Physical and Chemical Evolution of Lunar Mare Regolith

Total Page:16

File Type:pdf, Size:1020Kb

Physical and Chemical Evolution of Lunar Mare Regolith Physical and Chemical Evolution of Lunar Mare Regolith Item Type Article; text Authors O'Brien, P.; Byrne, S. Citation O’Brien, P., & Byrne, S. Physical and Chemical Evolution of Lunar Mare Regolith. Journal of Geophysical Research: Planets, e2020JE006634. DOI 10.1029/2020JE006634 Publisher Blackwell Publishing Ltd Journal Journal of Geophysical Research: Planets Rights Copyright © 2020 American Geophysical Union. All Rights Reserved. Download date 26/09/2021 22:26:13 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/660051 RESEARCH ARTICLE Physical and Chemical Evolution of Lunar Mare Regolith 10.1029/2020JE006634 P. O'Brien1 and S. Byrne1 Key Points: 1Lunar and Planetary Laboratory, Tucson, AZ, USA • We present a novel three- dimensional landscape evolution and regolith transport model calibrated to the lunar mare • Gardening by secondary craters is the dominant control on regolith particle surface residence times Abstract The lunar landscape evolves both physically and chemically over time due to impact • Constraints from Apollo samples cratering and energetic processes collectively known as space weathering. Despite returned soil samples and remote sensing indicate space and global remote sensing reflectance measurements, the rate of space weathering in the lunar regolith is weathering maturation timescales of 7–19 Myr of cumulative exposure not well understood. To address this, we developed a novel three-dimensional landscape evolution model to simulate the physical processes that control the burial, excavation, and transport of regolith on airless bodies. Applying this model to the lunar mare, we find that over billions of years of surface evolution, Supporting Information: • Supporting Information S1 material typically spends only a few million years on the surface where it is exposed to the effects of space weathering. The small surface residence times are a result of vigorous mixing by small-scale impacts, predominantly driven by secondary crater formation. We deduce the rate of space weathering Correspondence to P. O'Brien, by comparing our modeled distribution of surface residence times on the lunar mare to measurements [email protected] of space weathering maturity from Apollo soil samples and orbital surface reflectance datasets. These chemical constraints indicate that soil on the lunar mare reaches maturity in 7 Myr of cumulative surface Citation: exposure though due to uncertainties in the rate of small secondary crater production, this timescale could O'Brien, P., & Byrne, S. (2021). Physical be 2–3 times higher. Weathering progresses more rapidly upon initial exposure to space but the surface and chemical evolution of lunar residence time required to achieve maturity is realized over billions of years as regolith is repeatedly mare regolith. Journal of Geophysical Research: Planets, 126, e2020JE006634. buried and exposed by small impacts. https://doi.org/10.1029/2020JE006634 Plain Language Summary On the Moon, large impact craters churn the upper soil layers Received 20 DEC 2019 and micrometeorites, galactic cosmic rays, and the solar wind alter the chemical structure of material Accepted 22 NOV 2020 on the surface in a process called space weathering. The relationship between these processes is crucial to understanding how quickly planetary surfaces are space weathered. To study this problem, we have developed a three-dimensional computer model that simulates lunar-like landscapes that evolve over time from flat surfaces to cratered landscapes. Using this model, we measure how long material spends on the surface where it would be exposed to the space environment. We compared the results of this model to chemical measurements of lunar soil returned by the Apollo astronauts and orbital measurements of the lunar surface. We find that over the last 3.5 billion years most material has been on the surface for only a few million years in total as it is repeatedly buried and excavated by small craters. Space weathering must therefore occur rapidly to produce the observed chemical properties of the lunar soil. 1. Introduction The surfaces of airless bodies like the Moon are directly exposed to the space environment and as a result change both physically and chemically over time due to processes collectively known as space weather- ing. The rate of space weathering on the lunar landscape is poorly understood because these two facets of surface evolution have yet to be fully linked. Macroscopic physical processes like impact cratering disrupt and overturn the upper surface layer comprised of loose, unconsolidated material known as soil or regolith (Shoemaker et al., 1969). As the landscape evolves and material is transported across the surface, the micro- scopic chemical structure of material on the surface is altered by micrometeorite impacts, cosmic rays, and the solar wind (Hapke, 2001; Pieters & Noble, 2016). These processes are deeply coupled since the amount of time material spends on the surface exposed to the space environment depends on the rate at which ma- terial is cycled in and out of the uppermost regolith layer. © 2020. American Geophysical Union. Analysis of lunar soil properties from Apollo program samples and remote sensing surface reflectance All Rights Reserved. measurements have characterized the degree of space weathering, or maturity, of the lunar regolith (Lucey O’BRIEN AND BYRNE 1 of 31 Journal of Geophysical Research: Planets 10.1029/2020JE006634 et al., 2000; Morris, 