in the Human Body and Robots Propelled by Bacteria" by Professor Sylvain Martel form Ottawa, Can- ada. This article is focused on the exploitation of the properties at the nanoscale that enables novel nanorobotic-based instrumented platforms and techniques. Some unique interdisciplinary examples from his research laboratory are described thus providing certain insights about the possibilities and the huge potentials of nanorobotics with main application areas in medicine and bioengineering. These also include supporting the new robotic platforms for micro- and nano- manufacturing and high-throughput automatic operations at the nanoscale.
    [Show full text]
  • Robot Control and Programming: Class Notes Dr
    NAVARRA UNIVERSITY UPPER ENGINEERING SCHOOL San Sebastian´ Robot Control and Programming: Class notes Dr. Emilio Jose´ Sanchez´ Tapia August, 2010 Servicio de Publicaciones de la Universidad de Navarra 987‐84‐8081‐293‐1 ii Viaje a ’Agra de Cimientos’ Era yo todav´ıa un estudiante de doctorado cuando cayo´ en mis manos una tesis de la cual me llamo´ especialmente la atencion´ su cap´ıtulo de agradecimientos. Bueno, realmente la tesis no contaba con un cap´ıtulo de ’agradecimientos’ sino mas´ bien con un cap´ıtulo alternativo titulado ’viaje a Agra de Cimientos’. En dicho capitulo, el ahora ya doctor redacto´ un pequeno˜ cuento epico´ inventado por el´ mismo. Esta pequena˜ historia relataba las aventuras de un caballero, al mas´ puro estilo ’Tolkiano’, que cabalgaba en busca de un pueblo recondito.´ Ya os podeis´ imaginar que dicho caballero, no era otro sino el´ mismo, y que su viaje era mas´ bien una odisea en la cual tuvo que superar mil y una pruebas hasta conseguir su objetivo, llegar a Agra de Cimientos (terminar su tesis). Solo´ deciros que para cada una de esas pruebas tuvo la suerte de encontrar a una mano amiga que le ayudara. En mi caso, no voy a presentarte una tesis, sino los apuntes de la asignatura ”Robot Control and Programming´´ que se imparte en ingles.´ Aunque yo no tengo tanta imaginacion´ como la de aquel doctorando para poder contaros una historia, s´ı que he tenido la suerte de encontrar a muchas personas que me han ayudado en mi viaje hacia ’Agra de Cimientos’. Y eso es, amigo lector, al abrir estas notas de clase vas a ser testigo del final de un viaje que he realizado de la mano de mucha gente que de alguna forma u otra han contribuido en su mejora.
    [Show full text]
  • Industrial Robot
    1 Introduction 25 1.2 Industrial robots - definition and classification 1.2.1 Definition (ISO 8373:2012) and delimitation The annual surveys carried out by IFR focus on the collection of yearly statistics on the production, imports, exports and domestic installations/shipments of industrial robots (at least three or more axes) as described in the ISO definition given below. Figures 1.1 shows examples of robot types which are covered by this definition and hence included in the surveys. A robot which has its own control system and is not controlled by the machine should be included in the statistics, although it may be dedicated for a special machine. Other dedicated industrial robots should not be included in the statistics. If countries declare that they included dedicated industrial robots, or are suspected of doing so, this will be clearly indicated in the statistical tables. It will imply that data for those countries is not directly comparable with those of countries that strictly adhere to the definition of multipurpose industrial robots. Wafer handlers have their own control system and should be included in the statistics of industrial robots. Wafers handlers can be articulated, cartesian, cylindrical or SCARA robots. Irrespective from the type of robots they are reported in the application “cleanroom for semiconductors”. Flat panel handlers also should be included. Mainly they are articulated robots. Irrespective from the type of robots they are reported in the application “cleanroom for FPD”. Examples of dedicated industrial robots that should not be included in the international survey are: Equipment dedicated for loading/unloading of machine tools (see figure 1.3).
    [Show full text]
  • Collaborative Mobile Industrial Manipulator : a Review of System Architecture and Applications
    This is a repository copy of Collaborative mobile industrial manipulator : a review of system architecture and applications. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/151956/ Version: Accepted Version Proceedings Paper: Yang, M., Yang, E. F., Zante, R. C. et al. (2 more authors) (2019) Collaborative mobile industrial manipulator : a review of system architecture and applications. In: Proceedings of the 25th International Conference on Automation & Computing, Newcastle University, Newcastle upon Tyne, UK. Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Proceedings of the 25th International Conference on Automation & Computing, Newcastle University, Newcastle upon Tyne, UK, 6-7 September 2019 Collaborative mobile industrial manipulator: A review of system architecture and applications Manman Yang1, Erfu Yang1, Remi Christophe Zante1, Mark Post2, Xuefeng Liu3 1Design, Manufacture & Engineering Management University of Strathclyde, Glasgow G1 1XJ, UK Email: {manman.yang, erfu.yang, remi.zante}@strath.ac.uk 2Department of Electronic Engineering University of York, York, UK Email: [email protected] 3School of Electronic and Optical Engineering Nanjing University Of Science And Technology, Nanjing, China Email: [email protected] Abstract—This paper provides a comprehensive review of the carried out in future [2].
