The Chemistry of Thujone: the Synthesis of Rose Oil Components and Germacrane Analogues

Total Page:16

File Type:pdf, Size:1020Kb

The Chemistry of Thujone: the Synthesis of Rose Oil Components and Germacrane Analogues THE CHEMISTRY OF THUJONE: THE SYNTHESIS OF ROSE OIL COMPONENTS AND GERMACRANE ANALOGUES by PHILIP JAMES GUNNING B.A. (Hons), St. John's College, Oxford University, 1983 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Department of Chemistry) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA May 1991 i ©Philip James Gunning, 1991 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department The University of British Columbia Vancouver, Canada DE-6 (2/88) Abstract. This thesis is concerned with the synthesis of natural products from thujone (1), a readily available starting material obtained from Western red cedar. The first part of this study investigates the synthesis of the commercially important fragrances, (3-damascone (8) and pVdamascenone (24), which are components of rose oil. Thujone can be efficiently converted to the dimethylated thujone derivative 59 in a two step alkylation process. After the formation of the trimethylsilyl cyanohydrins, 77 and 78, the cyclopropane and isopropyl functionalities were cleaved to give the ketone 103. Further elaboration of 103 gave the key intermediates, 127 and 128. The unsaturated nitriles 128 and 127 can be converted to 8 and 24, respectively, by a reduction to the corresponding aldehydes followed by a Grignard reaction to attach the side-chain and subsequent oxidation. As a model study for the synthesis of 8 and 24 from a cyclohexanone derivative, the nitriles 127 and 128 were efficiently synthesised, in 81% overall yield, from 2,2,6- trimethylcyclohexanone. Formation of the cyanohydrins 149 and 150 was followed by consecutive 'trans' and 'cis' eliminations to give the nitrile 128. The nitrile 127 was produced from 128 by allylic bromination, followed by hydrolysis and dehydration. A conversion of thujone into the ketone 179, using bromine to effect cyclopropane ring- opening, was also studied. The second part of this study investigates the synthesis of ten-membered rings via a photo-induced oxidative cleavage of the alcohols 245 and 265. Treatment of 245 with lead tetraacetate under ultraviolet irradiation afforded, as the main isolated product, the ten- membered carbocycle 246. Treatment of 265 with iodobenzene diacetate under ultraviolet irradiation afforded, as the main isolated product, the bicyclic alcohol 297. 246 297 iv Table of Contents Abstract ii List of Figures ix List of Tables x List of Abbreviations xi Acknowledgements xiv Chapter 1. General Introduction. 1 Chapter 2. The synthesis of damascones 2.1. Introduction 4 2.1.1. The perception of smell and stereochemical dependence. 4 2.1.2. The damascones. 9 2.2. Results and discussion 19 2.2.1. The methylation of thujone. 21 2.2.2. The synthesis of P-damascone and {3-damascenone from thujone. 35 2.2.3. The synthesis of the key intermediates, p-cyclogeranonitrile and safronitrile, from 2,6-dimethylcyclohexanone. 66 2.2.4. The synthesis of compounds related to P-damascone. 79 2.2.5. The conversion of thujone to 3-(l-methylethyl)- -2,6,6-trimethylcyclohex-2-en-1 -one. 84 2.3. Future developments. 89 2.4. Experimental. 2.4.1. General Experimental. 92 2.4.2. Monomethylated thujone 58 and dimethylated thujone 59. 95 2.4.3. Dimethylated thujones 59 and 63 and trimethylated thujone 61. Method A. 97 Method B. 100 2.4.4. Equilibration of 59 and 63. 100 2.4.5. Silyl enol ether 67. 101 2.4.6. Enol carbonate 71. 102 2.4.7. Enol carbonate 73. 104 2.4.8. Enamines 74 and 75. 105 2.4.9. Trimethylsilyl cyanohydrins 77 and 78. 106 2.4.10. Alkenes 87/88, ketones 89/90 and alcohols 91/92. 107 2.4.11. Chlorides 97/98. 110 2.4.12. Chloride 95. Ill 2.4.13. Alkenes 101 and 102. 112 2.4.14. Alcohols 105, 106, 107 and 108. 113 2.4.15. Chlorides 109 and 110. 114 2.4.16. Alkenes 111 and 112. 115 2.4.17. Ketones 103 and 104. Method A. 117 Method B. 118 2.4.18. Diols 121 and 122. 120 2.4.19. Aldehyde 123 and nitrile 115. Method A. 122 Method B. 123 2.4.20. Enone 124 and enol 125. 