Compactifying All Spatial Dimensions of the Universe
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Conformal Symmetry in Field Theory and in Quantum Gravity
universe Review Conformal Symmetry in Field Theory and in Quantum Gravity Lesław Rachwał Instituto de Física, Universidade de Brasília, Brasília DF 70910-900, Brazil; [email protected] Received: 29 August 2018; Accepted: 9 November 2018; Published: 15 November 2018 Abstract: Conformal symmetry always played an important role in field theory (both quantum and classical) and in gravity. We present construction of quantum conformal gravity and discuss its features regarding scattering amplitudes and quantum effective action. First, the long and complicated story of UV-divergences is recalled. With the development of UV-finite higher derivative (or non-local) gravitational theory, all problems with infinities and spacetime singularities might be completely solved. Moreover, the non-local quantum conformal theory reveals itself to be ghost-free, so the unitarity of the theory should be safe. After the construction of UV-finite theory, we focused on making it manifestly conformally invariant using the dilaton trick. We also argue that in this class of theories conformal anomaly can be taken to vanish by fine-tuning the couplings. As applications of this theory, the constraints of the conformal symmetry on the form of the effective action and on the scattering amplitudes are shown. We also remark about the preservation of the unitarity bound for scattering. Finally, the old model of conformal supergravity by Fradkin and Tseytlin is briefly presented. Keywords: quantum gravity; conformal gravity; quantum field theory; non-local gravity; super- renormalizable gravity; UV-finite gravity; conformal anomaly; scattering amplitudes; conformal symmetry; conformal supergravity 1. Introduction From the beginning of research on theories enjoying invariance under local spacetime-dependent transformations, conformal symmetry played a pivotal role—first introduced by Weyl related changes of meters to measure distances (and also due to relativity changes of periods of clocks to measure time intervals). -
ABSTRACT Investigation Into Compactified Dimensions: Casimir
ABSTRACT Investigation into Compactified Dimensions: Casimir Energies and Phenomenological Aspects Richard K. Obousy, Ph.D. Chairperson: Gerald B. Cleaver, Ph.D. The primary focus of this dissertation is the study of the Casimir effect and the possibility that this phenomenon may serve as a mechanism to mediate higher dimensional stability, and also as a possible mechanism for creating a small but non- zero vacuum energy density. In chapter one we review the nature of the quantum vacuum and discuss the different contributions to the vacuum energy density arising from different sectors of the standard model. Next, in chapter two, we discuss cosmology and the introduction of the cosmological constant into Einstein's field equations. In chapter three we explore the Casimir effect and study a number of mathematical techniques used to obtain a finite physical result for the Casimir energy. We also review the experiments that have verified the Casimir force. In chapter four we discuss the introduction of extra dimensions into physics. We begin by reviewing Kaluza Klein theory, and then discuss three popular higher dimensional models: bosonic string theory, large extra dimensions and warped extra dimensions. Chapter five is devoted to an original derivation of the Casimir energy we derived for the scenario of a higher dimensional vector field coupled to a scalar field in the fifth dimension. In chapter six we explore a range of vacuum scenarios and discuss research we have performed regarding moduli stability. Chapter seven explores a novel approach to spacecraft propulsion we have proposed based on the idea of manipulating the extra dimensions of string/M theory. -
Weyl Gauge-Vector and Complex Dilaton Scalar for Conformal Symmetry and Its Breaking
1 Weyl gauge-vector and complex dilaton scalar for conformal symmetry and its breaking Hans C. Ohanian1 Abstract Instead of the scalar “dilaton” field that is usually adopted to construct conformally invariant Lagrangians for gravitation, we here propose a hybrid construction, involving both a complex dilaton scalar and a Weyl gauge- vector, in accord with Weyl’s original concept of a non-Riemannian conformal geometry with a transport law for length and time intervals, for which this gauge vector is required. Such a hybrid construction permits us to avoid the wrong sign of the dilaton kinetic term (the ghost problem) that afflicts the usual construction. The introduction of a Weyl gauge-vector and its interaction with the dilaton also has the collateral benefit of providing an explicit mechanism for spontaneous breaking of the conformal symmetry, whereby the dilaton and the Weyl gauge-vector acquire masses somewhat smaller than mP by the Coleman-Weinberg mechanism. Conformal symmetry breaking is assumed to precede inflation, which occurs later by a separate GUT or electroweak symmetry breaking, as in inflationary models based on the Higgs boson. Keywords Quantum gravity • Conformal invariance • Spontaneous symmetry breaking •Weyl length transport Publication history First arXiv publication [v1] 30 January 2015. The final publication is available at Springer via http://dx.doi.org/10.1007/s10714-016-2023-8 and in General Relativity and Gravitation, March 2016, 48:25. 1 Introduction Modifications of Einstein’s gravitational theory that incorporate local conformal symmetry—that is, invariance 2 (x ) under the transformation g( x ) e g ( x ) , where ()x is an arbitrary real function—have been exploited in attempts at the solution of various of theoretical problems, such as renormalization of the stress tensor, renormalization of quantum gravity, quantum mechanics of black holes, analytic solutions and geodesic completeness in the early universe, and the dynamics that lead to inflation by symmetry breaking. -
Conformally Invariant Equations for Graviton 50 5.1 the Conformally Invariant System of Conformal Degree 1
Conformally Invariant Equations for Graviton Mohsen Fathi Department of Physics, Tehran Central Branch Islamic Azad Univeristy arXiv:1210.3436v3 [physics.gen-ph] 12 Nov 2012 A thesis submitted for the Master degree Master of Science in Physics Tehran, Winter 2010 I am grateful to my supervisor Dr. Mohammad Reza Tanhayi for the helps, supports and scientific training, during this work and thereafter. Abstract Recent astrophysical data indicate that our universe might currently be in a de Sitter (dS) phase. The importance of dS space has been primarily ignited by the study of the inflationary model of the universe and the quantum gravity. As we know Einstein’s theory of gravitation (with a nonzero cosmological constant) can be interpreted as a theory of a metric field; that is, a symmetric tensor field of rank-2 on a fixed de Sitter back- ground. It has been shown the massless spin-2 Fierz-Pauli wave equation (or the linearized Einstein equation) is not conformally invariant. This result is in contrary with what we used to expect for massless theories. In this thesis we obtain conformally invariant wave equation for the massless spin-2 in the dS space. This study is motivated by the belief that confor- mal invariance may be the key to a future theory of quantum gravity. Contents Introduction 1 1 The Lorentz and the conformal groups, and the concept of invari- ance 3 1.1 Grouptheory ............................... 3 1.1.1 Orthogonalgroups ........................ 4 1.1.2 Rotationgroups.......................... 5 1.2 Invarianceunderagroupaction . 7 1.2.1 Invarianceofthelawsofphysics. 7 1.3 TheLorentzgroup ............................ 8 1.4 Theconformalgroup .......................... -
Conformal Gravity Holography in Four Dimensions
Loyola University Chicago Loyola eCommons Physics: Faculty Publications and Other Works Faculty Publications 2014 Conformal Gravity Holography in Four Dimensions Daniel Grumiller Maria Irakleidou Iva Lovrekovic, Robert McNees Loyola University Chicago, [email protected] Follow this and additional works at: https://ecommons.luc.edu/physics_facpubs Part of the Physics Commons Recommended Citation Grumiller, D, M Irakleidou, I Lovrekovic, and R McNees. "Conformal Gravity Holography in Four Dimensions." Physical Review Letters 112, 2014. This Article is brought to you for free and open access by the Faculty Publications at Loyola eCommons. It has been accepted for inclusion in Physics: Faculty Publications and Other Works by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. © 