In Retrospect: a Personal View on Moshé Flato's Scientific Legacy

Total Page:16

File Type:pdf, Size:1020Kb

In Retrospect: a Personal View on Moshé Flato's Scientific Legacy In retrospect: A personal view on Moshe´ Flato’s scientific legacy Daniel Sternheimer When a talented sculptor is confronted with a block of marble, he is using tools that come from centuries of tradition and the training which he received from his masters. But from the first stroke he already has, in the back of his mind, the design of the sculpture which he wants to extract from that block. Creating a masterpiece is a long and painful process, interspersed with surprises due to the irregularities of the physical properties of the noble material he is using, and the design continues to evolve with the artist’s maturing and subject to external influences. Only gradually does the shape emerge, at first visible to experts, then to the general public. Beyond the technicalities, however important they may be, Mosh´e’s scientific life was a perfect illustration of this idea. His masterpiece is not finished. Much polishing remains to be done, new elements still need to be added to the main themes which he conceived, and entirely new themes are now beginning to emerge from them. But a very partial view of what he had in mind can already be described. This is what I shall attempt here, based on my experience of having, for about 35 years, participated with others in the elaboration of his ideas. All those who have been close to him know that he used to call me affectionately an “idiot” more often than he used that expression for anybody else; this usually happened when my formulation of one of his ideas was not to his taste and needed to be corrected, either because he did not like some of the ingredients I was adding or when, while striving for too precise a formulation, I obscured an essential point which he had purposedly stated ambiguously. Franc¸ois Mitterrand used to say, paraphrasing the Cardinal de Retz, “On ne sort de l’ambigu¨ıt´equ’`ason d´etriment”. In his case, this was smart politics, in Mosh´e’s, using seemingly ambiguous statements was the only way by which he could transmit the deep feeling which he had without the distortion of too precise, confining words. I hope that now, with him not around, my formulation will be faithful enough to the main ideas which he developed and often initiated. My purpose here is to show how, in retrospect, one can look at the genesis and evolution of ideas and concepts in some of the fields where Mosh´e made an impact that has only begun to be fully recognized. I shall refrain from entering into technicalities, because they are covered in part in the present volume and in recent review papers, and in order to make the ideas understandable to a general, scientifically educated audience. Towards the end of the 19th century, physics seemed to have achieved a com- plete understanding of the world, with classical mechanics describing the motion of rigid bodies, electromagnetism waves and charged particles, and the Lorentz force their interactions. It was only a plateau because then the ‘deformation dae- [31] G. Dito and D. Sternheimer (eds.), Conf´erence Mosh´eFlato 1999, Vol. 1, 31 – 41. ­c 2000 Kluwer Academic Publishers. Printed in the Netherlands. 32 mon’ struck. In 1881 an American physicist, Albert Michelson, came to Berlin and tried to observe the movement of the earth in the ‘ether’ by measuring the velocity of light in different directions, using the interferometer which he had developed. He found no differences, which did not conform to classical mechanics. In such a case, in Europe, the first reaction was and remains – as Charles Schulz wrote in a ‘Peanuts’ cartoon –, “my mind is made up, don’t bother me with facts”. That is how the first observation of neutral currents at the CERN, ten years before their theoretical prediction, was deemed a mistake and never published. However facts and some American scientists are stubborn. In 1887, with Edward Morley, Michel- son performed a more refined experiment in Cleveland and the fact was proved. So there was a paradox, because the speed of light is a limit. The so-called black- body radiation provided another paradox until in 1900, as a last resort, Max Planck proposed the quantum hypothesis, the energy of light is not emitted continuously but in quanta, proportional to its frequency. He wrote h for the proportionality constant which bears his name. At the same time the notion of symmetry started to appear in mathematics and in physics, developments in both sciences being very closely interrelated all through the twentieth century. In physics, equations and quantities are usually invariant under some transformation groups. The theory of the latter was system- atized by Sophus Lie and developed further by many, among them Elie´ Cartan and Henri Poincar´e, to remain within that time range and in mathematics. Emphasizing this invariance property has many advantages, but we