124 2.4.21. Alcohol 126. Method A. 125 Method B. 126 Method C. 127 2.4.22. Bromide 129. 127 2.4.23. 2,2,6-Trimethylcyclohexanone 142. 128 2.4.24. Trimethylsilyl cyanohydrins 153 and 154. 130 2.4.25. Cyanohydrins 149 and 150. Method A. 131 Method B. 132 Method C. 132 2.4.26. Acetates 155 and 156. Method A. 133 Method B. 134 Method C. 135 2.4.27. Nitriles 128 and 151. vi Method A. 135 Method B. 137 Method C. 137 Method D. 138 Method E. 138 Method F. 139 2.4.28. Ketone 152. 140 2.4.29. P-Cyclocitral (35). 141 2.4.30. Safronitrile 127. Method A. 142 Method B. 142 2.4.31. Safronal 134. 143 2.4.32. Alcohol 135. 144 2.4.33. Alcohols 139 and 140. 145 2.4.34. P-Damascenone (24). Method A. 147 Method B. 148 2.4.35. Aldehyde 160. 149 2.4.36. Alcohols 161,162 and 164. 150 2.4.37. Diketone 158 and keto alcohol 165. 152 2.4.38. Alcohols 166 and 167. 153 2.4.39. Silyl ether 168. 155 2.4.40. Aldehyde 169. 156 2.4.41. Bromide 175, dienone 176 and dibromide 177. 157 2.4.42. Bromo thujone derivative 180. 159 2.4.43. Dienone 178. 159 2.4.44. Enones 179 and 181. 160 Chapter 3. The synthesis of germacranes. 3.1. Introduction. 162 3.2. Results and discussion. 179 3.2.1. The synthesis of alcohol 265. 179 3.2.2. The synthesis of tertiary alcohol 245. 188 3.2.3. The ring-opening of 245 to a ten-membered ring. 193 vii 3.2.4. The photo-induced cleavage of the cyclopropane group in 265. 204 3.2.5. The synthesis of epoxy ketone 302 with known stereochemistry. 215 3.3. Experimental 3.3.1. Diketone268. 220 3.3.2. Ketals 266 and 269. 221 3.3.3. Epoxide 273. 224 3.3.4. Alcohol 265. Method A. 225 Method B. 227 3.3.5. Dienone 286. 229 3.3.6. Epoxide 290. 230 3.3.7. Alcohol 245. 231 3.3.8. Acetate 246. Method A. 233 Method B. 235 3.3.9. Diene 296. 236 3.3.10. Alkenes 294 and 295. 237 3.3.11. Acetate 297. Method A. 238 Method B. 239 3.3.12. Diene 297. Method A. 240 Method B. 241 3.3.13. Diene300. 241 3.3.14. Diol 298. 242 3.3.15. Epoxy ketone 302. Method A. 244 Method B. 245 3.3.16. Epoxy ketone 303. 245 3.3.17. Allylic alcohol 306. Method A. 246 Method B. 248 3.3.18. Allylic acetate 309. 249 viii 3.3.19. Allylic acetate 310. 250 3.3.20. Epoxy alcohol 308. 251 References 252 Appendices X-ray structure report on 156. 261 X-ray structure report on 245. 268 X-ray structure report on 298. 278 X-ray structure report on 308. 289 List of Figures Figure 1. Drawing of the bisected nasal cavity. 4 Figure 2. Structures of the seven known damascones. 10 Figure 3. *H nmr spectrum of dimethylated thujone 59. 25 Figure 4. *H nmr spectrum of P-damascenone (24). 63 Figure 5. Single crystal X-ray structure of acetate 156. 77 Figure 6. Examples of naturally occurring germacranes. 162 Figure 7. Single crystal X-ray structure of alcohol 245. 191 Figure 8. !H nmr spectrum of acetate 246 . 197 l Figure 9. H nmr spectrum of acetate 297 (CDC13). 206 Figure 10. *H nmr spectrum of acetate 297 (C7D8). 208 Figure 11. !H nmr spectrum of diol 298. 210 Figure 12. Single crystal X-ray structure of diol 298. 211 Figure 13. Single crystal X-ray structure of epoxide 308. 219 Figure 14. Single crystal X-ray structure of acetate 156 (stereo view). 267 Figure 15. Single crystal X-ray structure of alcohol 245 (stereo view). 270 Figure 16. Single crystal X-ray structure of diol 298. 280 Figure 17. Single crystal X-ray structure of epoxide 308. 292 List of Tables Table 1. Methylation of thujone with potassium r-butoxide and iodomethane. 23 Table 2. Spinning band distillation of a mixture of 58, 59, 63 and 61. 29 Table 3. Formation of 149 and 150 from 2,2,6-trimethylcyclohexanone. 71 Table 4. The effect of reaction time in the reaction of 245 with lead tetraacetate. 202 Table 5. The effect of stoichiometry in the reaction of 245. 202 Table 6. The effect of acetic acid in the reaction of 245. 203 Table 7. The effect of buffers and light in the reaction of 245. 204 Table 8. The effect of varying stoichiometry on the isolated yield of 297. 213 Table 9. Final atomic coordinates and Beq [Compound 156]. 263 Table 10. Bond lengths [Compound 156]. 264 Table 11. Bond angles [Compound 156]. 264 Table 12.
