The Scymv1 Hairpin Ribozyme: Targeting Rules and Cleavage of Heterologous RNA

Total Page:16

File Type:pdf, Size:1020Kb

The Scymv1 Hairpin Ribozyme: Targeting Rules and Cleavage of Heterologous RNA Gene Therapy (1999) 6, 1114–1119 1999 Stockton Press All rights reserved 0969-7128/99 $12.00 http://www.stockton-press.co.uk/gt The sCYMV1 hairpin ribozyme: targeting rules and cleavage of heterologous RNA Y Lian1,2, MB De Young1,3, A Siwkowski1,4, A Hampel1 and J Rappaport5 1Department of Biological Sciences, Northern Illinois University, DeKalb, IL; and 5Allegheny University of the Health Sciences, Philadelphia, PA, USA The catalytic center of the RNA from the negative strand A*GUA sequence where * is the site of cleavage. When of the satellite RNA of chicory yellow mottle virus type 1 each nucleotide in this sequence was changed to each of (sCYMV1) is in the hairpin ribozyme family, has catalytic the other three nucleotides, catalytic activity decreased 66– activity, and cleaves substrates before a preferred GUA 100%. RNA targets, containing this A*GUA sequence, sequence. This is different from that of the satellite RNA were located in both human papillomavirus and HIV-1. from the negative strand of tobacco ringspot virus (sTRSV) Ribozymes were developed which efficiently cleaved these which prefers a GUC sequence at the site of cleavage. The targets in vitro. These results identify a new class of hairpin sCYMV1 hairpin ribozyme has now been developed for ribozymes capable of cleaving substrates before a pre- cleaving heterologous RNA substrates. When helix 1 was ferred GUA sequence rather than the GUC preferred by extended from the native 5 bp to 6 bp with a newly added the sTRSV hairpin ribozyme. This expands the repertoire A:U base pair, catalytic activity increased three-fold. The of target sites available for gene therapy using the hair- preferred sequence for the substrate loop was the native pin ribozyme. Keywords: hairpin ribozyme; antiviral; targeting rules; GUA specificity; sCYMV1 Introduction native sCYMV1 hairpin ribozyme has been shown to have excellent catalytic activity and has been kinetically The hairpin ribozyme family consists of the catalytic cen- characterized.2 ters of the negative strands of the satellite RNAs from The sTRSV hairpin ribozyme has been developed for tobacco ringspot virus (sTRSV), arabis mosaic virus gene therapy and successfully used to down-regulate 1,2 (sArMV) and chicory yellow mottle virus (sCYMV1). gene expression in a number of systems.6 The sTRSV The basic hairpin ribozyme/substrate model has four hairpin ribozyme prefers to cleave substrates containing helices (helices 1, 2, 3 and 4) and five loops (loops 1, 2, a BN*GUC sequence where B is any nucleotide except A 3, 4, 5) named and oriented as originally described for the and * is the site of cleavage.7,8 By using these targeting sTRSV hairpin ribozyme (reviewed in Ref. 3). The model rules, the sTRSV system has been successfully applied to contains 17 Watson–Crick base pairs and one A:G base down-regulate gene expression in HIV-1,6,9,10 hepatitis B 4 pair in these helices. Both the trans and cis-cleaving hair- virus,11 hepatitis C virus12 and human papillomavirus.13 pin ribozyme/substrate RNAs have been used to charac- In this report we determined the sCYMV1-based hair- terize the hairpin ribozyme. pin ribozyme can be engineered to cleave heterologous A model for native sCYMV1 sequence also has four substrates as well. Targeting rules for substrate cleavage 2,5 helices and five loops (Figure 1). This structure contains were determined to be BN*GUA. By using these targeting the one non-canonical A:G base, however the number of rules, ribozymes were developed to cleave heterologous Watson–Crick base pairs is 16 rather than 17 found in the RNA target sequences at high efficiencies. Target sTRSV ribozyme due to one less base pair in helix 1 of sequences in human papillomavirus and HIV-1 have the native sequence. The sCYMV1 ribozyme/substrate been successfully cleaved. Based on the proven efficacy has 5 bp in helix 1 rather than the 6 bp found in helix 1 for gene therapy of the sTRSV hairpin ribozyme,14 the of the sTRSV ribozyme/substrate. In addition, the native sCYMV1-based hairpin ribozyme now provides a valu- sCYMV1 substrate has a *GUA sequence in the substrate able additional gene therapy tool to the hairpin ribozyme loop, as contrasted to the *GUC found in the native family. Because the sCYMV1 hairpin ribozyme has a * sTRSV substrate sequence. The minimal sequence of the GUA targeting preference, it