    [Show full text]
  • Acknowledgements Acknowl
    2161 Acknowledgements Acknowl. B.21 Actuators for Soft Robotics F.58 Robotics in Hazardous Applications by Alin Albu-Schäffer, Antonio Bicchi by James Trevelyan, William Hamel, The authors of this chapter have used liberally of Sung-Chul Kang work done by a group of collaborators involved James Trevelyan acknowledges Surya Singh for de- in the EU projects PHRIENDS, VIACTORS, and tailed suggestions on the original draft, and would also SAPHARI. We want to particularly thank Etienne Bur- like to thank the many unnamed mine clearance experts det, Federico Carpi, Manuel Catalano, Manolo Gara- who have provided guidance and comments over many bini, Giorgio Grioli, Sami Haddadin, Dominic Lacatos, years, as well as Prof. S. Hirose, Scanjack, Way In- Can zparpucu, Florian Petit, Joshua Schultz, Nikos dustry, Japan Atomic Energy Agency, and Total Marine Tsagarakis, Bram Vanderborght, and Sebastian Wolf for Systems for providing photographs. their substantial contributions to this chapter and the William R. Hamel would like to acknowledge work behind it. the US Department of Energy’s Robotics Crosscut- ting Program and all of his colleagues at the na- C.29 Inertial Sensing, GPS and Odometry tional laboratories and universities for many years by Gregory Dudek, Michael Jenkin of dealing with remote hazardous operations, and all We would like to thank Sarah Jenkin for her help with of his collaborators at the Field Robotics Center at the figures. Carnegie Mellon University, particularly James Os- born, who were pivotal in developing ideas for future D.36 Motion for Manipulation Tasks telerobots. by James Kuffner, Jing Xiao Sungchul Kang acknowledges Changhyun Cho, We acknowledge the contribution that the authors of the Woosub Lee, Dongsuk Ryu at KIST (Korean Institute first edition made to this chapter revision, particularly for Science and Technology), Korea for their provid- Sect.
    [Show full text]
  • Coordinated Control of a Mobile Manipulator
    University of Pennsylvania ScholarlyCommons Technical Reports (CIS) Department of Computer & Information Science March 1994 Coordinated Control of a Mobile Manipulator Yoshio Yamamoto University of Pennsylvania Follow this and additional works at: https://repository.upenn.edu/cis_reports Recommended Citation Yoshio Yamamoto, "Coordinated Control of a Mobile Manipulator", . March 1994. University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-94-12. This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/240 For more information, please contact [email protected]. Coordinated Control of a Mobile Manipulator Abstract In this technical report, we investigate modeling, control, and coordination of mobile manipulators. A mobile manipulator in this study consists of a robotic manipulator and a mobile platform, with the manipulator being mounted atop the mobile platform. A mobile manipulator combines the dextrous manipulation capability offered by fixed-base manipulators and the mobility offered by mobile platforms. While mobile manipulators offer a tremendous potential for flexible material handling and other tasks, at the same time they bring about a number of challenging issues rather than simply increasing the structural complexity. First, combining a manipulator and a platform creates redundancy. Second, a wheeled mobile platform is subject to nonholonomic constraints. Third, there exists dynamic interaction between the manipulator and the mobile platform. Fourth,
    [Show full text]
  • Motion Planning for a Mobile Humanoid Manipulator Working in an Industrial Environment
    applied sciences Article Motion Planning for a Mobile Humanoid Manipulator Working in an Industrial Environment Iwona Pajak † and Grzegorz Pajak *,† Institute of Mechanical Engineering, University of Zielona Gora, 65-516 Zielona Gora, Poland; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: This paper presents the usage of holonomic mobile humanoid manipulators to carry out autonomous tasks in industrial environments, according to the smart factory concept and the Industry 4.0 philosophy. The problem of transporting lengthy objects, taking into account mechanical limitations, the conditions for avoiding collisions, as well as the dexterity of the manipulator arms was considered. The primary problem was divided into three phases, leading to three different types of robotic tasks. In the proposed approach, the pseudoinverse Jacobian method at the acceleration level to solve each of the tasks was used. The redundant degrees of freedom were used to satisfy secondary objectives such as robot kinetic energy, the maximization of the manipulability measure, and the fulfillment mechanical and collision-avoidance limitations. A computer example involving a mobile humanoid manipulator, operating in an industrial environment, illustrated the effectiveness of the proposed method. Keywords: humanoid manipulator; mobile robot; motion planning; transportation task Citation: Pajak, I.; Pajak, G. Motion Planning for a Mobile Humanoid Manipulator Working in an Industrial Environment. Appl. Sci. 2021, 11, 1. Introduction 6209. https://doi.org/10.3390/ The history of industrial robotics dates back to the 1950s. At that time, the first designs app11136209 of numerically controlled machine tools and programmable manipulators for industrial applications were created.
    [Show full text]