shall not elaborate on that aspect here because it has been developed in many books. In any case, this is a concept that Mosh´elearned from his teacher Giulio Racah, and first applied to molecular spectroscopy in his celebrated M.Sc. thesis, completed in 1960 under Racah but only published in 1965 [13], and in his unpublished Ph.D. thesis on applications of group theory to nuclear physics, a problem involving the restriction of representations from unitary to symplectic groups, which Mosh´ealso completed under Racah before coming to France in 1963 but never defended. As a conse- quence of the expertise which he gained in these applications of group theory to physics, he took with more than a grain of salt the quite naive applications that were fashionable among particle physicists in the sixties and, in a much more elaborate manner, still influence the present interpretation of experimental data. This can already be seen in his 1965 French D.Sc. thesis [14]. He never hesitated to express these views, which many considered blasphemous, in public, and eventually his outspokenness obliged him to seek “scientific asylum” in the French mathematical community while staying in contact with physicists around the world who dared and could afford to hold independent opinions. The notion of symmetry guided Mosh´ethroughout his scientific career, both as a mathematician and as a theoretical physicist, and led him to make a number of significant contributions. Even on the mathematical side, the motivation for the study of symmetry comes from physics and the mathematical theory has physical applications. In this connection I can mention two directions which his work, in 33 collaboration with (among others) his D.Sc. student and close friend since 1968, Jacques Simon, took. The first is the theory of analytic vectors in Lie group repre- sentations [25], suggested by the problems that arise in passing from Lie algebras to Lie groups. The second is the cohomological study of nonlinear representations [24] of covariance groups of nonlinear partial differential equations, which leads to important mathematical developments with nontrivial physical consequences such as the “tour de force” on Maxwell-Dirac equations [26], the very basis of classical electrodynamics. A lesser known, third direction, is the notion of supersymmetry which one can find already in an embryonic form – close to the Wess-Zumino Poincar´esupersymmetry – in his 1970 paper [18]. In 1905 Einstein solved the first paradox that we described above when he 3 4 µ ¡ Ê ¡ Ê showed, in our terminology, that the Galilei invariance group SO´3 (space rotations, addition of velocities and space-time translations) of Newtonian me- 4 ; µ ¡ Ê chanics had to be deformed into the Poincar´egroup SO´3 1 , where velocities do not add linearly, of relativistic mechanics. That same year Einstein contributed, in addition to a third basic paper, on the Brownian motion, to the solution of the second paradox by his theory of the photoelectric effect. Incidentally, that theory was the main contribution recognized by the Nobel Prize in Physics which was awarded to him only in 1922. Revolutionary ideas take time to be recognized. Around 1920, an “agr´eg´ed’histoire”, Prince Louis de Broglie, was introduced to the photoelectric effect, together with the Planck-Einstein relations and the theory of relativity, in the laboratory of his much older brother, Maurice duc de Broglie. This led him, in 1923, to his discovery of the duality of waves and particles, which he described in his celebrated 1925 thesis. After Davisson and Germer’s observation of the diffraction of electrons in 1927 confirmed his theory, Louis de Broglie was awarded the Nobel Prize in 1929. Mosh´ehad been sent to Louis de Broglie when he came to Paris in October 1963. There was immediate sympathy between these two very different but pro- found personalities. Mosh´eused to say that Louis de Broglie was an extraordinarily well-adjusted schizophrenic, and that without pejorative connotation, because he could see single physical phenomena as dualities. The wave-particle duality is one example, but there are others, like his theory of fusion, in particular, his short- lived neutrino theory of light. As de Broglie formulated that theory, with photons composed of two neutrinos, it was soon ‘shot down’, and justly so, but the general idea was vindicated, in a way, by Mosh´ewhen he showed in 1988 [19] that it was possible to formulate quantum electrodynamics with photons composed of two scalar singletons. The latter ‘particles’, in fact, massless particles in a 2+1 dimensional space-time at infinity in the anti-de Sitter universe, are just one step below neutrinos (at the limit of unitarity) in the diagram of representations of the ; µ anti-de Sitter group SO´3 2 , which is the last possible deformation of the Poincar´e group in the category of Lie groups when, due to a tiny negative curvature in the microworld, space-time translations do not add linearly.
