Spitzer Observations of 3C Quasars and Radio Galaxies: Mid-Infrared Properties of Powerful Radio Sources K

Total Page:16

File Type:pdf, Size:1020Kb

Spitzer Observations of 3C Quasars and Radio Galaxies: Mid-Infrared Properties of Powerful Radio Sources K The Astrophysical Journal, 660:117 Y 145, 2007 May 1 # 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A. SPITZER OBSERVATIONS OF 3C QUASARS AND RADIO GALAXIES: MID-INFRARED PROPERTIES OF POWERFUL RADIO SOURCES K. Cleary,1 C. R. Lawrence,1 J. A. Marshall,2 L. Hao,2 and D. Meier1 Received 2006 April 28; accepted 2006 December 14 ABSTRACT We have measured mid-infrared radiation from an orientation-unbiased sample of 3CRR galaxies and quasars at 22:4 À1 redshifts 0:4 z 1:2 with the IRS and MIPS instruments on Spitzer. Powerful emission (L24 m > 10 WHz srÀ1) was detected from all but one of the sources. We fit the Spitzer data and other measurements from the literature with synchrotron and dust components. The IRS data provide powerful constraints on the fits. At 15 m, quasars are typically 4 times brighter than radio galaxies with the same isotropic radio power. Based on our fits, half of this difference can be attributed to the presence of nonthermal emission in the quasars but not the radio galaxies. The other half is consistent with dust absorption in the radio galaxies but not the quasars. Fitted optical depths are anticorrelated with core dominance, from which we infer an equatorial distribution of dust around the central engine. The median optical depth at 9.7 m for objects with core dominance factor R > 10À2 is 0.4; for objects with R 10À2,itis 1.1. We have thus addressed a long-standing question in the unification of FR II quasars and galaxies: quasars are more luminous in the mid-infrared than galaxies because of a combination of Doppler-boosted synchrotron emission in quasars and extinction in galaxies, both orientation-dependent effects. Subject headings: galaxies: active — galaxies: nuclei — quasars: general 1. INTRODUCTION Of all the identifying signatures of nuclear activity, only low- frequency radio emission originates far from the nucleus. Only From an observational perspective, active galactic nuclei (AGNs) low-frequency radio emission comes from outside the regions are diverse. The existence of relativistic jets in some AGNs, with where anisotropic emission and obscuration are potentially associated Doppler boosting (Blandford & Rees 1978), guaran- important. Low-frequency radio emission, therefore, pro ides a tees that some of this diversity of appearance must be due to ori- v unique way to obtain an orientation-unbiased sample of AGNs. entation (Readhead et al. 1978; Schever & Readhead 1979). It Only a small fraction of AGNs produce the prodigious radio is equally clear that not all differences can be due to orientation power of FR II galaxies and quasars. Nevertheless, the fact that and that there are real physical differences between AGNs. Much FR II galaxies and quasars can be studied in an orientation- observational and theoretical work over the last three decades has unbiased sample, selected on the basis of low-frequency radio been devoted to sorting out orientational and physical differences. The greatest successes have been achieved in the ‘‘unified model’’ emission, makes them uniquely valuable in separating the effects of orientation from physical differences. Visible light and X-ray of Fanaroff-Riley type II (FR II) galaxies and quasars (Orr & selected samples do not have this property. Browne 1982; Barthel 1989) and in the unification of Seyfert 1 and Seyfert 2 galaxies (see, e.g., Antonucci & Miller 1985). In The mid-infrared (MIR) and far-infrared (FIR) properties of these powerful radio sources are largely unknown. Their space both cases a dusty torus or disklike structure obscures optical and density is so low that only a few (e.g., 3C 405=Cygnus A) are at ultraviolet emission from the accretion disk and environs along low redshifts. The Spitzer Space Telescope (Werner et al. 2004) some lines of sight, accounting for apparent differences between promised a major advance in sensitivity over previous telescopes these classes of AGNs (see, e.g., Urry & Padovani 1995). and the capability to measure these objects. We therefore un- The FR II/quasar case is particularly important for the follow- dertook observations with Spitzer of powerful radio sources. The ing reason. These objects are selected to have low-frequency overall goal was straightforward: to measure for the first time the (178 MHz) radio luminosity greater than about 1025 WHzÀ1 srÀ1 (Fanaroff & Riley 1974). Low-frequency emission is synchro- MIR and FIR emission from an orientation-unbiased sample of tron emission from giant, optically thin clouds that therefore emit the powerful radio sources. isotropically. The low-frequency emission of dense and possibly More specific goals can also be considered. For example, the Doppler-boosted regions of these sources is suppressed by self- central