1976). Maturity metrics quantify the amount of weathering products accumulated by a sample, but not the timescale over which those chemical products were accumulated. In the absence of definitive, widespread measurements of cumulative surface exposure ages, the rate at which the surface of the Moon is weathered by the space environment remains unknown. Landscape evolution models, like those applied by Hartmann and Gaskell (1997) and Richardson (2009) to understand cratering equilibrium, can be applied here to investigate the timescales of regolith space weathering exposure on airless bodies. We have developed such a model and calibrated it to reproduce the histories and topographic statistics of surfaces on the lunar maria by incorporating constraints from high-resolution lunar topography (Henriksen et al., 2017; Robinson et al., 2010; Smith et al., 2010). The model is used to track the trajectories of tracer particles as synthetic lunar surfaces evolve over time and to measure how long particles reside in the upper millimeter of regolith; that is, on the surface (Morris, 1978). By combining the distribution of regolith expo- sure ages with measurements of soil maturity (Lemelin et al., 2016; Lucey et al., 2000), we link the physical and chemical evolution of the Moon's surface to estimate the rate of space weathering on the lunar maria. While presently applied only to four Apollo landing sites, this work provides a framework for a broader understanding of how the surface of the Moon and other airless bodies, like Mercury, Ceres, and Vesta are modified over time by space weathering. 2. Background In addition to macroscopic crater-forming impacts, the Moon is continually bombarded by micrometeor- ites, particles from the solar wind, and cosmic rays. These energetic processes, collectively known as space weathering, induce chemical changes in material residing on the surfaces of airless bodies that lack the shielding of an atmosphere or magnetic field (Morris, 1978). Lunar soils that have undergone space weath- ering show lowered albedo, spectral reddening, and subdued mineral absorption bands (Hapke, 2001; Keller & McKay, 1997; Pieters & Noble, 2016; Pieters et al., 1993, 2000; Taylor et al., 2001). From analysis of re- turned lunar samples, it was determined that the primary agent of these chemical changes is the formation of nanophase metallic iron and other optically active opaque (OAOpq) particles as a result of the energetic processes in the space environment operating to reduce FeO in the lunar soil (Britt & Pieters, 1994; Cassidy & Hapke, 1975; Hapke, 2001; Pieters & Noble, 2016). These particles form within agglutinitic glasses and on the rims of grains through irradiation and sputtering processes as well as from condensation of vapor- ized material following micrometeorite impacts (Keller & McKay, 1993, 1997; Noble et al., 2005; Taylor et al., 2001). The degree of space weathering, as characterized by some quantitative measure of the amount of these space weathering products that a surface soil has accumulated, is termed soil maturity (McKay et al., 1974; Morris, 1976). Laboratory techniques can address the rate of space weathering by quantifying the amount of OAOpq particles that have formed in a planetary regolith (e.g., Ramirez & Zega, 2016). Previ- ous studies have placed limits on the space weathering rate using solar flare track densities and amorphized rim widths which accumulate in lunar soil grains and saturate at inferred solar wind exposure ages of a few million years (Keller & Berger, 2017; Keller et al., 2016). Remote sensing reflectance measurements have generated maturity proxies like the optical maturity (OMAT) parameter (Lucey et al., 2000). Though sensitive only to the uppermost few regolith grains, orbital measurements provide information about how maturity varies across the entire lunar surface and relates to age and composition. Space weathering is ubiquitous on airless bodies and much work has been done to characterize
Recommended publications
  • Impact Cratering
    6 Impact cratering The dominant surface features of the Moon are approximately circular depressions, which may be designated by the general term craters … Solution of the origin of the lunar craters is fundamental to the unravel- ing of the history of the Moon and may shed much light on the history of the terrestrial planets as well. E. M. Shoemaker (1962) Impact craters are the dominant landform on the surface of the Moon, Mercury, and many satellites of the giant planets in the outer Solar System. The southern hemisphere of Mars is heavily affected by impact cratering. From a planetary perspective, the rarity or absence of impact craters on a planet’s surface is the exceptional state, one that needs further explanation, such as on the Earth, Io, or Europa. The process of impact cratering has touched every aspect of planetary evolution, from planetary accretion out of dust or planetesimals, to the course of biological evolution. The importance of impact cratering has been recognized only recently. E. M. Shoemaker (1928–1997), a geologist, was one of the irst to recognize the importance of this process and a major contributor to its elucidation. A few older geologists still resist the notion that important changes in the Earth’s structure and history are the consequences of extraterres- trial impact events. The decades of lunar and planetary exploration since 1970 have, how- ever, brought a new perspective into view, one in which it is clear that high-velocity impacts have, at one time or another, affected nearly every atom that is part of our planetary system.