Recommended publications
  • Quinolines from the Cyclocondensation of Isatoic Anhydride with Ethyl Acetoacetate: Preparation of Ethyl 4- Hydroxy-2-Methylquinoline-3-Carboxylate and Derivatives
    Supporting Information for Quinolines from the cyclocondensation of isatoic anhydride with ethyl acetoacetate: preparation of ethyl 4- hydroxy-2-methylquinoline-3-carboxylate and derivatives Nicholas G. Jentsch, Jared D. Hume, Emily B. Crull, Samer M. Beauti, Amy H. Pham, Julie A. Pigza, Jacques J. Kessl and Matthew G. Donahue* Address: 1Department of Chemistry and Biochemistry, University of Southern Mississippi, 118 College Drive #5043, Hattiesburg, MS 39406 Email: Matthew G. Donahue - [email protected] *Corresponding author Experimental procedures and analytical data Table of contents General Procedures .......................................................................................................... S3 1H-Benzo[d][1,3]oxazine-2,4-dione (9a): ........................................................................... S7 6-Bromo-1H-benzo[d][1,3]oxazine-2,4-dione (9b): ............................................................ S8 6-Iodo-1H-benzo[d][1,3]oxazine-2,4-dione (9c): ................................................................ S8 6-Hydroxy-1H-benzo[d][1,3]oxazine-2,4-dione (9d): ......................................................... S9 6-Nitro-1H-benzo[d][1,3]oxazine-2,4-dione(9e): ................................................................ S9 7-Bromo-1H-benzo[d][1,3]oxazine-2,4-dione (9f): ............................................................. S9 S1 7-Nitro-1H-benzo[d][1,3]oxazine-2,4-dione (9g): ............................................................... S10 8-Bromo-1H-benzo[d][1,3]oxazine-2,4-dione
    [Show full text]
  • Supporting Information Lewis Acid–Base Synergistic Catalysis Of
    Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2020 Supporting information Lewis acid–base synergistic catalysis of cationic halogen-bonding-donors with nucleophilic counter anions Koki Torita,a Ryosuke Haraguchi,*b Yoshitsugu Morita,a Satoshi Kemmochi,a Teruyuki Komatsu,a and Shin-ichi Fukuzawa*a aDepartment of Applied Chemistry, Institute of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, 112-8551 Tokyo, Japan bDepartment of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan. Contents Instrumentation and Chemicals S2 Effect of Counter Anions on the Catalytic Activity S4 Effect of Water on the Catalytic Efficiency S4 NMR Titration Experiment S5 Experimental Procedure S7 Characterization Data S11 Theoretical Study S18 NMR Spectra Data S38 References S77 S1 Instrumentation and Chemicals All manipulations of oxygen- and moisture-sensitive materials were conducted under argon or nitrogen atmosphere in a flame dried Schlenk flask. Nuclear magnetic resonance spectra were taken on a JEOL ECA spectrometer using tetramethylsilane for 1 H NMR as an internal standard (δ = 0 ppm) when CDCl3 was used as a solvent, using 1 CD3CN for H NMR as an internal standard (δ = 1.94 ppm) when CD3CN was used as a 1 solvent, using (CD3)2SO for H NMR as an internal standard (δ = 2.50 ppm) when 13 (CD3)2SO was used as a solvent, using CDCl3 for C NMR as an internal standard (δ = 13 77.16 ppm) when CDCl3 was used as a solvent, using CD3CN for C NMR as an internal standard (δ = 118.26 ppm) when CD3CN was used as a solvent, using (CD3)2SO 13 for C NMR as an internal standard (δ = 39.52 ppm) when (CD3)2SO was used as a solvent.
