Causality: Physics and Philosophy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Development of Dr. Alfred North Whitehead's Philosophy Frederick Joseph Parker
University of Richmond UR Scholarship Repository Master's Theses Student Research 1936 The development of Dr. Alfred North Whitehead's philosophy Frederick Joseph Parker Follow this and additional works at: http://scholarship.richmond.edu/masters-theses Part of the Philosophy Commons Recommended Citation Parker, Frederick Joseph, "The development of Dr. Alfred North Whitehead's philosophy" (1936). Master's Theses. Paper 912. This Thesis is brought to you for free and open access by the Student Research at UR Scholarship Repository. It has been accepted for inclusion in Master's Theses by an authorized administrator of UR Scholarship Repository. For more information, please contact [email protected]. mE Dt:VEto!l..mm oa llS. At..~"1lr:D !JG'lt'fR ~!EREAli •a MiILOSO?ll' A. thesis SUbm1tte4 to the Gradus:te i'acnl ty in cana1:.at1: f!Jr tbe degree of llaste,-. of Arts Univerait7 of !llcuor.&a Jnno 1936 PREF!~CE The modern-·wr1 ter in the field of Philosophy no doubt recognises the ilfficulty of gaining an ndequate and impartial hearing from the students of his own generation. It seems that one only becomes great at tbe expense of deatb. The university student is often tempted to close his study of philosophy- after Plato alld Aristotle as if the final word has bean said. The writer of this paper desires to know somethi~g about the contribution of the model~n school of phiiiosophers. He has chosen this particular study because he believes that Dr. \i'hi tehesa bas given a very thoughtful interpretation of the universe .. This paper is in no way a substitute for a first-hand study of the works of Whitehead. -
Introduction to Dynamical Triangulations
Introduction to Dynamical Triangulations Andrzej G¨orlich Niels Bohr Institute, University of Copenhagen Naxos, September 12th, 2011 Andrzej G¨orlich Causal Dynamical Triangulation Outline 1 Path integral for quantum gravity 2 Causal Dynamical Triangulations 3 Numerical setup 4 Phase diagram 5 Background geometry 6 Quantum fluctuations Andrzej G¨orlich Causal Dynamical Triangulation Path integral formulation of quantum mechanics A classical particle follows a unique trajectory. Quantum mechanics can be described by Path Integrals: All possible trajectories contribute to the transition amplitude. To define the functional integral, we discretize the time coordinate and approximate each path by linear pieces. space classical trajectory t1 time t2 Andrzej G¨orlich Causal Dynamical Triangulation Path integral formulation of quantum mechanics A classical particle follows a unique trajectory. Quantum mechanics can be described by Path Integrals: All possible trajectories contribute to the transition amplitude. To define the functional integral, we discretize the time coordinate and approximate each path by linear pieces. quantum trajectory space classical trajectory t1 time t2 Andrzej G¨orlich Causal Dynamical Triangulation Path integral formulation of quantum mechanics A classical particle follows a unique trajectory. Quantum mechanics can be described by Path Integrals: All possible trajectories contribute to the transition amplitude. To define the functional integral, we discretize the time coordinate and approximate each path by linear pieces. quantum trajectory space classical trajectory t1 time t2 Andrzej G¨orlich Causal Dynamical Triangulation Path integral formulation of quantum gravity General Relativity: gravity is encoded in space-time geometry. The role of a trajectory plays now the geometry of four-dimensional space-time. All space-time histories contribute to the transition amplitude. -
Philosophy of Science and Philosophy of Chemistry
Philosophy of Science and Philosophy of Chemistry Jaap van Brakel Abstract: In this paper I assess the relation between philosophy of chemistry and (general) philosophy of science, focusing on those themes in the philoso- phy of chemistry that may bring about major revisions or extensions of cur- rent philosophy of science. Three themes can claim to make a unique contri- bution to philosophy of science: first, the variety of materials in the (natural and artificial) world; second, extending the world by making new stuff; and, third, specific features of the relations between chemistry and physics. Keywords : philosophy of science, philosophy of chemistry, interdiscourse relations, making stuff, variety of substances . 1. Introduction Chemistry is unique and distinguishes itself from all other sciences, with respect to three broad issues: • A (variety of) stuff perspective, requiring conceptual analysis of the notion of stuff or material (Sections 4 and 5). • A making stuff perspective: the transformation of stuff by chemical reaction or phase transition (Section 6). • The pivotal role of the relations between chemistry and physics in connection with the question how everything fits together (Section 7). All themes in the philosophy of chemistry can be classified in one of these three clusters or make contributions to general philosophy of science that, as yet , are not particularly different from similar contributions from other sci- ences (Section 3). I do not exclude the possibility of there being more than three clusters of philosophical issues unique to philosophy of chemistry, but I am not aware of any as yet. Moreover, highlighting the issues discussed in Sections 5-7 does not mean that issues reviewed in Section 3 are less im- portant in revising the philosophy of science. -
Causality and Determinism: Tension, Or Outright Conflict?
1 Causality and Determinism: Tension, or Outright Conflict? Carl Hoefer ICREA and Universidad Autònoma de Barcelona Draft October 2004 Abstract: In the philosophical tradition, the notions of determinism and causality are strongly linked: it is assumed that in a world of deterministic laws, causality may be said to reign supreme; and in any world where the causality is strong enough, determinism must hold. I will show that these alleged linkages are based on mistakes, and in fact get things almost completely wrong. In a deterministic world that is anything like ours, there is no room for genuine causation. Though there may be stable enough macro-level regularities to serve the purposes of human agents, the sense of “causality” that can be maintained is one that will at best satisfy Humeans and pragmatists, not causal fundamentalists. Introduction. There has been a strong tendency in the philosophical literature to conflate determinism and causality, or at the very least, to see the former as a particularly strong form of the latter. The tendency persists even today. When the editors of the Stanford Encyclopedia of Philosophy asked me to write the entry on determinism, I found that the title was to be “Causal determinism”.1 I therefore felt obliged to point out in the opening paragraph that determinism actually has little or nothing to do with causation; for the philosophical tradition has it all wrong. What I hope to show in this paper is that, in fact, in a complex world such as the one we inhabit, determinism and genuine causality are probably incompatible with each other. -
Causality in Quantum Field Theory with Classical Sources
Causality in Quantum Field Theory with Classical Sources Bo-Sture K. Skagerstam1;a), Karl-Erik Eriksson2;b), Per K. Rekdal3;c) a)Department of Physics, NTNU, Norwegian University of Science and Technology, N-7491 Trondheim, Norway b) Department of Space, Earth and Environment, Chalmers University of Technology, SE-412 96 G¨oteborg, Sweden c)Molde University College, P.O. Box 2110, N-6402 Molde, Norway Abstract In an exact quantum-mechanical framework we show that space-time expectation values of the second-quantized electromagnetic fields in the Coulomb gauge, in the presence of a classical source, automatically lead to causal and properly retarded elec- tromagnetic field strengths. The classical ~-independent and gauge invariant Maxwell's equations then naturally emerge and are therefore also consistent with the classical spe- cial theory of relativity. The fundamental difference between interference phenomena due to the linear nature of the classical Maxwell theory as considered in, e.g., classical optics, and interference effects of quantum states is clarified. In addition to these is- sues, the framework outlined also provides for a simple approach to invariance under time-reversal, some spontaneous photon emission and/or absorption processes as well as an approach to Vavilov-Cherenkovˇ radiation. The inherent and necessary quan- tum uncertainty, limiting a precise space-time knowledge of expectation values of the quantum fields considered, is, finally, recalled. arXiv:1801.09947v2 [quant-ph] 30 Mar 2019 1Corresponding author. Email address: [email protected] 2Email address: [email protected] 3Email address: [email protected] 1. Introduction The roles of causality and retardation in classical and quantum-mechanical versions of electrodynamics are issues that one encounters in various contexts (for recent discussions see, e.g., Refs.[1]-[14]). -
The Implications of Naturalism As an Educational Philosophy in Jordan from the Perspectives of Childhood Education Teachers