    [Show full text]
  • Impact Melt Emplacement on Mercury
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 7-24-2018 2:00 PM Impact Melt Emplacement on Mercury Jeffrey Daniels The University of Western Ontario Supervisor Neish, Catherine D. The University of Western Ontario Graduate Program in Geology A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © Jeffrey Daniels 2018 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Geology Commons, Physical Processes Commons, and the The Sun and the Solar System Commons Recommended Citation Daniels, Jeffrey, "Impact Melt Emplacement on Mercury" (2018). Electronic Thesis and Dissertation Repository. 5657. https://ir.lib.uwo.ca/etd/5657 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract Impact cratering is an abrupt, spectacular process that occurs on any world with a solid surface. On Earth, these craters are easily eroded or destroyed through endogenic processes. The Moon and Mercury, however, lack a significant atmosphere, meaning craters on these worlds remain intact longer, geologically. In this thesis, remote-sensing techniques were used to investigate impact melt emplacement about Mercury’s fresh, complex craters. For complex lunar craters, impact melt is preferentially ejected from the lowest rim elevation, implying topographic control. On Venus, impact melt is preferentially ejected downrange from the impact site, implying impactor-direction control. Mercury, despite its heavily-cratered surface, trends more like Venus than like the Moon.
    [Show full text]
  • Pre-Mission Insights on the Interior of Mars Suzanne E
    Pre-mission InSights on the Interior of Mars Suzanne E. Smrekar, Philippe Lognonné, Tilman Spohn, W. Bruce Banerdt, Doris Breuer, Ulrich Christensen, Véronique Dehant, Mélanie Drilleau, William Folkner, Nobuaki Fuji, et al. To cite this version: Suzanne E. Smrekar, Philippe Lognonné, Tilman Spohn, W. Bruce Banerdt, Doris Breuer, et al.. Pre-mission InSights on the Interior of Mars. Space Science Reviews, Springer Verlag, 2019, 215 (1), pp.1-72. 10.1007/s11214-018-0563-9. hal-01990798 HAL Id: hal-01990798 https://hal.archives-ouvertes.fr/hal-01990798 Submitted on 23 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Open Archive Toulouse Archive Ouverte (OATAO ) OATAO is an open access repository that collects the wor of some Toulouse researchers and ma es it freely available over the web where possible. This is an author's version published in: https://oatao.univ-toulouse.fr/21690 Official URL : https://doi.org/10.1007/s11214-018-0563-9 To cite this version : Smrekar, Suzanne E. and Lognonné, Philippe and Spohn, Tilman ,... [et al.]. Pre-mission InSights on the Interior of Mars. (2019) Space Science Reviews, 215 (1).
    [Show full text]
  • Aquatic Ecosystems Bibliography Compiled by Robert C. Worrest
    Aquatic Ecosystems Bibliography Compiled by Robert C. Worrest Abboudi, M., Jeffrey, W. H., Ghiglione, J. F., Pujo-Pay, M., Oriol, L., Sempéré, R., . Joux, F. (2008). Effects of photochemical transformations of dissolved organic matter on bacterial metabolism and diversity in three contrasting coastal sites in the northwestern Mediterranean Sea during summer. Microbial Ecology, 55(2), 344-357. Abboudi, M., Surget, S. M., Rontani, J. F., Sempéré, R., & Joux, F. (2008). Physiological alteration of the marine bacterium Vibrio angustum S14 exposed to simulated sunlight during growth. Current Microbiology, 57(5), 412-417. doi: 10.1007/s00284-008-9214-9 Abernathy, J. W., Xu, P., Xu, D. H., Kucuktas, H., Klesius, P., Arias, C., & Liu, Z. (2007). Generation and analysis of expressed sequence tags from the ciliate protozoan parasite Ichthyophthirius multifiliis BMC Genomics, 8, 176. Abseck, S., Andrady, A. L., Arnold, F., Björn, L. O., Bomman, J. F., Calamari, D., . Zepp, R. G. (1998). Environmental effects of ozone depletion: 1998 assessment. Journal of Photochemistry and Photobiology B: Biology, 46(1-3), 1-108. doi: Doi: 10.1016/s1011-1344(98)00195-x Adachi, K., Kato, K., