RESEARCH ARTICLE Biomolecular changes that occur in the antennal gland of the giant freshwater prawn (Machrobrachium rosenbergii) Utpal Bose1,2¤, Thanapong Kruangkum3,4, Tianfang Wang1, Min Zhao1, Tomer Ventura1, Shahida Akter Mitu1, Mark P. Hodson2,5, Paul N. Shaw5, Prasert Sobhon4,6, Scott F. Cummins1* 1 Genetic, Ecology and Physiology Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia, 2 Metabolomics Australia, a1111111111 Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, a1111111111 Queensland, Australia, 3 Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, a1111111111 Thailand, 4 Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty a1111111111 of Science, Mahidol University, Bangkok, Thailand, 5 S chool of Pharmacy, The University of Queensland, a1111111111 Queensland, Australia, 6 Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand ¤ Current address: CSIRO Agriculture and Food, Queensland, Australia *
[email protected] OPEN ACCESS Abstract Citation: Bose U, Kruangkum T, Wang T, Zhao M, Ventura T, Mitu SA, et al. (2017) Biomolecular In decapod crustaceans, the antennal gland (AnG) is a major primary source of externally changes that occur in the antennal gland of the giant freshwater prawn (Machrobrachium secreted biomolecules, and some may act as pheromones that play a major role in aquatic rosenbergii). PLoS ONE 12(6): e0177064. https:// animal communication. In aquatic crustaceans, sex pheromones regulate reproductive doi.org/10.1371/journal.pone.0177064 behaviours, yet they remain largely unidentified besides the N-acetylglucosamine-1,5-lac- Editor: Gao-Feng Qiu, Shanghai Ocean University, tone (NAGL) that stimulates male to female attraction.