Recommended publications
  • Infinitely Many Star Products to Play With
    DSF{40{01 BiBoS 01-12-068 ESI 1109 hep{th/0112092 December 2001 Infinitely many star products to play with J.M. Gracia-Bond´ıa a;b, F. Lizzi b, G. Marmo b and P. Vitale c a BiBoS, Fakult¨atder Physik, Universit¨atBielefeld, 33615 Bielefeld, Germany b Dipartimento di Scienze Fisiche, Universit`adi Napoli Federico II and INFN, Sezione di Napoli, Monte S. Angelo Via Cintia, 80126 Napoli, Italy [email protected], [email protected] c Dipartimento di Fisica, Universit`adi Salerno and INFN Gruppo Collegato di Salerno, Via S. Allende 84081 Baronissi (SA), Italy [email protected] Abstract While there has been growing interest for noncommutative spaces in recent times, most examples have been based on the simplest noncommutative algebra: [xi; xj] = iθij. Here we present new classes of (non-formal) deformed products k associated to linear Lie algebras of the kind [xi; xj] = icijxk. For all possible three- dimensional cases, we define a new star product and discuss its properties. To complete the analysis of these novel noncommutative spaces, we introduce noncom- pact spectral triples, and the concept of star triple, a specialization of the spectral triple to deformations of the algebra of functions on a noncompact manifold. We examine the generalization to the noncompact case of Connes' conditions for non- commutative spin geometries, and, in the framework of the new star products, we exhibit some candidates for a Dirac operator. On the technical level, properties of 2n the Moyal multiplier algebra M(Rθ ) are elucidated. 1 Introduction Over five years ago, Connes gave the first axiomatics for first-quantized fermion fields on (compact) noncommutative varieties, the so-called spectral triples [1].
    [Show full text]
  • Phase Space Quantum Mechanics Is Such a Natural Formulation of Quantum Theory
    Phase space quantum mechanics Maciej B laszak, Ziemowit Doma´nski Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Pozna´n, Poland Abstract The paper develope the alternative formulation of quantum mechanics known as the phase space quantum mechanics or deformation quantization. It is shown that the quantization naturally arises as an appropriate deformation of the classical Hamiltonian mechanics. More precisely, the deformation of the point-wise prod- uct of observables to an appropriate noncommutative ⋆-product and the deformation of the Poisson bracket to an appropriate Lie bracket is the key element in introducing the quantization of classical Hamiltonian systems. The formalism of the phase space quantum mechanics is presented in a very systematic way for the case of any smooth Hamiltonian function and for a very wide class of deformations. The considered class of deformations and the corresponding ⋆-products contains as a special cases all deformations which can be found in the literature devoted to the subject of the phase space quantum mechanics. Fundamental properties of ⋆-products of observables, associated with the considered deformations are presented as well. Moreover, a space of states containing all admissible states is introduced, where the admissible states are appropriate pseudo-probability distributions defined on the phase space. It is proved that the space of states is endowed with a structure of a Hilbert algebra with respect to the ⋆-multiplication. The most important result of the paper shows that developed formalism is more fundamental then the axiomatic ordinary quantum mechanics which appears in the presented approach as the intrinsic element of the general formalism.
    [Show full text]
  • The Neutrino Theory of Light
    THE NEUTRINO THEORY OF LIGHT. BY MAx BORN AND N. ~. I~AGENDRA N/kT~I. (From the Department of Physics, Indian Institute o[ Science, Bangalore.) Received March 18, 1936. 7. Introduction. TI~E most important contribution during the last years to the fundamental conceptions of theoretical physics seems to be the development of a new theory of light which contains the acknowledged one as a limiting case, but connects the optical phenomena with those of a very different kind, radio- activity. The idea that the photon is not an elementary particle but a secondary one, composed of simpler particles, has been first mentioned by p. Jordan 1. His argument was a statistical one, based on the fact, that photons satisfy the Bose-Einstein statistics. It is known from the theory of composed particles as nuclei, atoms or molecules, that this statistics may appear for such systems, which are compounds of elementary particles satisfying the Fermi-Dirac statistics (e.g., electrons or protons). After the discovery of the neutrino, de Broglie2 suggested that a photon hv is composed of a " neutrino " and an " anti-neutrino," each having the energy He has developed some interesting mathematical relations between the wave equation of a neutrino (which he assumed to be Dirac's equation for a vanish- {ngly small rest;mass) and Maxwell's field equations. But de Broglie has not touched the central problem, namely, as to how the Bose-Einstein statistics of the photons arises from the Fermi-statistics of the neutrinos. This ques- tion cannot be solved in the same way as in the cases mentioned above (material particles) Where it is a consequence of considering the composed system as a whole neglecting internal motions.