complements the *GUC preference of the sTRSV-based hairpin ribozyme by essentially doubling the number of sites now available Correspondence: A Hampel, Department of Biological Sciences, Northern for targeting by this powerful gene therapy tool. Illinois University, DeKalb, IL 60115, USA Current addresses: 2Chiron Vaccine, Chiron Corporation, Emeryville, CA Results and discussion 94606; 3Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94141; 4Molecular Pharmacology, Isis Pharmaceuticals, Carlsbad, CA Extension of helix 1 92008, USA From the secondary structure proposed for the sCYMV1 Received 1 September 1998; accepted 26 January 1999 ribozyme,2 helix 1 is 5 bp for the native sCYMV1 sCYMV1 hairpin ribozyme Y Lian et al 1115 primarily by reducing the KM (Table 1, line 4). This engi- neered 6 bp sCYMV1 ribozyme has a catalytic efficiency nearly as high as that of the highly active native sTRSV ribozyme/substrate sequence2 (Table 1, line 1). Determination of targeting rules: A*GUA mutagenesis In order to determine targeting rules, a cis-cleaving ribozyme/substrate construct was used in which the 5′ end of the ribozyme was linked to the 3′ end of the sub- strate by a penta-pyrimidine sequence (CCUCC) (Figure 1 inset). Plasmid constructs with mutations in each position of the A*GUA substrate loop sequence were transcribed by T7 RNA polymerase, cleavage pro- ducts isolated and the amount of uncleaved product remaining quantified. The uncleaved product remaining was plotted as a function of time (Figure 2). Curves were fit to equation 1 (see Materials and methods) and k and b values calculated. Unimolecular rate constant values (k) were calculated for each mutant ribozyme (kmut) and compared with that of the native sCYMV1 ribozyme (kwt) by calculating the ratio kwt/kmut (Table 2). The amount of uncleavable fraction (b value) during the reaction was insignificant. The results of this analysis showed position As5 could be mutated to G, C or U and catalytic activity remained, Figure 1 The sCYMV1 based ribozyme/substrate complex. Shown is the albeit at a decreased level. The preference for the base in substrate RNA and catalytic RNA in the catalytically active complex. position 5 was AϾGϾUϾC. The mutation A G Trans reactions were carried out with the substrate and RNA as separate s5 decreased catalytic activity 3.7×, while the pyrimidine molecules. Inset: unimolecular cleavage reactions in cis with the substrate × and ribozyme linked by the CCUCC pyrimidine loop sequence as shown. mutations decreased activity 11–12 . Thus, an A is pre- Note that for the cis reactions, helix 1 has an additional A:U bp by mutat- ferred in position 5, however a G at this position also had ing C1A to make helix 1 6 bp for the cis cleavage reactions. high catalytic activity. Both the U and C replacements were considerably less active. Position 6 has a G in the native sequence. When Gs6 ribozyme/substrate complex (Figure 1). By mutating was changed to either A, C or U, in both the cis and trans either the ribozyme or substrate to create an additional configurations, catalytic activity was completely lost. A:U or G:C base pair, helix 1 was extended to 6 bp. Kin- Thus Gs6 is a required base in sCYMV1 just as it was in etic analyses were done to determine kcat, KM and cata- sTRSV in a trans reaction.8,15 lytic efficiency (kcat/KM)inatrans reaction (Table 1). A The native base in position 7 is U. When this U was 6 bp helix 1 for the sCYMV1 system was fully active changed to G, catalytic activity decreased 4.6×. Changes whether the additional base pair was a G:C (substrate to either A or C, however, decreased catalytic activity 27– mutation Us14G) or an A:U (ribozyme mutation C1A). 30×. This position preferred the native U, with a G also Catalytic efficiency, kcat/KM, was improved significantly × having fairly high activity. Both A and C mutations (approximately 3 ) with the additional A:U base pair, resulted in greatly reduced activity. The native base in position 8 is A. When this was changed to a C or G, catalytic activity decreased 2.7× and Table 1 sCYMV1 hairpin ribozyme/substrate kinetics 2.9×, respectively, while a mutation to U decreased cata- lytic activity 7.6×. Thus position 8 preferred an A, how- Ribozyme Substrate kcat KM kcat/KM Helix − − ever both C and G both retained good catalytic activity. (min 1)(nm)(␮M 1 1 − To summarize these targeting rules for the sCYMV1 min 1) length (bp) substrate loop sequence, the native sequence A*GUA is preferred but other sequences can also be used with vary- ing levels of decreased activity. The sequences containing sTRSV sTRSV 0.36 96 3.7 6 × sCYMV1 sCYMV1 0.32 400 0.8 5 A*GUC or A*GUG had less than a 3 reduction in sCYMV1 sCYMV1 0.31 500 0.6 6 catalytic activity in a cis reaction. [Us14G] (G:C) sCYMV1 [C1A] sCYMV1 0.30 120 2.5 6 (A:U) The engineered sCYMV1 ribozyme sCYMV1 HALT sCYMV1 0.31 300 1.0 5 The engineered sCYMV1 ribozyme with targeting rules is sCYMV1 sCYMV1 0.41 463 0.9 5 shown in Figure 3. The conventional form of the sCYMV1 tetraloop ribozyme has the native sCYMV1 sequence except for the HPV195 HPV195 0.03 90 0.33 8 tat5839 tat5839 0.06 370 0.16 10 regions forming helices 1 and 2 with the substrate.