    [Show full text]
  • Cyanosilylation of Aldehydes Catalyzed by Ag(I)- and Cu(II)-Arylhydrazone Coordination Polymers in Conventional and in Ionic Liquid Media
    catalysts Article Cyanosilylation of Aldehydes Catalyzed by Ag(I)- and Cu(II)-Arylhydrazone Coordination Polymers in Conventional and in Ionic Liquid Media Gonçalo A. O. Tiago 1, Kamran T. Mahmudov 1,2,*, M. Fátima C. Guedes da Silva 1,* , Ana P. C. Ribeiro 1,* , Luís C. Branco 3, Fedor I. Zubkov 4 and Armando J. L. Pombeiro 1 1 Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049–001 Lisboa, Portugal; [email protected] (G.A.O.T.); [email protected] (A.J.L.P.) 2 Department of Chemistry, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan 3 LAQV-REQUINTE, Departamento de Química, Faculdade de Ciências e Tecnologias da Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal; [email protected] 4 Organic Chemistry Department, Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russian; [email protected] * Correspondence: [email protected] or [email protected] (K.T.M.); [email protected] (M.F.C.G.d.S.); [email protected] (A.P.C.R.) Received: 22 February 2019; Accepted: 15 March 2019; Published: 20 March 2019 0 Abstract: The novel Ag(I) and Cu(II) coordination polymers [Ag(m3-1κO;2:3κO ;4κN-HL)]n·n/2H2O(1) − and [Cu(en)2(m-1κO;2κN-L)]n·nH2O(2) [HL = 2-(2-(1-cyano-2-oxopropylidene)hydrazinyl)benzene sulfonate] were synthesized and characterized by IR and ESI-MS spectroscopies, elemental and single crystal X-ray diffraction analyses.
    [Show full text]
  • 1 Abietic Acid R Abrasive Silica for Polishing DR Acenaphthene M (LC
    1 abietic acid R abrasive silica for polishing DR acenaphthene M (LC) acenaphthene quinone R acenaphthylene R acetal (see 1,1-diethoxyethane) acetaldehyde M (FC) acetaldehyde-d (CH3CDO) R acetaldehyde dimethyl acetal CH acetaldoxime R acetamide M (LC) acetamidinium chloride R acetamidoacrylic acid 2- NB acetamidobenzaldehyde p- R acetamidobenzenesulfonyl chloride 4- R acetamidodeoxythioglucopyranose triacetate 2- -2- -1- -β-D- 3,4,6- AB acetamidomethylthiazole 2- -4- PB acetanilide M (LC) acetazolamide R acetdimethylamide see dimethylacetamide, N,N- acethydrazide R acetic acid M (solv) acetic anhydride M (FC) acetmethylamide see methylacetamide, N- acetoacetamide R acetoacetanilide R acetoacetic acid, lithium salt R acetobromoglucose -α-D- NB acetohydroxamic acid R acetoin R acetol (hydroxyacetone) R acetonaphthalide (α)R acetone M (solv) acetone ,A.R. M (solv) acetone-d6 RM acetone cyanohydrin R acetonedicarboxylic acid ,dimethyl ester R acetonedicarboxylic acid -1,3- R acetone dimethyl acetal see dimethoxypropane 2,2- acetonitrile M (solv) acetonitrile-d3 RM acetonylacetone see hexanedione 2,5- acetonylbenzylhydroxycoumarin (3-(α- -4- R acetophenone M (LC) acetophenone oxime R acetophenone trimethylsilyl enol ether see phenyltrimethylsilyl... acetoxyacetone (oxopropyl acetate 2-) R acetoxybenzoic acid 4- DS acetoxynaphthoic acid 6- -2- R 2 acetylacetaldehyde dimethylacetal R acetylacetone (pentanedione -2,4-) M (C) acetylbenzonitrile p- R acetylbiphenyl 4- see phenylacetophenone, p- acetyl bromide M (FC) acetylbromothiophene 2- -5-
    [Show full text]
  • Specified Chemical Substances List 4.0 Edition