    [Show full text]
  • 2010 Integral
    Autumn 2010 Volume 5 Massachusetts Institute of Technology 1ntegral n e w s f r o m t h e mathematics d e p a r t m e n t a t m i t The retirement of seven of our illustrious col- leagues this year—Mike Artin, David Ben- Inside ney, Dan Kleitman, Arthur Mattuck, Is Sing- er, Dan Stroock, and Alar Toomre—marks • Faculty news 2–3 a shift to a new generation of faculty, from • Women in math 3 those who entered the field in the Sputnik era to those who never knew life without email • A minority perspective 4 and the Internet. The older generation built • Student news 4–5 the department into the academic power- house it is today—indeed they were the core • Funds for RSI and SPUR 5 of the department, its leadership and most • Retiring faculty and staff 6–7 distinguished members, during my early years at MIT. Now, as they are in the process • Alumni corner 8 of retiring, I look around and see that my con- temporaries are becoming the department’s Dear Friends, older group. Yikes! another year gone by and what a year it Other big changes are in the works. Two of Marina Chen have taken the lead in raising an was. We’re getting older, and younger, cele- our dedicated long-term administrators— endowment for them. Together with those of brating prizes and long careers, remembering Joanne Jonsson and Linda Okun—have Tim Lu ’79 and Peiti Tung ’79, their commit- our past and looking to the future.
    [Show full text]
  • Scientific Report for the Year 2000
    The Erwin Schr¨odinger International Boltzmanngasse 9 ESI Institute for Mathematical Physics A-1090 Wien, Austria Scientific Report for the Year 2000 Vienna, ESI-Report 2000 March 1, 2001 Supported by Federal Ministry of Education, Science, and Culture, Austria ESI–Report 2000 ERWIN SCHRODINGER¨ INTERNATIONAL INSTITUTE OF MATHEMATICAL PHYSICS, SCIENTIFIC REPORT FOR THE YEAR 2000 ESI, Boltzmanngasse 9, A-1090 Wien, Austria March 1, 2001 Honorary President: Walter Thirring, Tel. +43-1-4277-51516. President: Jakob Yngvason: +43-1-4277-51506. [email protected] Director: Peter W. Michor: +43-1-3172047-16. [email protected] Director: Klaus Schmidt: +43-1-3172047-14. [email protected] Administration: Ulrike Fischer, Eva Kissler, Ursula Sagmeister: +43-1-3172047-12, [email protected] Computer group: Andreas Cap, Gerald Teschl, Hermann Schichl. International Scientific Advisory board: Jean-Pierre Bourguignon (IHES), Giovanni Gallavotti (Roma), Krzysztof Gawedzki (IHES), Vaughan F.R. Jones (Berkeley), Viktor Kac (MIT), Elliott Lieb (Princeton), Harald Grosse (Vienna), Harald Niederreiter (Vienna), ESI preprints are available via ‘anonymous ftp’ or ‘gopher’: FTP.ESI.AC.AT and via the URL: http://www.esi.ac.at. Table of contents General remarks . 2 Winter School in Geometry and Physics . 2 Wolfgang Pauli und die Physik des 20. Jahrhunderts . 3 Summer Session Seminar Sophus Lie . 3 PROGRAMS IN 2000 . 4 Duality, String Theory, and M-theory . 4 Confinement . 5 Representation theory . 7 Algebraic Groups, Invariant Theory, and Applications . 7 Quantum Measurement and Information . 9 CONTINUATION OF PROGRAMS FROM 1999 and earlier . 10 List of Preprints in 2000 . 13 List of seminars and colloquia outside of conferences .