proposition of FR II galaxy/quasar unification is that FR II absorption, which produces a 2.5 spectrum. As a result, bolo- galaxies are just quasars seen from an angle in which the optical- metrically insignificant but highly anisotropic emission, which to-UVemission of the central region is intercepted by the opaque, may dominate the source at higher frequencies, is almost always dusty torus, which reemits this radiation at longer wavelengths. insignificant at a few hundred megahertz or less. Moreover, high Conversely, quasars are just FR II galaxies seen closer to the jet spatial resolution observations of these sources with interfer- axis. Models suggest that the dusty torus becomes optically thin ometers allow one to measure and subtract the small contribution at wavelengths in the FIR (see, e.g., Pier & Krolik 1992; Granato of potentially anisotropic emitting regions at low frequency. & Danese 1994; Granato et al. 1997; Nenkova et al. 2002; Schartmann et al. 2005; Fritz et al. 2006), suggesting a direct test of FR II galaxy/quasar orientation-based unification. If radio lobe 1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, luminosity is an indicator (albeit time averaged) of central engine CA 91109; kieran.a.cleary@ jpl.nasa.gov. energy, then FR II galaxies and quasars with comparable isotropic 2 Astronomy Department, Cornell University, Ithaca, NY 14853. radio lobe luminosity should exhibit ‘‘comparable’’ isotropic FIR 117 118 CLEARY ET AL. Vol. 660 luminosity. Comparable does not necessarily mean equal, but ity and spectroscopic data provided by Spitzer provide additional there should be no FR II galaxies and quasars with low nuclear constraints in the infrared, allowing us to perform a spectral de- infrared luminosity at wavelengths where the emission is opti- composition of the thermal and nonthermal components of emis- cally thin. sion for the most powerful radio sources and also to estimate the This test has been performed by other investigators using in- silicate optical depth. frared measurements from the Infrared Astronomical Satellite In this paper we describe the selection methodology (x 2), (IRAS ) and the Infrared Space Observatory (ISO; Kessler et al. Spitzer observations (x 3), and data reduction (x 4) for our sam- 1996). Heckman et al. (1992) compared IRAS measurements of ple of powerful 3C radio sources. The photometric and spectro- 3CR quasars and radio galaxies (z > 0:3) selected on the basis of scopic results are presented (x 5.1) and the SEDs are fitted with a their 178 MHz radio flux density. They found that the rest-frame combination of synchrotron and dust components (x 5.2). We 6Y50 m emission is on average 4 times stronger in the quasars then explore what these results can tell us about the physical than in the radio galaxies, suggesting that either the quasars are conditions (x 6.1) and the origin of the infrared emission (xx 6.2 intrinsically stronger sources of MIR and FIR emission than qua- and 6.3) in these objects. Finally, the comparative infrared lu- sars or this emission is anisotropic. The latter requires large op- minosity of quasars and galaxies is discussed (x 6.4). tical depths in the FIR, possibly requiring implausibly large dust masses. The former possibility is problematic for pure orientation- 2. THE SAMPLE based unification of quasars and radio galaxies but may be due We require a sample selected at low frequency, with L178 MHz > to a significant nonthermal contribution in this wavelength 1026 WHzÀ1 srÀ1 and with a reasonable balance between FR II range from the radio jet. Hes et al. (1995) reanalyzed the IRAS 3 radio galaxies and quasars. 60 m data for 3CR quasars and radio galaxies in the redshift The sample of Barthel (1989) provides the ideal starting point. : < < : range 0 3 z 0 8. They confirm the finding of Heckman et al. It contains the 50 sources in the complete low-frequency 3CRR (1992) that 3CR quasars are systematically brighter than radio catalog of Laing et al. (1983) with 0:5 z 1:0. All have emit- galaxies in the MIR and FIR and conclude that a beamed 60 m ted radio luminosity L > 1026 WHzÀ1 srÀ1. Of the 50, 33 component may account for this difference. In subsequent work, 178 MHz are identified with galaxies and 17 with quasars, with classifica- Hoekstra et al. (1997) find that the observed IRAS 60 minfrared- tions based on the optical type designated by Laing et al. (1983). to-radio flux density ratios are consistent with an orientation- On the basis of radio morphology, all sources in the sample are based model incorporating beamed emission but conclude that FR II, as expected from the high radio luminosity. other processes such as torus optical depth also contribute. To reduce the observing time required, we reduced the sample The ISO photometry for four pairs of 3CR quasars and radio to 33 objects based on ecliptic latitude. Sources at high ecliptic galaxies matched in redshift and radio power was compared by latitude are easier to schedule with Spitzer.
Recommended publications
  • Jet-Induced Star Formation in 3C 285 and Minkowski's Object⋆
    A&A 574, A34 (2015) Astronomy DOI: 10.1051/0004-6361/201424932 & c ESO 2015 Astrophysics Jet-induced star formation in 3C 285 and Minkowski’s Object? Q. Salomé, P. Salomé, and F. Combes LERMA, Observatoire de Paris, CNRS UMR 8112, 61 avenue de l’Observatoire, 75014 Paris, France e-mail: [email protected] Received 5 September 2014 / Accepted 6 November 2014 ABSTRACT How efficiently star formation proceeds in galaxies is still an open question. Recent studies suggest that active galactic nucleus (AGN) can regulate the gas accretion and thus slow down star formation (negative feedback). However, evidence of AGN positive feedback has also been observed in a few radio galaxies (e.g. Centaurus A, Minkowski’s Object, 3C 285, and the higher redshift 4C 41.17). Here we present CO observations of 3C 285 and Minkowski’s Object, which are examples of jet-induced star formation. A spot (named 3C 285/09.6 in the present paper) aligned with the 3C 285 radio jet at a projected distance of ∼70 kpc from the galaxy centre shows star formation that is detected in optical emission. Minkowski’s Object is located along the jet of NGC 541 and also shows star formation. Knowing the distribution of molecular gas along the jets is a way to study the physical processes at play in the AGN interaction with the intergalactic medium. We observed CO lines in 3C 285, NGC 541, 3C 285/09.6, and Minkowski’s Object with the IRAM 30 m telescope. In the central galaxies, the spectra present a double-horn profile, typical of a rotation pattern, from which we are able to estimate the molecular gas density profile of the galaxy.
    [Show full text]
  • University of Southampton Research Repository Eprints Soton
    University of Southampton Research Repository ePrints Soton Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g. AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination http://eprints.soton.ac.uk UNIVERSITY OF SOUTHAMPTON The epoch and environmental dependence of radio-loud active galaxy feedback by Judith Ineson Thesis for the degree of Doctor of Philosophy in the FACULTY OF PHYSICAL SCIENCES AND ENGINEERING Department of Physics and Astronomy June 2016 UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF PHYSICAL SCIENCES AND ENGINEERING Department of Physics and Astronomy Doctor of Philosophy THE EPOCH AND ENVIRONMENTAL DEPENDENCE OF RADIO-LOUD ACTIVE GALAXY FEEDBACK by Judith Ineson This thesis contains the first systematic X-ray investigation of the relationships between the properties of different types of radio-loud AGN and their large-scale environments, using samples at two distinct redshifts to isolate the effects of evolution. I used X-ray ob- servations of the galaxy clusters hosting the radio galaxies to characterise the properties of the environments and compared them with the low-frequency radio properties of the AGN.
    [Show full text]
  • Also Available in PDF
    University of Hawai‘i, Institute for Astronomy Publications in Calendar Year 2000 PUBLICATIONS Investigating the Link between Cometary and Interstellar Material. A&A, 353, 1101–1114 (2000) The following articles and books were published dur- ing calendar year 2000. The names of IfA authors Boehnhardt, H.; Hainaut, O.; Delahodde, C.; West, R.; are in boldface. For an html version of this list Meech, K.; Marsden, B. A Pencil-Beam Search for Dis- with links, go to http://www.ifa.hawaii.edu/publications/ tant TNOs at the ESO NTT. In Minor Bodies in the Outer 2000pubs.html. More recent publications are listed at Solar System, ed. A. Fitzsimmons, D. Jewitt, & R. M. http://www.ifa.hawaii.edu/publications/preprints/. West. ESO Astrophysics Symposia (Springer), 117–123 (2000) Barger, A. J.; Cowie, L. L.; Richards, E. A. Mapping the Evolution of High-Redshift Dusty Galaxies with Submil- Boesgaard, A. M. Review of Stellar Abundance Results from limeter Observations of a Radio-selected Sample. AJ, Large Telescopes. Proc. SPIE, 4005, 142–149 (2000) 119, 2092–2109 (2000) Boesgaard, A. M.; Stephens, A.; King, J. R.; Deliyannis, Barucci, M. A.; Romon, J.; Doressoundiram, A.; Tholen, C. P. Chemical Abundances in Globular Cluster Turn-Off D. J. Compositional Surface Diversity in the Trans-Nep- Stars from Keck/HIRES Observations. Proc. SPIE, 4005, tunian Objects. AJ, 120, 496–500 (2000) 274–284 (2000) Baudoz, P.; Mouillet, D.; Beuzit, J.-L.; Mekarnia, D.; Rab- Brandner, W.; Grebel, E. K.; Chu, Y.; Dottori, H.; Brandl, bia, Y.; Gay, J.; Schneider, J.-L. First Results of the B.; Richling, S.; Yorke, H.
    [Show full text]
  • The Applicability of Far-Infrared Fine-Structure Lines As Star Formation
    A&A 568, A62 (2014) Astronomy DOI: 10.1051/0004-6361/201322489 & c ESO 2014 Astrophysics The applicability of far-infrared fine-structure lines as star formation rate tracers over wide ranges of metallicities and galaxy types? Ilse De Looze1, Diane Cormier2, Vianney Lebouteiller3, Suzanne Madden3, Maarten Baes1, George J. Bendo4, Médéric Boquien5, Alessandro Boselli6, David L. Clements7, Luca Cortese8;9, Asantha Cooray10;11, Maud Galametz8, Frédéric Galliano3, Javier Graciá-Carpio12, Kate Isaak13, Oskar Ł. Karczewski14, Tara J. Parkin15, Eric W. Pellegrini16, Aurélie Rémy-Ruyer3, Luigi Spinoglio17, Matthew W. L. Smith18, and Eckhard Sturm12 1 Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, 9000 Gent, Belgium e-mail: [email protected] 2 Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle Str. 2, 69120 Heidelberg, Germany 3 Laboratoire AIM, CEA, Université Paris VII, IRFU/Service d0Astrophysique, Bat. 709, 91191 Gif-sur-Yvette, France 4 UK ALMA Regional Centre Node, Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK 5 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 6 Laboratoire d0Astrophysique de Marseille − LAM, Université Aix-Marseille & CNRS, UMR7326, 38 rue F. Joliot-Curie, 13388 Marseille CEDEX 13, France 7 Astrophysics Group, Imperial College, Blackett Laboratory, Prince Consort Road, London SW7 2AZ, UK 8 European Southern Observatory, Karl
    [Show full text]
  • Download This Article in PDF Format
    A&A 505, 509–520 (2009) Astronomy DOI: 10.1051/0004-6361/200912586 & c ESO 2009 Astrophysics The Bologna complete sample of nearby radio sources II. Phase referenced observations of faint nuclear sources E. Liuzzo1,2, G. Giovannini1,2, M. Giroletti1, and G. B. Taylor3,4 1 INAF Istituto di Radioastronomia, via Gobetti 101, 40129 Bologna, Italy e-mail: [email protected] 2 Dipartimento di Astronomia, Università di Bologna, via Ranzani 1, 40127 Bologna, Italy 3 Department of Physics and Astronomy, University of New Mexico, Albuquerque NM 87131, USA 4 also Adjunct Astronomer at the National Radio Astronomy Observatory, USA Received 27 May 2009 / Accepted 30 June 2009 ABSTRACT Aims. To study statistical properties of different classes of sources, it is necessary to observe a sample that is free of selection effects. To do this, we initiated a project to observe a complete sample of radio galaxies selected from the B2 Catalogue of Radio Sources and the Third Cambridge Revised Catalogue (3CR), with no selection constraint on the nuclear properties. We named this sample “the Bologna Complete Sample” (BCS). Methods. We present new VLBI observations at 5 and 1.6 GHz for 33 sources drawn from a sample not biased toward orientation. By combining these data with those in the literature, information on the parsec-scale morphology is available for a total of 76 of 94 radio sources with a range in radio power and kiloparsec-scale morphologies. Results. The fraction of two-sided sources at milliarcsecond resolution is high (30%), compared to the fraction found in VLBI surveys selected at centimeter wavelengths, as expected from the predictions of unified models.
    [Show full text]
  • The X-Ray Nuclei of Intermediate-Redshift Radio Sources
    Mon. Not. R. Astron. Soc. 370, 1893–1904 (2006) doi:10.1111/j.1365-2966.2006.10615.x The X-ray nuclei of intermediate-redshift radio sources M. J. Hardcastle,1⋆ D. A. Evans2 and J. H. Croston1 1School of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield, Hertfordshire AL10 9AB 2Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA Accepted 2006 May 24. Received 2006 April 27; in original form 2006 March 3 ABSTRACT We present a Chandra and XMM–Newton spectral analysis of the nuclei of the radio galaxies and radio-loud quasars from the 3CRR sample in the redshift range 0.1 < z < 0.5. In the range of radio luminosity sampled by these objects, mostly Fanaroff–Riley type IIs (FR IIs), it has been clear for some time that a population of radio galaxies [low-excitation radio galaxies (LERGs)] cannot easily participate in models that unify narrow-line radio galaxies and broad- line objects. We show that low-excitation and narrow-line radio galaxies have systematically different nuclear X-ray properties: while narrow-line radio galaxies universally show a heavily absorbed nuclear X-ray component, such a heavily absorbed component is rarely found in sources classed as low-excitation objects. Combining our data with the results of our earlier work on the z < 0.1 3CRR sources, we discuss the implications of this result for unified models, for the origins of mid-infrared emission from radio sources, and for the nature of the apparent Fanaroff–Riley type I (FR I)/FR II dichotomy in the X-ray.
    [Show full text]
  • Stellar Populations in the Nuclear Regions of Nearby Radio Galaxies
    Mon. Not. R. Astron. Soc. 325, 636–648 (2001) Stellar populations in the nuclear regions of nearby radio galaxies Itziar Aretxaga,1 Elena Terlevich,1P† Roberto J. Terlevich,2‡ Garret Cotter3 and A´ ngeles I. Dı´az4 1Instituto Nacional de Astrofı´sica, O´ ptica y Electro´nica, Apdo. Postal 25 y 216, 72000 Puebla, Pue, Mexico 2Institute of Astronomy, Madingley Road, Cambridge CB3 0HA 3Cavendish Laboratory, Univ. of Cambridge, Madingley Road, Cambridge CB3 0HE 4Dept. Fı´sica Teo´rica C-XI, Univ. Auto´moma de Madrid, Cantoblanco, Madrid, Spain Accepted 2001 February 25. Received 2001 February 5; in original form 2000 May 15 ABSTRACT 25 21 21 We present optical spectra of the nuclei of seven luminous ðP178 MHz * 10 WHz Sr Þ nearby ðz , 0:08Þ radio galaxies, which mostly correspond to the FR II class. In two cases, Hydra A and 3C 285, the Balmer and l4000-A˚ break indices constrain the spectral types and luminosity classes of the stars involved, revealing that the blue spectra are dominated by blue supergiant and/or giant stars. The ages derived for the last burst of star formation in Hydra A are between 7 and 40 Myr, and in 3C 285 about 10 Myr. The rest of the narrow-line radio galaxies (four) have a l4000-A˚ break and metallic indices consistent with those of elliptical galaxies. The only broad-line radio galaxy in our sample, 3C 382, has a strong featureless blue continuum and broad emission lines that dilute the underlying blue stellar spectra. We are able to detect the Ca II triplet in absorption in the seven objects, with good quality data for only four of them.
    [Show full text]
  • An Optical Spectroscopic Survey of the 3CR
    A&A 560, A81 (2013) Astronomy DOI: 10.1051/0004-6361/201322842 & c ESO 2013 Astrophysics An optical spectroscopic survey of the 3CR sample of radio galaxies with z < 0.3 V. Implications for the unified model for FR IIs Ranieri D. Baldi1, Alessandro Capetti2, Sara Buttiglione3, Marco Chiaberge4,5,6, and Annalisa Celotti1,7,8 1 SISSA-ISAS, via Bonomea 265, 34136 Trieste, Italy e-mail: [email protected] 2 INAF − Osservatorio Astrofisico di Torino, Strada Osservatorio 20, 10025 Pino Torinese, Italy 3 INAF − Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, 35122 Padova, Italy 4 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 5 INAF − Istituto di Radio Astronomia, via P. Gobetti 101, 40129 Bologna, Italy 6 Center for Astrophysical Sciences, Johns Hopkins University, 3400 N. Charles Street Baltimore, MD 21218, USA 7 INAF − Osservatorio Astronomico di Brera, via E. Bianchi 46, 23807 Merate, Italy 8 INFN − Sezione di Trieste, via Valerio 2, 34127 Trieste, Italy Received 14 October 2013 / Accepted 30 October 2013 ABSTRACT We explore the implications of our optical spectroscopic survey of 3CR radio sources with z < 0.3 for the unified model (UM) for radio-loud AGN, focusing on objects with a “edge-brightened” (FR II) radio morphology. The sample contains 33 high ionization galaxies (HIGs) and 18 broad line objects (BLOs). According to the UM, HIGs, the narrow line sources, are the nuclearly obscured counterparts of BLOs. The fraction of HIGs indicates a covering factor of the circumnuclear matter of 65% that corresponds, adopting a torus geometry, to an opening angle of 50◦ ± 5.
    [Show full text]
  • The Jets in Radio Galaxies
    The jets in radio galaxies Martin John Hardcastle Churchill College September 1996 A dissertation submitted in candidature for the degree of Doctor of Philosophy in the University of Cambridge i `Glaucon: ª...But how did you mean the study of astronomy to be reformed, so as to serve our pur- poses?º Socrates: ªIn this way. These intricate traceries on the sky are, no doubt, the loveliest and most perfect of material things, but still part of the visibleworld, and therefore they fall far short of the true realities Ð the real relativevelocities,in theworld of purenumber and all geometrical ®gures, of the movements which carry round the bodies involved in them. These, you will agree, can be conceived by reason and thought, not by the eye.º Glaucon: ªExactly.º Socrates: ªAccordingly, we must use the embroidered heaven as a model to illustrateour study of these realities, just as one might use diagrams exquisitely drawn by some consummate artist like Daedalus. An expert in geometry, meeting with such designs, would admire their ®nished workmanship, but he wouldthink it absurd to studythem in all earnest with the expectation of ®nding in their proportionsthe exact ratio of any one number to another...º ' Ð Plato (429±347 BC), The Republic, trans. F.M. Cornford. ii Contents 1 Introduction 1 1.1 Thisthesis...................................... ... 1 1.2 Abriefhistory................................... .... 2 1.3 Synchrotronphysics........ ........... ........... ...... 4 1.4 Currentobservationalknowledgeintheradio . ............. 5 1.4.1 Jets ........................................ 6 1.4.2 Coresornuclei ................................. 6 1.4.3 Hotspots ..................................... 7 1.4.4 Largescalestructure . .... 7 1.4.5 Theradiosourcemenagerie . .... 8 1.4.6 Observationaltrends .
    [Show full text]
  • Extragalactic Radio Jets
    Annual Reviews www.annualreviews.org/aronline Ann. Rev. Astron.Astrophys. 1984. 22 : 319-58 Copyright© 1984 by AnnualReviews Inc. All rights reserved EXTRAGALACTIC RADIO JETS Alan H. Bridle National Radio AstronomyObservatory, 1 Charlottesville, Virginia 22901 Richard A. Perley National Radio Astronomy Observatory, Socorro, New Mexico 87801 1. INTRODUCTION Powerful extended extragalactic radio sources pose two vexing astro- physical problems [reviewed in (147) and (157)]. First, from what energy reservoir do they draw their large radio luminosities (as muchas 10a8 W between 10 MHzand 100 GHz)?Second, how does the active center in the parent galaxy or QSOsupply as muchas 10~4 J in relativistic particles and fields to radio "lobes" up to several hundredkiloparsecs outside the optical object? Newaperture synthesis arrays (68, 250) and new image-processing algorithms (66, 101, 202, 231) have recently allowed radio imaging subarcsecond resolution with high sensitivity and high dynamicrange; as a result, the complexityof the brighter sources has been revealed clearly for the first time. Manycontain radio jets, i.e. narrow radio features between compact central "cores" and more extended "lobe" emission. This review examinesthe systematic properties of such jets and the dues they give to the by PURDUE UNIVERSITY LIBRARY on 01/16/07. For personal use only. physics of energy transfer in extragalactic sources. Wedo not directly consider the jet production mechanism,which is intimately related to the Annu. Rev. Astro. Astrophys. 1984.22:319-358. Downloaded from arjournals.annualreviews.org first problemnoted above--for reviews, see (207) and (251). 1. i Why "’Jets"? Baade & Minkowski(3) first used the term jet in an extragalactic context, describing the train of optical knots extending ,-~ 20" from the nucleus of M87; the knots resemble a fluid jet breaking into droplets.
    [Show full text]
  • HET Publication Report HET Board Meeting 3/4 December 2020 Zoom Land
    HET Publication Report HET Board Meeting 3/4 December 2020 Zoom Land 1 Executive Summary • There are now 420 peer-reviewed HET publications – Fifteen papers published in 2019 – As of 27 November, nineteen published papers in 2020 • HET papers have 29363 citations – Average of 70, median of 39 citations per paper – H-number of 90 – 81 papers have ≥ 100 citations; 175 have ≥ 50 cites • Wide angle surveys account for 26% of papers and 35% of citations. • Synoptic (e.g., planet searches) and Target of Opportunity (e.g., supernovae and γ-ray bursts) programs have produced 47% of the papers and 47% of the citations, respectively. • Listing of the HET papers (with ADS links) is given at http://personal.psu.edu/dps7/hetpapers.html 2 HET Program Classification Code TypeofProgram Examples 1 ToO Supernovae,Gamma-rayBursts 2 Synoptic Exoplanets,EclipsingBinaries 3 OneorTwoObjects HaloofNGC821 4 Narrow-angle HDF,VirgoCluster 5 Wide-angle BlazarSurvey 6 HETTechnical HETQueue 7 HETDEXTheory DarkEnergywithBAO 8 Other HETOptics Programs also broken down into “Dark Time”, “Light Time”, and “Other”. 3 Peer-reviewed Publications • There are now 420 journal papers that either use HET data or (nine cases) use the HET as the motivation for the paper (e.g., technical papers, theoretical studies). • Except for 2005, approximately 22 HET papers were published each year since 2002 through the shutdown. A record 44 papers were published in 2012. • In 2020 a total of fifteen HET papers appeared; nineteen have been published to date in 2020. • Each HET partner has published at least 14 papers using HET data. • Nineteen papers have been published from NOAO time.
    [Show full text]
  • HST EMISSION-LINE IMAGES of NEARBY 3CR RADIO GALAXIES: TWO PHOTOIONIZATION, ACCRETION and FEEDBACK MODES Ranieri D
    Draft version November 12, 2018 Preprint typeset using LATEX style emulateapj v. 03/07/07 HST EMISSION-LINE IMAGES OF NEARBY 3CR RADIO GALAXIES: TWO PHOTOIONIZATION, ACCRETION AND FEEDBACK MODES Ranieri D. Baldi1,2, Javier Rodr´ıguez Zaur´ın2,3, Marco Chiaberge2,4, Alessandro Capetti5, William B. Sparks2, Ian M. McHardy1 Draft version November 12, 2018 ABSTRACT We present HST/ACS narrow-band images of a low-z sample of 19 3C radio galaxies to study the Hα and [O III] emissions from the narrow-line region (NLR). Based on nuclear emission line ratios, we divide the sample into High and Low Excitation Galaxies (HEGs and LEGs). We observe different line morphologies, extended line emission on kpc scale, large [O III]/Hα scatter across the galaxies, and a radio-line alignment. In general, HEGs show more prominent emission line properties than LEGs: larger, more disturbed, more luminous, and more massive regions of ionized gas with slightly larger covering factors. We find evidence of correlations between line luminosities and (radio and X-ray) nuclear luminosities. All these results point to a main common origin, the active nucleus, which ionize the surrounding gas. However, the contribution of additional photoionization mechanism (jet shocks and star formation) are needed to account for the different line properties of the two classes. A relationship between the accretion, photoionization and feedback modes emerges from this study. For LEGs (hot-gas accretors), the synchrotron emission from the jet represents the main source of ionizing photons. The lack of cold gas and star formation in their hosts accounts for the moderate ionized-gas masses and sizes.
    [Show full text]