2014 American Physical Society. week ending PRL 112, 111102 (2014) PHYSICAL REVIEW LETTERS 21 MARCH 2014 Conformal Gravity Holography in Four Dimensions † ‡ Daniel Grumiller,1,* Maria Irakleidou,1, Iva Lovrekovic,1, and Robert McNees2,§ 1Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstrasse 8–10/136, A-1040 Vienna, Austria 2Department of Physics, Loyola University Chicago, Chicago, Illinois 60660, USA (Received 8 October 2013; published 18 March 2014) We formulate four-dimensional conformal gravity with (anti–)de Sitter boundary conditions that are weaker than Starobinsky boundary conditions, allowing for an asymptotically subleading Rindler term concurrent with a recent model for gravity at large distances. We prove the consistency of the variational principle and derive the holographic response functions. One of them is the conformal gravity version of the Brown–York stress tensor, the other is a “partially massless response”. -
Rotating Black Holes in Conformal Gravity
European Online Journal of Natural and Social Sciences 2014; www.european-science.com Vol.3, No.4 pp. 892-896 ISSN 1805-3602 Rotating black holes in conformal gravity Sara Dastan1*, Ali Farokhtabar1, Mohammad Ali Ganjali1,2, Bahare Hosseini1 1Department of Science, Faculty of Physics, Kharazmi University, Tehran, Iran 2Institute for Research in Fundamental Sciences(IPM), P.O. Box 19395-5531, Tehran, Iran *E-mail: [email protected] Received for publication: 02 June 2014. Accepted for publication: 30 September 2014. Abstract It is a long time since the motion of astronomical objects has been explained in the framework of Newtonian gravity. The great success of Newton’s law of universal gravitation in planetary motion persuaded astronomers to use this regime as a viable framework in the larger scales. Meanwhile, whenever a deviation of observed motions from expected ones were observed, the immediate question came up: should such anomalies be considered as incompleteness of laws of gravitation or as indication of the existence of unseen objects? In following we explain rotating black holes and solving this metric’s black hole with conformal gravity. Firstly explaining problem with DM then introducing conformal transformation and conformal gravity, in the last step we solve a metric for rotating black hole in the presence and absence of matter. Keywords: Rotation, Gravity, Black Holes, Conformal Gravity Introduction During the last century Einstein gravity (EG) was one the corner of theoretical physics. Despite of the success in explanation of various gravitational phenomena in nature, there are some unsolved basic problems such as singularity problem, black hole physics,… and most importantly quantum theory of gravity. -
D-Branes in Topological Membranes
OUTP/03–21P HWM–03–14 EMPG–03–13 hep-th/0308101 August 2003 D-BRANES IN TOPOLOGICAL MEMBRANES P. Castelo Ferreira Dep. de Matem´atica – Instituto Superior T´ecnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal and PACT – University of Sussex, Falmer, Brighton BN1 9QJ, U.K. [email protected] I.I. Kogan Dept. of Physics, Theoretical Physics – University of Oxford, Oxford OX1 3NP, U.K. R.J. Szabo Dept. of Mathematics – Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, U.K. [email protected] Abstract arXiv:hep-th/0308101v1 15 Aug 2003 It is shown how two-dimensional states corresponding to D-branes arise in orbifolds of topologically massive gauge and gravity theories. Brane vertex operators naturally appear in induced worldsheet actions when the three-dimensional gauge theory is minimally coupled to external charged matter and the orbifold relations are carefully taken into account. Boundary states corresponding to D-branes are given by vacuum wavefunctionals of the gauge theory in the presence of the matter, and their various constraints, such as the Cardy condition, are shown to arise through compatibility relations between the orbifold charges and bulk gauge invariance. We show that with a further conformally-invariant coupling to a dynamical massless scalar field theory in three dimensions, the brane tension is naturally set by the bulk mass scales and arises through dynamical mechanisms. As an auxilliary result, we show how to describe string descendent states in the three-dimensional theory through the construction of gauge-invariant excited wavefunctionals. Contents 1 INTRODUCTION AND SUMMARY 1 1.1 D-Branes .................................... -
Universit`A Degli Studi Di Padova
UNIVERSITA` DEGLI STUDI DI PADOVA Dipartimento di Fisica e Astronomia “Galileo Galilei” Corso di Laurea Magistrale in Fisica Tesi di Laurea Finite symmetry groups and orbifolds of two-dimensional toroidal conformal field theories Relatore Laureando Prof. Roberto Volpato Tommaso Macrelli Anno Accademico 2017/2018 Contents Introduction 5 1 Introduction to two dimensional Conformal Field Theory 7 1.1 The conformal group . .7 1.1.1 Conformal group in two dimensions . .9 1.2 Conformal invariance in two dimensions . 12 1.2.1 Fields and correlation functions . 12 1.2.2 Stress-energy tensor and conformal transformations . 13 1.2.3 Operator formalism: radial quantization . 14 1.3 General structure of a Conformal Field Theory in two dimensions . 16 1.3.1 Meromorphic Conformal Field Theory . 18 1.4 Examples . 22 1.4.1 Free boson . 22 1.4.2 Free Majorana fermion . 26 1.4.3 Ghost system . 27 2 Elements of String and Superstring Theory 28 2.1 Bosonic String Theory . 29 2.1.1 Classical Bosonic String . 29 2.1.2 Quantization . 31 2.1.3 BRST symmetry and Hilbert Space . 33 2.1.4 Spectrum of the Bosonic String . 34 2.1.5 What’s wrong with Bosonic String? . 36 2.2 Superstring Theory . 37 2.2.1 Introduction to Superstrings . 37 2.2.2 Heterotic String . 39 3 Compactifications of String Theory 41 3.1 An introduction: Kaluza-Klein compactification . 42 3.2 Free boson compactified on a circle . 43 3.2.1 Closed strings and T-Duality . 45 3.2.2 Enhanced symmetries at self-dual radius . -
Conformally Coupled General Relativity
universe Article Conformally Coupled General Relativity Andrej Arbuzov 1,* and Boris Latosh 2 ID 1 Bogoliubov Laboratory for Theoretical Physics, JINR, Dubna 141980, Russia 2 Dubna State University, Department of Fundamental Problems of Microworld Physics, Universitetskaya str. 19, Dubna 141982, Russia; [email protected] * Correspondence: [email protected] Received: 28 December 2017; Accepted: 7 February 2018; Published: 14 February 2018 Abstract: The gravity model developed in the series of papers (Arbuzov et al. 2009; 2010), (Pervushin et al. 2012) is revisited. The model is based on the Ogievetsky theorem, which specifies the structure of the general coordinate transformation group. The theorem is implemented in the context of the Noether theorem with the use of the nonlinear representation technique. The canonical quantization is performed with the use of reparametrization-invariant time and Arnowitt– Deser–Misner foliation techniques. Basic quantum features of the models are discussed. Mistakes appearing in the previous papers are corrected. Keywords: models of quantum gravity; spacetime symmetries; higher spin symmetry 1. Introduction General relativity forms our understanding of spacetime. It is verified by the Solar System and cosmological tests [1,2]. The recent discovery of gravitational waves provided further evidence supporting the theory’s viability in the classical regime [3–6]. Despite these successes, there are reasons to believe that general relativity is unable to provide an adequate description of gravitational phenomena in the high energy regime and should be either modified or replaced by a new theory of gravity [7–11]. One of the main issues is the phenomenon of inflation. It appears that an inflationary phase of expansion is necessary for a self-consistent cosmological model [12–14]. -
Gravitational Waves in Massive Conformal Gravity Arxiv:2007.03637V2 [Gr-Qc] 23 Jul 2020
Gravitational waves in massive conformal gravity F. F. Faria ∗ Centro de Ci^enciasda Natureza, Universidade Estadual do Piau´ı, 64002-150 Teresina, PI, Brazil Abstract First, we obtain the plane wave solution of the linearized massive conformal gravity field equations. It is shown that the theory has seven physical plane waves. In addition, we investigate the gravitational radiation from binary systems in massive conformal gravity. We find that the theory with large graviton mass can reproduce the orbit of binaries by the emission of gravitational waves. arXiv:2007.03637v2 [gr-qc] 23 Jul 2020 PACS numbers: 04.50.Kd, 04.30.