    Page: 1 /21 ES0101 TEAC Green Procurement Guideline Specified Chemical Substances List (4.0 edition) May/16/2019 TEAC CORPORATION ([email protected]) Page: 2 /21 Table of contents Table-1 List of Environment-related substance groups ………………………….. 3 (Substances to be prohibited)) Table-2 List of Environment-related substance groups ………………………….. 4 (Substances to be controlled) Table-3 List of example substances …………………..………………………….... 6 Document-1 Substances to be prohibited List of Exempted Items …………………… 19 Document-2 Standards for Chemical Content ………………………………………… 20 … Page: 3 /21 Table-1 List of Environment-related substance groups (Substances to be prohibited) Rank No Substance (Group) name Substances 1 Cadmium /Cadmium compunds to be 2 Hexavalent Chromium Compoumds prohibited 3 Lead /Lead compounds 4 Mercury /Mercury compounds 5 Polybrominated diphenylethers (PBBs) 6 Polybrominated Diphenylethers (PBDEs) 7 Phthalates (DEHP,BBP,DBP,DIBP) 8 Certain Azocolourants and Azodyes 9 Short Chain Chlorinated Paraffins 10 Form aldehyde 11 Pentachlorophenol (PCP) and its salts and esters 12 Monomethyl-dibromo-diphenyl methane (DBBT) 13 Monomethyltetrachlorodiphenylmethane (Trade Name:Ugilec 141) 14 Monomethyldichlorodiphenylmethane (Trade Name:Ugilec 121, Ugilec 21) 15 Perfluorooctane sulfonate and its salts (PFOS) 16 Cobalt chlorides 17 Dimethyl fumarate (DMF) 18 Arsenic /Arsenic compounds 19 Nickel and Nickel compounds 20 Chlorinated hydrocarbons 21 Polycyclic aromatic hydrocarbons (PAHs) 22 Perchlorates 23 Fluorinated greenhouse gases (PFC,
    [Show full text]
  • SAFETY DATA SHEET Revision Date 09/22/2021 Print Date 09/25/2021
    Version 6.3 SAFETY DATA SHEET Revision Date 09/22/2021 Print Date 09/25/2021 SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1 Product identifiers Product name : Trimethylsilyl cyanide Product Number : 212849 Brand : Aldrich CAS-No. : 7677-24-9 1.2 Relevant identified uses of the substance or mixture and uses advised against Identified uses : Laboratory chemicals, Synthesis of substances 1.3 Details of the supplier of the safety data sheet Company : Sigma-Aldrich Inc. 3050 SPRUCE ST ST. LOUIS MO 63103 UNITED STATES Telephone : +1 314 771-5765 Fax : +1 800 325-5052 1.4 Emergency telephone Emergency Phone # : 800-424-9300 CHEMTREC (USA) +1-703- 527-3887 CHEMTREC (International) 24 Hours/day; 7 Days/week SECTION 2: Hazards identification 2.1 Classification of the substance or mixture GHS Classification in accordance with 29 CFR 1910 (OSHA HCS) Flammable liquids (Category 2), H225 Acute toxicity, Oral (Category 2), H300 Acute toxicity, Inhalation (Category 2), H330 Acute toxicity, Dermal (Category 1), H310 Short-term (acute) aquatic hazard (Category 1), H400 Long-term (chronic) aquatic hazard (Category 1), H410 For the full text of the H-Statements mentioned in this Section, see Section 16. 2.2 GHS Label elements, including precautionary statements Pictogram Signal word Danger Aldrich - 212849 Page 1 of 10 The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the US and Canada Hazard statement(s) H225 Highly flammable liquid and vapor. H300 + H310 + H330 Fatal if swallowed, in contact with skin or if inhaled. H410 Very toxic to aquatic life with long lasting effects.