Journal of Education and Practice www.iiste.org ISSN 2222-1735 (Paper) ISSN 2222-288X (Online) Vol.7, No.11, 2016 The Implications of Naturalism as an Educational Philosophy in Jordan from the Perspectives of Childhood Education Teachers Omar Khasawneh Ahmed Khaled Mohammad Al Momani Al Ain University of Science and Technology Al Ain, United Arab Emirates & Yarmouk University- Jordan Abstract The purpose of this study was to identify the educational implications of naturalism as an educational philosophy from the Jordanian childhood education teachers' perspectives. Each philosophy simply represents a unique conviction concerning the nature of the teaching/learning process. This study could serve as a grounded theory for Jordanian childhood teachers to comprehend the need for a clear educational philosophy within the Jordanian educational system. In addition, this research study would draw Jordanian childhood teachers' interest to be acquainted more with the educational principles of such philosophical theory. The researchers employed a questionnaire consisted of twenty one items, which correspond to the educational principles of naturalism. The quantitative approach is used to gather data as one of the techniques and descriptive due to its suitability for this study. The study findings revealed that Jordanian childhood education teachers' perspectives toward the implications of naturalism as an educational philosophy were positive for all domains; curriculum, aims, and activities. Based on the findings, the researchers provided some relevant recommendations. Keywords : Naturalism, Educational Philosophy, Childhood Education Teachers, Jordan. 1. Introduction Teachers’ educational philosophies and their value systems influence their teaching styles and the way they deal with their students. So, the impact of teachers’ beliefs and values on teaching and learning is evident in each classroom (Conti, 2007). -
Time and Causality in General Relativity
Time and Causality in General Relativity Ettore Minguzzi Universit`aDegli Studi Di Firenze FQXi International Conference. Ponta Delgada, July 10, 2009 FQXi Conference 2009, Ponta Delgada Time and Causality in General Relativity 1/8 Light cone A tangent vector v 2 TM is timelike, lightlike, causal or spacelike if g(v; v) <; =; ≤; > 0 respectively. Time orientation and spacetime At every point there are two cones of timelike vectors. The Lorentzian manifold is time orientable if a continuous choice of one of the cones, termed future, can be made. If such a choice has been made the Lorentzian manifold is time oriented and is also called spacetime. Lorentzian manifolds and light cones Lorentzian manifolds A Lorentzian manifold is a Hausdorff manifold M, of dimension n ≥ 2, endowed with a Lorentzian metric, that is a section g of T ∗M ⊗ T ∗M with signature (−; +;:::; +). FQXi Conference 2009, Ponta Delgada Time and Causality in General Relativity 2/8 Time orientation and spacetime At every point there are two cones of timelike vectors. The Lorentzian manifold is time orientable if a continuous choice of one of the cones, termed future, can be made. If such a choice has been made the Lorentzian manifold is time oriented and is also called spacetime. Lorentzian manifolds and light cones Lorentzian manifolds A Lorentzian manifold is a Hausdorff manifold M, of dimension n ≥ 2, endowed with a Lorentzian metric, that is a section g of T ∗M ⊗ T ∗M with signature (−; +;:::; +). Light cone A tangent vector v 2 TM is timelike, lightlike, causal or spacelike if g(v; v) <; =; ≤; > 0 respectively. -
Studies on Causal Explanation in Naturalistic Philosophy of Mind
tn tn+1 s s* r1 r2 r1* r2* Interactions and Exclusions: Studies on Causal Explanation in Naturalistic Philosophy of Mind Tuomas K. Pernu Department of Biosciences Faculty of Biological and Environmental Sciences & Department of Philosophy, History, Culture and Art Studies Faculty of Arts ACADEMIC DISSERTATION To be publicly discussed, by due permission of the Faculty of Arts at the University of Helsinki, in lecture room 5 of the University of Helsinki Main Building, on the 30th of November, 2013, at 12 o’clock noon. © 2013 Tuomas Pernu (cover figure and introductory essay) © 2008 Springer Science+Business Media (article I) © 2011 Walter de Gruyter (article II) © 2013 Springer Science+Business Media (article III) © 2013 Taylor & Francis (article IV) © 2013 Open Society Foundation (article V) Layout and technical assistance by Aleksi Salokannel | SI SIN Cover layout by Anita Tienhaara Author’s address: Department of Biosciences Division of Physiology and Neuroscience P.O. Box 65 FI-00014 UNIVERSITY OF HELSINKI e-mail [email protected] ISBN 978-952-10-9439-2 (paperback) ISBN 978-952-10-9440-8 (PDF) ISSN 1799-7372 Nord Print Helsinki 2013 If it isn’t literally true that my wanting is causally responsible for my reaching, and my itching is causally responsible for my scratching, and my believing is causally responsible for my saying … , if none of that is literally true, then practically everything I believe about anything is false and it’s the end of the world. Jerry Fodor “Making mind matter more” (1989) Supervised by Docent Markus -
Causation As Folk Science
1. Introduction Each of the individual sciences seeks to comprehend the processes of the natural world in some narrow do- main—chemistry, the chemical processes; biology, living processes; and so on. It is widely held, however, that all the sciences are unified at a deeper level in that natural processes are governed, at least in significant measure, by cause and effect. Their presence is routinely asserted in a law of causa- tion or principle of causality—roughly, that every effect is produced through lawful necessity by a cause—and our ac- counts of the natural world are expected to conform to it.1 My purpose in this paper is to take issue with this view of causation as the underlying principle of all natural processes. Causation I have a negative and a positive thesis. In the negative thesis I urge that the concepts of cause as Folk Science and effect are not the fundamental concepts of our science and that science is not governed by a law or principle of cau- sality. This is not to say that causal talk is meaningless or useless—far from it. Such talk remains a most helpful way of conceiving the world, and I will shortly try to explain how John D. Norton that is possible. What I do deny is that the task of science is to find the particular expressions of some fundamental causal principle in the domain of each of the sciences. My argument will be that centuries of failed attempts to formu- late a principle of causality, robustly true under the introduc- 1Some versions are: Kant (1933, p.218) "All alterations take place in con- formity with the law of the connection of cause and effect"; "Everything that happens, that is, begins to be, presupposes something upon which it follows ac- cording to a rule." Mill (1872, Bk. -
Causality in the Quantum World
VIEWPOINT Causality in the Quantum World A new model extends the definition of causality to quantum-mechanical systems. by Jacques Pienaar∗ athematical models for deducing cause-effect relationships from statistical data have been successful in diverse areas of science (see Ref. [1] and references therein). Such models can Mbe applied, for instance, to establish causal relationships between smoking and cancer or to analyze risks in con- struction projects. Can similar models be extended to the microscopic world governed by the laws of quantum me- chanics? Answering this question could lead to advances in quantum information and to a better understanding of the foundations of quantum mechanics. Developing quantum Figure 1: In statistics, causal models can be used to extract extensions of causal models, however, has proven challeng- cause-effect relationships from empirical data on a complex ing because of the peculiar features of quantum mechanics. system. Existing models, however, do not apply if at least one For instance, if two or more quantum systems are entangled, component of the system (Y) is quantum. Allen et al. have now it is hard to deduce whether statistical correlations between proposed a quantum extension of causal models. (APS/Alan them imply a cause-effect relationship. John-Mark Allen at Stonebraker) the University of Oxford, UK, and colleagues have now pro- posed a quantum causal model based on a generalization of an old principle known as Reichenbach’s common cause is a third variable that is a common cause of both. In the principle [2]. latter case, the correlation will disappear if probabilities are Historically, statisticians thought that all information conditioned to the common cause. -