Recommended publications
  • Molecular Dynamics in the Hairpin Ribozyme: Calculational and Experimental Aspects
    MOLECULAR DYNAMICS IN THE HAIRPIN RIBOZYME: CALCULATIONAL AND EXPERIMENTAL ASPECTS By Patrick Omondi Ochieng A DISSERTATION Submitted to Michigan State University in partial fulfilment of the requirements for the degree of Biochemistry and Molecular Biology - Doctor of Philosophy 2015 ABSTRACT MOLECULAR DYNAMICS IN THE HAIRPIN RIBOZYME: CALCULATIONAL AND EXPERIMENTAL ASPECTS By Patrick Omondi Ochieng The increasing role of RNA therapy in targeting diseases has inspired several RNA studies and especially structural RNA. Of interest to many scientists is how such RNA can perform their work with limited functional groups available to RNA. The structural versatility of RNA seems to underscore the importance of dynamics in performing several functions. Ribozymes are a good example of structured RNA involved in RNA backbone cleavage with a range of strategies. Hairpin ribozyme invokes domain-domain docking to activate the cleavage process. The major loop rearrangements observed upon docking, as well as the kinetically unfavorable docking process, both argue for conformational selection by pre-organization of the catalytically-competent active site of the hairpin ribozyme. In this thesis, we sought to study the behavior of loop A in sampling the docked-like conformation as evidence for conformational selection. We addressed three major aims which involved (i) understanding the dynamics in loop A using molecular dynamics simulation as a tool for assessing conformational sampling (ii) determining the right loop A construct for NMR studies and resonance assignments for structure determination and (iii) elucidation of fast and slow dynamics in loop A using NMR relaxation techniques. In aim 1 (Chapter 2), molecular dynamics simulation was used to determine conformational heterogeneity in RNA based on alternate base-pair formation within a subset of residues in the loop region of domain A of the hairpin ribozyme.
    [Show full text]
  • Light-Controlled Twister Ribozyme with Single-Molecule Detection Resolves RNA Function in Time and Space
    Light-controlled twister ribozyme with single-molecule detection resolves RNA function in time and space Arthur Kormana,1,2, Huabing Sunb,1,3, Boyang Huac, Haozhe Yangb, Joseph N. Capilatob, Rakesh Paulb,4, Subrata Panjad,5, Taekjip Hac,e,f, Marc M. Greenbergb,6, and Sarah A. Woodsond,6 aCell, Molecular, Developmental Biology and Biophysics Program, Johns Hopkins University, Baltimore, MD 21218; bDepartment of Chemistry, Johns Hopkins University, Baltimore, MD 21218; cDepartment of Biophysics and Biochemistry, Johns Hopkins University, Baltimore, MD 21205-2185; dT. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218; eDepartment of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218; and fHoward Hughes Medical Institute, Johns Hopkins University, Baltimore, MD 21205 Edited by Michael F. Summers, University of Maryland, Baltimore County, Baltimore, MD, and approved April 3, 2020 (received for review February 22, 2020) Small ribozymes such as Oryza sativa twister spontaneously cleave which limits their use in dynamics experiments (13). Photosolvolysis their own RNA when the ribozyme folds into its active conforma- reactions, such as those involving p-hydroxyphenacyl protecting tion. The coupling between twister folding and self-cleavage has groups (e.g., ref. 1 and Fig. 1A), release their cargo in less than one been difficult to study, however, because the active ribozyme rap- microsecond (13) and should be useful for probing processes oc- idly converts to product. Here, we describe the synthesis of a pho- curring on the submillisecond timescale. We previously employed tocaged nucleotide that releases guanosine within microseconds a UV-activated variant of 1 to temporally modulate RNA base upon photosolvolysis with blue light.