    [Show full text]
  • Weyl Quantization and Wigner Distributions on Phase Space
    faculteit Wiskunde en Natuurwetenschappen Weyl quantization and Wigner distributions on phase space Bachelor thesis in Physics and Mathematics June 2014 Student: R.S. Wezeman Supervisor in Physics: Prof. dr. D. Boer Supervisor in Mathematics: Prof. dr H. Waalkens Abstract This thesis describes quantum mechanics in the phase space formulation. We introduce quantization and in particular the Weyl quantization. We study a general class of phase space distribution functions on phase space. The Wigner distribution function is one such distribution function. The Wigner distribution function in general attains negative values and thus can not be interpreted as a real probability density, as opposed to for example the Husimi distribution function. The Husimi distribution however does not yield the correct marginal distribution functions known from quantum mechanics. Properties of the Wigner and Husimi distribution function are studied to more extent. We calculate the Wigner and Husimi distribution function for the energy eigenstates of a particle trapped in a box. We then look at the semi classical limit for this example. The time evolution of Wigner functions are studied by making use of the Moyal bracket. The Moyal bracket and the Poisson bracket are compared in the classical limit. The phase space formulation of quantum mechanics has as advantage that classical concepts can be studied and compared to quantum mechanics. For certain quantum mechanical systems the time evolution of Wigner distribution functions becomes equivalent to the classical time evolution stated in the exact Egerov theorem. Another advantage of using Wigner functions is when one is interested in systems involving mixed states. A disadvantage of the phase space formulation is that for most problems it quickly loses its simplicity and becomes hard to calculate.
    [Show full text]
  • Interpreted History of Neutrino Theory of Light and Its Futureprovided by CERN Document Server
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Interpreted History Of Neutrino Theory Of Light And Its Futureprovided by CERN Document Server W. A. Perkins Perkins Advanced Computing Systems, 12303 Hidden Meadows Circle, Auburn, CA 95603, USA E-mail: [email protected] De Broglie's original idea that a photon is composed of a neutrino- antineutrino pair bound by some interaction was severely modified by Jor- dan. Although Jordan addressed an important problem (photon statistics) that de Broglie had not considered, his modifications may have been detri- mental to the development of a composite photon theory. His obsession with obtaining Bose statistics for the composite photon made it easy for Pryce to prove his theory untenable. Pryce also indicated that forming transversely- polarized photons from neutrino-antineutrino pairs was impossible, but oth- ers have shown that this is not a problem. Following Pryce, Berezinskii has proven that any composite photon theory (using fermions) is impossible if one accepts five assumptions. Thus, any successful composite theory must show which of Berezinskii's assumptions is not valid. A method of forming composite particles based on Fermi and Yang's model will be discussed. Such composite particles have properties similar to conventional photons. However, unlike the situation with conventional photon theory, Lorentz invariance can be satisfied without the need for gauge invariance or introducing non-physical photons. PACS numbers: 14.70.Bh,12.60.Rc,12.20.Ds I. INTRODUCTION The theoretical development of a composite photon theory (based on de Broglie’s idea that the photon is composed of a neutrino-antineutrino pair [1] bound by some interaction) has had a stormy history with many negative papers.
    [Show full text]
  • Matrix Bases for Star Products: a Review?
    Symmetry, Integrability and Geometry: Methods and Applications SIGMA 10 (2014), 086, 36 pages Matrix Bases for Star Products: a Review? Fedele LIZZI yzx and Patrizia VITALE yz y Dipartimento di Fisica, Universit`adi Napoli Federico II, Napoli, Italy E-mail: [email protected], [email protected] z INFN, Sezione di Napoli, Italy x Institut de Ci´enciesdel Cosmos, Universitat de Barcelona, Catalonia, Spain Received March 04, 2014, in final form August 11, 2014; Published online August 15, 2014 http://dx.doi.org/10.3842/SIGMA.2014.086 Abstract. We review the matrix bases for a family of noncommutative ? products based on a Weyl map. These products include the Moyal product, as well as the Wick{Voros products and other translation invariant ones. We also review the derivation of Lie algebra type star products, with adapted matrix bases. We discuss the uses of these matrix bases for field theory, fuzzy spaces and emergent gravity. Key words: noncommutative geometry; star products; matrix models 2010 Mathematics Subject Classification: 58Bxx; 40C05; 46L65 1 Introduction Star products were originally introduced [34, 62] in the context of point particle quantization, they were generalized in [9, 10] to comprise general cases, the physical motivations behind this was the quantization of phase space. Later star products became a tool to describe possible noncommutative geometries of spacetime itself (for a review see [4]). In this sense they have become a tool for the study of field theories on noncommutative spaces [77]. In this short review we want to concentrate on one particular aspect of the star product, the fact that any action involving fields which are multiplied with a star product can be seen as a matrix model.
    [Show full text]
  • NEW ENTITIES, OLD PARADIGMS: ELEMENTARY PARTICLES in the 1930S1
    LUE,, vol. 27,2004,435-464 NEW ENTITIES, OLD PARADIGMS: ELEMENTARY PARTICLES IN THE 1930s1 JAUME NAVARRO Cambridge University RESUMEN Al3STRACT En este artículo pretendo analizar los The aim of this paper is to analyse the procesos por los cuales se descubrieron y processes by which a number of new ele- aceptaron nuevas partículas elementales mentary particles were discovered and en los años anteriores a la segunda guerra accepted by the scientific community in the mundiaL Muchos libros de divulgación de years before World War 11. Many popular física de partículas elementales suelen accounts of particle physics depict a linear narrar una historia lineal sobre la bŭsque- history of the search for the ultimate con- da de las ŭltimas partículas constitutivas stituents of matter, which would start in de la materia. Ésta empezaría en 1897, 1897, with the discovery of the electron, con el descubrimiento del electrón, y and move on to an increasing number of avanzaría linealmente añadiendo nuevas new particles: photon, proton, neutron, partículas: fotones, protones, neutrones, positron, neutrino... Nevertheless, the positrones, neutrinos, etc. Sin embargo, el question about the building-blocks of the problema de los elementos constitutivos material world seems to have been a sec- de la materia no era un tema central de la ondary concern for physidsts who were fisica en la década de 1930. En sentido involved in the discovery of the new ele- estricto, se puede asegurar que antes de la mentary particles in the 1930s. In the segunda guerra mundial no existz'a una strong sense, one can argue that there was nueva disciplina de partículas elementales no such thing as a new discipline of particle en física.
    [Show full text]
  • A Functorial Construction of Quantum Subtheories
    entropy Article A Functorial Construction of Quantum Subtheories Ivan Contreras 1 and Ali Nabi Duman 2,* 1 Department of Mathematics, University of Illinois at Urbana-Champain, Urbana, IL 61801, USA; [email protected] 2 Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia * Correspondence: [email protected]; Tel.: +966-138-602-632 Academic Editors: Giacomo Mauro D’Ariano, Andrei Khrennikov and Massimo Melucci Received: 2 March 2017; Accepted: 4 May 2017; Published: 11 May 2017 Abstract: We apply the geometric quantization procedure via symplectic groupoids to the setting of epistemically-restricted toy theories formalized by Spekkens (Spekkens, 2016). In the continuous degrees of freedom, this produces the algebraic structure of quadrature quantum subtheories. In the odd-prime finite degrees of freedom, we obtain a functor from the Frobenius algebra of the toy theories to the Frobenius algebra of stabilizer quantum mechanics. Keywords: categorical quantum mechanics; geometric quantization; epistemically-restricted theories; Frobenius algebras 1. Introduction The aim of geometric quantization is to construct, using the geometry of the classical system, a Hilbert space and a set of operators on that Hilbert space that give the quantum mechanical analogue of the classical mechanical system modeled by a symplectic manifold [1–3]. Starting with a symplectic space M corresponding to the classical phase space, the square integrable functions over M is the first Hilbert space in the construction, called the prequantum Hilbert space. In this case, the classical observables are mapped to the operators on this Hilbert space, and the Poisson bracket is mapped to the commutator.