    [Show full text]
  • BMG BRUKER/MERCK – Library Compound Index
    BMG BRUKER/MERCK – Library Compound Index ACENAPHTHENEQUINONE ACENAPHTHYLENE ACETALDEHYDE ACETALDEHYDE DIETHYL ACETAL ACETALDEHYDE DIMETHYL ACETAL ACETAMIDE ACETAMIDINIUM CHLORIDE 4-ACETAMIDOACETOPHENONE 4-ACETAMIDOBENZALDEHYDE ACETANILIDE LEAD(IV) ACETATE n-AMYL ACETATE ACETIC ACID ACETIC ANHYDRIDE ACETOACETALDEHYDE 1,1-(DIMETHYL ACETAL) ACETOACETANILIDE (+)-alpha-ACETOBROMOGLUCOSE ACETOHYDRAZIDE ACETONE ACETONE OXIME ACETONITRILE BIS(ACETONITRILE)-PALLADIUM(II) CHLORIDE ACETOPHENONE ACETYL BROMIDE ACETYL CHLORIDE (-)-TRIS-O-ACETYL-D-GALACTAL (-)-TRI-O-ACETYL-D-GLUCAL 2-ACETYL-gamma-BUTYROLACTONE (+)-DI-O-ACETYL-L-RHAMNAL IRON(III) ACETYLACETONATE ZINC(II) ACETYLACETONATE ACETYLACETONE 2-ACETYLBENZOIC ACID ACETYLCHOLINE PERCHLORATE 2-ACETYLCYCLOPENTANONE ACETYLENECARBOXYLIC ACID ACETYLENEDICARBOXYLIC ACID ACETYLENEDICARBOXYLIC ACID MONOPOTASSIUM SALT N-ACETYLGLYCINE ACETYLMETHYLENETRIPHENYLPHOSPHORANE 1-ACETYLNAPHTHALENE 2-ACETYLNAPHTHALENE ACETYLSALICYLOYL CHLORIDE (+)-DL-O-ACETYLTARTARIC ACID ANHYDRIDE 1-ACETYLTHIOUREA ACRIDANE ACRIDINE ACRIDINIUM CHLORIDE ACROLEIN ACRYLAMIDE 2-ACRYLAMIDO-2-METHYLPROPANESULFONIC ACID ACRYLIC ACID ACRYLONITRILE ACRYLOYL CHLORIDE 1 ADAMANTANE 1-ADAMANTANEAMMONIUM CHLORIDE 1-ADAMANTANECARBONITRILE 1-ADAMANTANECARBOXYLIC ACID 1-ADAMANTANOL ADIPAMIDE ADIPIC ACID ADIPONITRILE ADIPOYL DICHLORIDE tert-AMYL ALCOHOL ALLYL 2,3-EPOXYPROPYL ETHER ALLYL ACETATE ALLYL ACETOACETATE ALLYL ALCOHOL ALLYL CYANIDE ALLYL CYANOACETATE ALLYL ISOTHIOCYANATE ALLYL METHACRYLATE ALLYL SULFIDE 1-ALLYL-3,4-METHYLENEDIOXYBENZENE
    [Show full text]
  • Department of Chemistry for Materials
    Abstracts of Papers A-49 Department of Chemistry for Materials * nonmember Composite Polymer Electrolytes Based on Poly(ethylene oxide), Hyperbranched Polymer, BaTiO3 and LiN(CF3SO2)2, Takahito ITOH, Yoshiaki ICHIKAWA, Takahiro UNO, Masataka KUBO, and Osamu YAMAMOTO*: Solid State Ionics, 156, pp. 393-399, 2003. Composite polymer electrolytes based on poly(ethylene oxide) (PEO) with hyperbranched polymer (poly[bis(triethylene glycol)benzoate] capped with an acetyl group) (HBP), ceramic filler (BaTiO3), and lithium salt (LiN(CF3SO2)2) were examined as the electrolyte for all solid-state lithium polymer batteries and optimized to achieve high ionic conductivity. The ionic conductivity of the optimized composite polymer electrolyte, [(PEO-20 wt.% HBP)12(LiN(CF3SO2)2)]-10 wt.% BaTiO3, where the PEO with number-average molecular 4 weights (Mn) of 60×10 , HBP with Mn of 15,000 and BaTiO3 with a particle size of 0.5 µm were used, was found to be 2.6×10-4 S/cm at 30 ºC and 5.2×10-3 S/cm at 80 ºC, respectively. The optimized composite polymer electrolyte showed an electrochemical stability window of 4.0 V and was stable until 312 ºC under air. Spontaneous Polymerization Mechanism of Electron-Accepting Substituted Quinodimethane with p-Methoxystyrene, Yukihiro MITSUDA, Takashige FUJIKAWA, Takahiro UNO, Masataka KUBO, and Takahito ITOH: Macromolecules, 36, pp. 1028-1033, 2003. Spontaneous reactions of 1-(2,2-dimethyl-1,3-dioxane-4,6-dione-5-ylidene)-4-(dicyanomethylene)- 2,5-cyclohexadiene (QM1) with p-methoxystyrene (MeOSt) were investigated in chloroform at room temperature at different monomer feed ratios. The hexane-insoluble products were to be copolymers of 7-(4-methoxyphenyl)-8,8-dicyanoquinodimethane (QM2) with small amounts (3-6 mol%) of the QM1, and the reaction product in the hexane-soluble fractions was to be the one-to-one adduct (Cycloadduct) of methylene Meldrum’s acid (MM) with MeOSt.
    [Show full text]
  • Ross G. Murray Phd Thesis
    THE SYNTHESIS OF 5-SUBSTITUTED HYDANTOINS Ross George Murray A Thesis Submitted for the Degree of PhD at the University of St Andrews 2008 Full metadata for this item is available in Research@StAndrews:FullText at: http://research-repository.st-andrews.ac.uk/ Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/571 This item is protected by original copyright This item is licensed under a Creative Commons License The Synthesis of 5-Substituted Hydantoins School of Chemistry and Centre for Biomolecular Sciences, Fife, Scotland Ross Murray February 2008 Thesis submitted to the University of St Andrews in application for the degree of Doctor of Philosophy Supervisor: Dr Stuart J. Conway Abstract The Bucherer-Bergs reaction is a classical multi-component reaction that yields hydantoins, which can be hydrolysed to afford α-amino acids. Hydantoins have many uses in modern organic synthesis, and this moiety has been included in a number of therapeutic agents, which have a wide range of biological activities. Herein, we report a mild synthesis of 5- and 5,5-substituted hydantoins from α- aminonitriles using Hünig’s base and carbon dioxide (Scheme 1). This reaction can be performed in excellent yields, using a variety of organic solvents and is applicable to a range of substrates. O NC NH2 i HN NH R1 R2 R1 2 O R R1 = alkyl, aryl or cyclic 14 examples R2 = H, alkyl or cyclic 4 - 96 % yield Scheme 1 - Recently developed conditions for the transformation of α-aminonitriles to hydantoins. Reagents and conditions: (i) Hünig’s base (3 equiv.), CO2 (g), CH2Cl2, RT.
    [Show full text]
  • 047002965X.Bindex.Pdf
    Index A butan-2-ol 169 acetic acid 168–169 butan-2-one 169 acetic anhydride 167 t-butanol 169 acetone 166 iso-butanol 169 acetonitrile 167 t-butyl methyl ether 170 adsorption chromatography 38–40 air-sensitive substances see water- and C air-sensitive substances calcium chloride 161 alumina 39, 44, 45, 47 calcium hydride 161 drying agent 161 calcium oxide 162 amines 56 calcium sulphate 162 aminobenzene 167 CAplusSM 88 ammonia 167 carbon disulphide 170 aniline 167 carbon tetrachloride 170 anisole 168 carbon-13 compounds 143 Annual Reports in Organic Synthesis carbon-14 compounds 143 105 carboxylic acids 56 argon 130 carcinogens 14–16 assymetric synthesis and catalysis 138 CAS REGISTRYSM 88 azeotropes 35 CASREACT® 88 CHEMCATS 89 B Chemical Abstracts 75, 88 barium oxide 161 chemical shift 70 Beilstein test 156 CHEMLIST 89 benzene 168 chiral compounds, preparation of 138 biological exposure limits 15–16 chlorobenzene 171 bleeding and cuts 5–6 chloroform 171 boiling point chromatography azeotropes 35 adsorption 38–39 simple distillation 28 chromatogram development 40–41 variation with pressure 28 column 42–44 bumping 33 dimensions and adsorbant bunsen burner 2 quantities 45–48 burns 5 eluents butan-1-ol 168 classifi ed 39 Practical Organic Synthesis: A Student’s Guide R. Keese and M. P. Brändle © 2006 John Wiley & Sons, Ltd. 194 INDEX chromatography (continued) search for properties 85–86 column chromatography 44–45 search for reactions 84–85 enantiomorphic purity types of search 77 determination 139 cryostatic slush baths 137 HPLC 51–54 crystallisation
    [Show full text]
  • Pyrene Carboxylate Ligand Based Coordination Polymers for Microwave-Assisted Solvent-Free Cyanosilylation of Aldehydes
    molecules Article Pyrene Carboxylate Ligand Based Coordination Polymers for Microwave-Assisted Solvent-Free Cyanosilylation of Aldehydes Anirban Karmakar 1,* , Anup Paul 1 , Elia Pantanetti Sabatini 1, M. Fátima C. Guedes da Silva 1 and Armando J. L. Pombeiro 1,2,* 1 Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; [email protected] (A.P.); [email protected] (E.P.S.); [email protected] (M.F.C.G.d.S.) 2 Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia * Correspondence: [email protected] (A.K.); [email protected] (A.J.L.P.) 1 2 Abstract: The new coordination polymers (CPs) [Zn(µ-1κO :1κO -L)(H2O)2]n·n(H2O) (1) and [Cd(µ4- 1 2 3 1κO O :2κN:3,4κO -L)(H2O)]n·n(H2O) (2) are reported, being prepared by the solvothermal reactions of 5-{(pyren-4-ylmethyl)amino}isophthalic acid (H2L) with Zn(NO3)2.6H2O or Cd(NO3)2.4H2O, re- spectively. They were synthesized in a basic ethanolic medium or a DMF:H2O mixture, respectively. These compounds were characterized by single-crystal X-ray diffraction, FTIR spectroscopy, ther- Citation: Karmakar, A.; Paul, A.; mogravimetric and elemental analysis. The single-crystal X-ray diffraction analysis revealed that Sabatini, E.P.; Guedes da Silva, M.F.C.; compound 1 is a one dimensional linear coordination polymer, whereas 2 presents a two dimen- Pombeiro, A.J.L. Pyrene Carboxylate sional network. In both compounds, the coordinating ligand (L2−) is twisted due to the rotation of Ligand Based Coordination Polymers the pyrene ring around the CH2-NH bond.
    [Show full text]
  • Ncomms2216.Pdf
    ARTICLE Received 18 Apr 2012 | Accepted 23 Oct 2012 | Published 20 Nov 2012 DOI: 10.1038/ncomms2216 Scalable organocatalytic asymmetric Strecker reactions catalysed by a chiral cyanide generator Hailong Yan1, Joong Suk Oh1, Ji-Woong Lee1,w & Choong Eui Song1 The Strecker synthesis is one of the most facile methods to access racemic a-amino acids. However, feasible catalytic asymmetric Strecker reactions for the large-scale production of enantioenriched a-amino acids are rare. Here we report a scalable catalytic asymmetric Strecker reaction that uses an accessible chiral variant of oligoethylene glycol as the catalyst and KCN to generate a chiral cyanide anion. Various a-amido sulphone substrates (alkyl, aryl and heteroaryl) can be transformed into the optically enriched Strecker products, a-amino- nitriles, with excellent yields and enantioselectivities. Moreover, the robust nature of the catalyst enables a ‘one-pot’ synthesis of enantiomerically pure a-amino acids starting from a-amido sulphones and simple catalyst recycling. These features can make this protocol easily adaptable to the practical synthesis of unnatural a-amino acids. 1 Department of Chemistry, Sungkyunkwan University, 300 Cheoncheon, Jangan, Suwon, Gyeonggi 440-746, Korea. w Present address: Max-Planck-Institut fu¨r Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mu¨lheim an der Ruhr, Germany. Correspondence and requests for materials should be addressed to C.E.S. (email: [email protected]). NATURE COMMUNICATIONS | 3:1212 | DOI: 10.1038/ncomms2216 | www.nature.com/naturecommunications 1 & 2012 Macmillan Publishers Limited. All rights reserved. ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms2216 -Amino acids are the building blocks of proteins and are robustness of the catalyst enables a ‘one-pot’ synthesis of widely used as components of pharmaceutically enantiomerically pure non-natural a-amino acids and easy aactive molecules and chiral catalysts1.
    [Show full text]