    [Show full text]
  • In Vitro Selection of Active Hairpin Ribozymes by Sequential RNA-Catalyzed Cleavage Ana Ligation Reactions
    Downloaded from genesdev.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press In vitro selection of active hairpin ribozymes by sequential RNA-catalyzed cleavage ana ligation reactions Alfredo Berzal-Herranz, Simpson Joseph, and John M. Butke^ Department of Microbiology and Molecular Genetics, Markey Center for Molecular Genetics, The University of Vermont, Burlington, Vermont 05405 USA In vitro selection methods provide rapid and extremely powerful tools for elucidating interactions within and between macromolecules. Here, we describe the development of an in vitro selection procedure that permits the rapid isolation and evaluation of functional hairpin ribozymes from a complex pool of sequence variants containing an extremely low frequency of catalytically proficient molecules. We have used this method to analyze the sequence requirements of two regions of the ribozyme-substrate complex: a 7-nucleotide internal loop within the ribozyme that is essential for catalytic function and substrate sequences surrounding the cleavage-ligation site. Results indicate that only 3 of the 16,384 internal loop variants examined have high cleavage and ligation activity and that the ribozyme has a strong requirement for guanosine immediately 3' to the cleavage-ligation site. [Key Words: Ribozyme; in vitro selection; RNA structure; catalysis] Received September 23, 1991; accepted November 4, 1991. The hairpin ribozyme catalyzes a site-specific RNA selection schemes with natural or surrogate phenotypes cleavage reaction that yields products with 5'-hydroxyl (Price and Cech 1985; Waring et al. 1985) are useful but and 2',3'-cyclic phosphate termini (Feldstein et al. 1989; are difficult to apply to some ribozyme systems, includ­ Hampel and Tritz 1989; Haseloff and Gerlach 1989).
    [Show full text]
  • Coupling Between Conformational Dynamics and Catalytic Function at the Active Site of the Lead-Dependent Ribozyme
    Downloaded from rnajournal.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press Coupling between conformational dynamics and catalytic function at the active site of the lead-dependent ribozyme NEIL A. WHITE,1,3 MINAKO SUMITA,1,4 VICTOR E. MARQUEZ,2 and CHARLES G. HOOGSTRATEN1 1Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA 2Chemical Biology Laboratory, Molecular Discovery Program, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland 21702, USA ABSTRACT In common with other self-cleaving RNAs, the lead-dependent ribozyme (leadzyme) undergoes dynamic fluctuations to a chemically activated conformation. We explored the connection between conformational dynamics and self-cleavage func- tion in the leadzyme using a combination of NMR spin-relaxation analysis of ribose groups and conformational restriction via chemical modification. The functional studies were performed with a North-methanocarbacytidine modification that prevents fluctuations to C2′′′′′-endo conformations while maintaining an intact 2′′′′′-hydroxyl nucleophile. Spin-relaxation data demonstrate that the active-site Cyt-6 undergoes conformational exchange attributed to sampling of a minor C2′′′′′- endo state with an exchange lifetime on the order of microseconds to tens of microseconds. A conformationally restricted species in which the fluctuations to the minor species are interrupted shows a drastic decrease in self-cleavage activity. Taken together, these data indicate that dynamic sampling of a minor species at the active site of this ribozyme, and likely of related naturally occurring motifs, is strongly coupled to catalytic function. The combination of NMR dynamics analysis with functional probing via conformational restriction is a general methodology for dissecting dynamics-function relation- ships in RNA.
    [Show full text]
  • Review Chemistry and Biology of Self-Cleaving Ribozymes Randi M
    TIBS 1181 No. of Pages 14 Review Chemistry and Biology of Self-Cleaving Ribozymes Randi M. Jimenez,1 Julio A. Polanco,1 and Andrej Lupták1,2,3,* Self-cleaving ribozymes were discovered 30 years ago, but their biological Trends fi distribution and catalytic mechanisms are only beginning to be de ned. Each Self-cleaving ribozymes are distributed ribozyme family is defined by a distinct structure, with unique active sites throughout all branches of life. Cur- accelerating the same transesterification reaction across the families. Biochem- rently, there are nine distinct structural motifs that promote self-scission in ical studies show that general acid-base catalysis is the most common mecha- nature. nism of self-cleavage, but metal ions and metabolites can be used as cofactors. The six self-cleaving ribozymes that Ribozymes have been discovered in highly diverse genomic contexts through- have been investigated mechanistically out nature, from viroids to vertebrates. Their biological roles include self- all appear to use a general acid-base scission during rolling-circle replication of RNA genomes, co-transcriptional mechanism for catalysis. Magnesium, or another divalent metal ion, is largely processing of retrotransposons, and metabolite-dependent gene expression used to stabilize the tertiary structures regulation in bacteria. Other examples, including highly conserved mammalian of these ribozymes. ribozymes, suggest that many new biological roles are yet to be discovered. The broad distribution of self-cleaving ribozymes suggests several biological Guiding Principles for Ribozyme Exploration roles. The known functions include RNA processing during rolling-circle Small nucleolytic ribozymes carry out site-specific phosphodiester scission without the need for replication of single-stranded subviral protein chaperones or enzymes.
    [Show full text]
  • KINETICS, THERMODYNAMICS, and DYNAMICS of RIBOZYMES By
    KINETICS, THERMODYNAMICS, AND DYNAMICS OF RIBOZYMES By Neil Andrew White A DISSERTATION Submitted to Michigan State University In partial fulfillment of requirements For the degree of Biochemistry and Molecular Biology—Doctor of Philosophy 2016 ABSTRACT KINETICS, THERMODYNAMICS, AND DYNAMICS OF RIBOZYMES By Neil Andrew White RNA transcribed from DNA can be divided into two groups: RNA that codes for protein and RNA that does not code for protein, or so-called non-coding RNA. Non-coding RNA can be further divided into several classes based on function. Non-coding RNAs perform a wide array of functions in living organisms, from gene regulation, to scaffolding, to catalysis. It is amazing that despite RNA having only four, chemically-similar monomers it can have such important, wide-ranging functions. Proteins which also perform wide-ranging functions in organisms have twenty common monomers that are vastly more diverse in terms of chemical or functional groups and structure. How non-coding RNA, specifically catalytic RNA or ribozymes, overcome this inherent lack of chemical and structural diversity to have impressive, intricate structures and function is the focus of this thesis. It is important to study how ribozymes are able to form intricate structure and execute function. They also have potential therapeutic applications, to control RNA viruses like HIV and oncogene transcripts, due to their ability to cleave RNA. Also, they provide a window back to a time described by the RNA World Hypothesis, a time before DNA and proteins, when RNA performed self-replication. Ribozymes overcomes its lack of diversity in monomers by being a dynamic polymer.
    [Show full text]
  • Development of Functional Dna-Based Sensors and Investigations Into Their Mechanism
    DEVELOPMENT OF FUNCTIONAL DNA-BASED SENSORS AND INVESTIGATIONS INTO THEIR MECHANISM BY NANDINI NAGRAJ DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry in the Graduate College of the University of Illinois at Urbana-Champaign, 2010 Urbana, Illinois Doctoral Committee: Professor Yi Lu, Chair Associate Professor Scott Silverman Professor Kenneth Suslick Professor Jonathan Sweedler ABSTRACT The discovery that nucleic acids could perform functional roles in addition to being genetic materials carriers opened doors to a new paradigm in nucleic acid chemistry. Catalytic DNA molecules also known as deoxyribozymes or DNAzymes were first isolated in 1994 through an in vitro selection procedure and have since been engineered and isolated to perform various functions that include both RNA and DNA cleavage and ligation. The 8-17 DNAzyme is an RNA-cleaving DNAzyme that has shown high selectivity for Pb2+ under different selection conditions. It has been explored extensively in terms of its applications for bio-sensing as well as for exploring its mechanism from a more fundamental perspective. A critical barrier of DNA-based sensors for practical applications, such as environmental monitoring, is their highly variable sensing performance with changing temperatures, due to the reliance of sensor design on temperature-dependent hybridization. In Chapter 2, this issue has been addressed through the introduction of mismatches in the DNA hybridization arms of this Pb2+-specific 8-17 DNAzyme and these fluorescent sensors can resist temperature-dependent variations from 4 °C to 30 °C. The strategy of using mismatches to tune the temperature dependence is a novel and inexpensive method that can be applied in other nucleic acid sensors for either metal ions or other molecular targets.