    [Show full text]
  • SCIENTIFIC REPORT for the 5 YEAR PERIOD 1993–1997 INCLUDING the PREHISTORY 1991–1992 ESI, Boltzmanngasse 9, A-1090 Wien, Austria
    The Erwin Schr¨odinger International Boltzmanngasse 9 ESI Institute for Mathematical Physics A-1090 Wien, Austria Scientific Report for the 5 Year Period 1993–1997 Including the Prehistory 1991–1992 Vienna, ESI-Report 1993-1997 March 5, 1998 Supported by Federal Ministry of Science and Transport, Austria http://www.esi.ac.at/ ESI–Report 1993-1997 ERWIN SCHRODINGER¨ INTERNATIONAL INSTITUTE OF MATHEMATICAL PHYSICS, SCIENTIFIC REPORT FOR THE 5 YEAR PERIOD 1993–1997 INCLUDING THE PREHISTORY 1991–1992 ESI, Boltzmanngasse 9, A-1090 Wien, Austria March 5, 1998 Table of contents THE YEAR 1991 (Paleolithicum) . 3 Report on the Workshop: Interfaces between Mathematics and Physics, 1991 . 3 THE YEAR 1992 (Neolithicum) . 9 Conference on Interfaces between Mathematics and Physics . 9 Conference ‘75 years of Radon transform’ . 9 THE YEAR 1993 (Start of history of ESI) . 11 Erwin Schr¨odinger Institute opened . 11 The Erwin Schr¨odinger Institute An Austrian Initiative for East-West-Collaboration . 11 ACTIVITIES IN 1993 . 13 Short overview . 13 Two dimensional quantum field theory . 13 Schr¨odinger Operators . 16 Differential geometry . 18 Visitors outside of specific activities . 20 THE YEAR 1994 . 21 General remarks . 21 FTP-server for POSTSCRIPT-files of ESI-preprints available . 22 Winter School in Geometry and Physics . 22 ACTIVITIES IN 1994 . 22 International Symposium in Honour of Boltzmann’s 150th Birthday . 22 Ergodicity in non-commutative algebras . 23 Mathematical relativity . 23 Quaternionic and hyper K¨ahler manifolds, . 25 Spinors, twistors and conformal invariants . 27 Gibbsian random fields . 28 CONTINUATION OF 1993 PROGRAMS . 29 Two-dimensional quantum field theory . 29 Differential Geometry . 29 Schr¨odinger Operators .
    [Show full text]
  • A Conjectural Preon Theory and Its Implications
    A Conjectural Preon Theory and its Implications Rupert Gerritsen Copyright © - Rupert Gerritsen Batavia Online Publishing A Conjectural Preon Theory and its Implications Batavia Online Publishing Canberra, Australia Published by Batavia Online Publishing 2012 Copyright © Rupert Gerritsen National Library of Australia Cataloguing-in-Publication Data Author: Gerritsen, Rupert, 1953- Title: A Conjectural Preon Theory ISBN: 978-0-9872141-5-7 (pbk.) Notes: Includes bibliographic references Subjects: Particles (Nuclear physics) Dewey Number: 539.72 Copyright © - Rupert Gerritsen 1 A Conjectural Preon Theory and its Implications At present the dominant paradigm in particle physics is the Standard Model. This theory has taken hold over the last 30 years as its predictions of new particles have been dramatically borne out in increasingly sophisticated experiments. Despite this it would seem that the Standard Model has some shortcomings and leaves a number of questions unanswered. The number of arbitrary constants and parameters incorporated in the Model is one unsatisfactory aspect, as is its inability to explain the masses of the quarks and leptons. Another problematic area often cited is the Model’s failure to account for the number of generations of quarks and leptons. The plethora of “fundamental” particles also appears to represent a major weakness in the Standard Model. There are 16 “fundamental” or “elementary” particles, as well as their anti-particles, engendered in the Standard Model, along with 8 types of gluons. This difficulty may be further compounded by theorizing based on supersymmetry, as an extension of the Standard Model, because it requires heavier twins for the known particles. Furthermore the Higgs mechanism, postulated to generate mass in particles, has not as yet been validated experimentally.
    [Show full text]