-w * [email protected] 1 Introduction Over the years several alternative theories of gravity have emerged in the attempt to solve some of the problems presented by the general theory of rel- ativity, such as the dark matter and dark energy problems. Besides solving these problems, for an alternative theory of gravity to be considered consis- tent, it must also reproduce the successful predictions of general relativity. One of these recently confirmed predictions is the existence of gravitational waves [1, 2, 3, 4]. Among the many alternative theories of gravity that have already studied the gravitational waves phenomenology is conformal gravity (CG). It was shown that the plane wave of this theory is composed of the usual plane wave of general relativity plus a plane wave that grows linearly in time [5], which causes the energy carried by the CG plane wave to diverges in momentum space [6]. In this paper, we intend to study the behavior of gravitational waves in another alternative theory of gravity with conformal symmetry called massive conformal gravity (MCG) [7]. -
Conformal Gravity and the Alcubierre Warp Drive Metric
Physics Faculty Works Seaver College of Science and Engineering 2013 Conformal Gravity and the Alcubierre Warp Drive Metric Gabriele U. Varieschi Loyola Marymount University, [email protected] Zily Burstein Loyola Marymount University Follow this and additional works at: https://digitalcommons.lmu.edu/phys_fac Part of the Physics Commons Recommended Citation Gabriele U. Varieschi and Zily Burstein, “Conformal Gravity and the Alcubierre Warp Drive Metric,” ISRN Astronomy and Astrophysics, vol. 2013, Article ID 482734, 13 pages, 2013. doi: 10.1155/2013/482734 This Article is brought to you for free and open access by the Seaver College of Science and Engineering at Digital Commons @ Loyola Marymount University and Loyola Law School. It has been accepted for inclusion in Physics Faculty Works by an authorized administrator of Digital Commons@Loyola Marymount University and Loyola Law School. For more information, please contact [email protected]. Hindawi Publishing Corporation ISRN Astronomy and Astrophysics Volume 2013, Article ID 482734, 13 pages http://dx.doi.org/10.1155/2013/482734 Research Article Conformal Gravity and the Alcubierre Warp Drive Metric Gabriele U. Varieschi and Zily Burstein Department of Physics, Loyola Marymount University, Los Angeles, CA 90045, USA Correspondence should be addressed to Gabriele U. Varieschi; [email protected] Received 7 November 2012; Accepted 24 November 2012 Academic Editors: P. P. Avelino, R. N. Henriksen, and P. A. Hughes Copyright © 2013 G. U. Varieschi and Z. Burstein. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. -
Free Lunch from T-Duality
Free Lunch from T-Duality Ulrich Theis Institute for Theoretical Physics, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, D{07743 Jena, Germany [email protected] We consider a simple method of generating solutions to Einstein gravity coupled to a dilaton and a 2-form gauge potential in n dimensions, starting from an arbitrary (n m)- − dimensional Ricci-flat metric with m commuting Killing vectors. It essentially consists of a particular combination of coordinate transformations and T-duality and is related to the so-called null Melvin twists and TsT transformations. Examples obtained in this way include two charged black strings in five dimensions and a finite action configuration in three dimensions derived from empty flat space. The latter leads us to amend the effective action by a specific boundary term required for it to admit solutions with positive action. An extension of our method involving an S-duality transformation that is applicable to four-dimensional seed metrics produces further nontrivial solutions in five dimensions. 1 Introduction One of the most attractive features of string theory is that it gives rise to gravity: the low-energy effective action for the background fields on a string world-sheet is diffeomor- phism invariant and includes the Einstein-Hilbert term of general relativity. This effective action is obtained by integrating renormalization group beta functions whose vanishing is required for Weyl invariance of the world-sheet sigma model and can be interpreted as a set of equations of motion for the background fields. Solutions to these equations determine spacetimes in which the string propagates.