The Geology of Cuba: a Brief Cuba: a of the Geology It’S Time—Renew Your GSA Membership and Save 15% and Save Membership GSA Time—Renew Your It’S
It’s Time—Renew Your GSA Membership and Save 15% OCTOBER | VOL. 26, 2016 10 NO. A PUBLICATION OF THE GEOLOGICAL SOCIETY OF AMERICA® The geology of Cuba: A brief overview and synthesis OCTOBER 2016 | VOLUME 26, NUMBER 10 Featured Article GSA TODAY (ISSN 1052-5173 USPS 0456-530) prints news and information for more than 26,000 GSA member readers and subscribing libraries, with 11 monthly issues (March/ April is a combined issue). GSA TODAY is published by The SCIENCE Geological Society of America® Inc. (GSA) with offices at 3300 Penrose Place, Boulder, Colorado, USA, and a mail- 4 The geology of Cuba: A brief overview ing address of P.O. Box 9140, Boulder, CO 80301-9140, USA. and synthesis GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, M.A. Iturralde-Vinent, A. García-Casco, regardless of race, citizenship, gender, sexual orientation, Y. Rojas-Agramonte, J.A. Proenza, J.B. Murphy, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society. and R.J. Stern © 2016 The Geological Society of America Inc. All rights Cover: Valle de Viñales, Pinar del Río Province, western reserved. Copyright not claimed on content prepared Cuba. Karstic relief on passive margin Upper Jurassic and wholly by U.S. government employees within the scope of Cretaceous limestones. The world-famous Cuban tobacco is their employment. Individual scientists are hereby granted permission, without fees or request to GSA, to use a single grown in this valley. Photo by Antonio García Casco, 31 July figure, table, and/or brief paragraph of text in subsequent 2014. -
Philosophy of Chemistry: an Emerging Field with Implications for Chemistry Education
DOCUMENT RESUME ED 434 811 SE 062 822 AUTHOR Erduran, Sibel TITLE Philosophy of Chemistry: An Emerging Field with Implications for Chemistry Education. PUB DATE 1999-09-00 NOTE 10p.; Paper presented at the History, Philosophy and Science Teaching Conference (5th, Pavia, Italy, September, 1999). PUB TYPE Opinion Papers (120) Speeches/Meeting Papers (150) EDRS PRICE MF01/PC01 Plus Postage. DESCRIPTORS *Chemistry; Educational Change; Foreign Countries; Higher Education; *Philosophy; Science Curriculum; *Science Education; *Science Education History; *Science History; Scientific Principles; Secondary Education; Teaching Methods ABSTRACT Traditional applications of history and philosophy of science in chemistry education have concentrated on the teaching and learning of "history of chemistry". This paper considers the recent emergence of "philosophy of chemistry" as a distinct field and explores the implications of philosophy of chemistry for chemistry education in the context of teaching and learning chemical models. This paper calls for preventing the mutually exclusive development of chemistry education and philosophy of chemistry, and argues that research in chemistry education should strive to learn from the mistakes that resulted when early developments in science education were made separate from advances in philosophy of science. Contains 54 references. (Author/WRM) ******************************************************************************** Reproductions supplied by EDRS are the best that can be made from the original document. ******************************************************************************** 1 PHILOSOPHY OF CHEMISTRY: AN EMERGING FIELD WITH IMPLICATIONS FOR CHEMISTRY EDUCATION PERMISSION TO REPRODUCE AND U.S. DEPARTMENT OF EDUCATION DISSEMINATE THIS MATERIAL HAS Office of Educational Research and improvement BEEN GRANTED BY RESOURCES INFORMATION SIBEL ERDURAN CENTER (ERIC) This document has been reproducedas ceived from the person or organization KING'S COLLEGE, UNIVERSITYOF LONDON originating it.