    [Show full text]
  • Thermodynamics and Kinetics of the Hairpin Ribozyme from Atomistic Folding/Unfolding Simulations
    Thermodynamics and Kinetics of the Hairpin Ribozyme from Atomistic Folding/Unfolding Simulations The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Nivón, Lucas G., and Eugene I. Shakhnovich. 2011. “Thermodynamics and Kinetics of the Hairpin Ribozyme from Atomistic Folding/Unfolding Simulations.” Journal of Molecular Biology 411 (5) (September): 1128–1144. doi:10.1016/ j.jmb.2011.06.042. Published Version 10.1016/j.jmb.2011.06.042 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:33464146 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP NIH Public Access Author Manuscript J Mol Biol. Author manuscript; available in PMC 2012 November 28. Published in final edited form as: J Mol Biol. 2011 September 2; 411(5): 1128–1144. doi:10.1016/j.jmb.2011.06.042. Thermodynamics and kinetics of the hairpin ribozyme from atomistic folding/unfolding simulations $watermark-text $watermark-text $watermark-text Lucas G. Nivón*,§ and Eugene I. Shakhnovich§,◆ *Program in Biophysics, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA §Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA Abstract We report a set of atomistic folding/unfolding simulations for the hairpin ribozyme using a monte carlo algorithm. The hairpin ribozyme folds in solution and catalyzes self-cleavage or ligation via a specific two-domain structure.
    [Show full text]
  • Cleavage and Ligation Studies in Hairpin and Hammerhead Ribozymes Using Site Specific Nucleotide Modifications Snigdha Roy University of Vermont
    University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 6-17-2008 Cleavage and Ligation Studies in Hairpin and Hammerhead Ribozymes Using Site Specific Nucleotide Modifications Snigdha Roy University of Vermont Follow this and additional works at: http://scholarworks.uvm.edu/graddis Recommended Citation Roy, Snigdha, "Cleavage and Ligation Studies in Hairpin and Hammerhead Ribozymes Using Site Specific ucleN otide Modifications" (2008). Graduate College Dissertations and Theses. Paper 203. This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. CLEAVAGE AND LIGATION STUDIES IN HAIRPIN AND HAMMERHEAD RIBOZYMES USING SITE SPECIFIC NUCLEOTIDE MODIFICATIONS A Dissertation Presented by Snigdha Roy to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Specializing in Microbiology and Molecular Genetics February, 2008 ABSTRACT RNA catalysis is of fundamental importance in many biological functions, such as the peptidyl transferase activity of the ribosome and genetic control by riboswitches, among others. Small ribozymes are a convenient system to increase our understanding about the structure, folding and catalytic mechanism of ribozymes. This dissertation includes analysis of certain aspects of the catalytic mechanism in the hairpin and hammerhead ribozyme. In the hairpin ribozyme, we studied the functional consequences of molecular substitutions at two conserved positions, A9 and A10. These nucleotides are located close to the scissile phosphate but their exact function is unclear since they do not appear to be making any essential interactions with other nucleotides in the catalytic core.
    [Show full text]
  • Self-Cleaving Ribozymes
    RSC Chemical Biology View Article Online REVIEW View Journal Self-cleaving ribozymes: substrate specificity and synthetic biology applications Cite this: DOI: 10.1039/d0cb00207k a b c b Huan Peng,† Brandon Latifi, † Sabine Mu¨ller, Andrej Lupta´k * and Irene A. Chen *a Various self-cleaving ribozymes appearing in nature catalyze the sequence-specific intramole- cular cleavage of RNA and can be engineered to catalyze cleavage of appropriate substrates in an intermolecular fashion, thus acting as true catalysts. The mechanisms of the small, self-cleaving ribozymes have been extensively studied and reviewed previously. Self-cleaving ribozymes can possess high catalytic activity and high substrate specificity; however, substrate specificity is also engineerable within the constraints of the ribozyme structure. While these ribozymes share a common fundamental catalytic mechanism, each ribozyme family has a unique overall architecture and active site organization, indicating that several distinct structures yield this chemical activity. The multitude of catalytic structures, Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Received 13th November 2020, combined with some flexibility in substrate specificity within each family, suggests that such catalytic Accepted 14th June 2021 RNAs, taken together, could access a wide variety of substrates. Here, we give an overview of 10 classes DOI: 10.1039/d0cb00207k of self-cleaving ribozymes and capture what is understood about their substrate specificity and synthetic applications. Evolution of these ribozymes in an RNA world might be characterized by the emergence of rsc.li/rsc-chembio a new ribozyme family followed by rapid adaptation or diversification for specific substrates. Introduction Ribozyme specificity is an important consideration for possible applications, such as mRNA inactivation.
    [Show full text]
  • In Enzyme Function + and K + Role of Na
    Role of Na+ and K+ in Enzyme Function Michael J. Page and Enrico Di Cera Physiol Rev 86:1049-1092, 2006. doi:10.1152/physrev.00008.2006 You might find this additional information useful... This article cites 372 articles, 121 of which you can access free at: http://physrev.physiology.org/cgi/content/full/86/4/1049#BIBL Medline items on this article's topics can be found at http://highwire.stanford.edu/lists/artbytopic.dtl on the following topics: Biochemistry .. Proteolytic Enzymes Oncology .. Protein Engineering Physiology .. Blood Clotting Chemistry .. Cations Chemistry .. Ion Transport Updated information and services including high-resolution figures, can be found at: http://physrev.physiology.org/cgi/content/full/86/4/1049 Downloaded from Additional material and information about Physiological Reviews can be found at: http://www.the-aps.org/publications/prv This information is current as of October 2, 2006 . physrev.physiology.org on October 2, 2006 Physiological Reviews provides state of the art coverage of timely issues in the physiological and biomedical sciences. It is published quarterly in January, April, July, and October by the American Physiological Society, 9650 Rockville Pike, Bethesda MD 20814-3991. Copyright © 2005 by the American Physiological Society. ISSN: 0031-9333, ESSN: 1522-1210. Visit our website at http://www.the-aps.org/. Physiol Rev 86: 1049–1092, 2006; doi:10.1152/physrev.00008.2006. Role of Naϩ and Kϩ in Enzyme Function MICHAEL J. PAGE AND ENRICO DI CERA Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri I. Introduction 1049 A. Historical perspective 1050 B.
    [Show full text]
  • Synthesis of Nucleobase-Modified RNA Oligonucleotides by Post
    molecules Review Synthesis of Nucleobase-Modified RNA Oligonucleotides by Post-Synthetic Approach Karolina Bartosik , Katarzyna Debiec , Anna Czarnecka , Elzbieta Sochacka and Grazyna Leszczynska * Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; [email protected] (K.B.); [email protected] (K.D.); [email protected] (A.C.); [email protected] (E.S.) * Correspondence: [email protected]; Tel.: +48-42-6313150 Academic Editor: Katherine Seley-Radtke Received: 20 June 2020; Accepted: 20 July 2020; Published: 23 July 2020 Abstract: The chemical synthesis of modified oligoribonucleotides represents a powerful approach to study the structure, stability, and biological activity of RNAs. Selected RNA modifications have been proven to enhance the drug-like properties of RNA oligomers providing the oligonucleotide-based therapeutic agents in the antisense and siRNA technologies. The important sites of RNA modification/functionalization are the nucleobase residues. Standard phosphoramidite RNA chemistry allows the site-specific incorporation of a large number of functional groups to the nucleobase structure if the building blocks are synthetically obtainable and stable under the conditions of oligonucleotide chemistry and work-up. Otherwise, the chemically modified RNAs are produced by post-synthetic oligoribonucleotide functionalization. This review highlights the post-synthetic RNA modification approach as a convenient and valuable method to introduce a wide variety of nucleobase modifications, including recently discovered native hypermodified functional groups, fluorescent dyes, photoreactive groups, disulfide crosslinks, and nitroxide spin labels. Keywords: phosphoramidite chemistry; RNA solid-phase synthesis; post-synthetic RNA modification; convertible nucleoside 1. Introduction Recently, a significant interest has been observed in the use of modified oligoribonucleotides in the fields of molecular biology, biochemistry, and medicine [1–3].
    [Show full text]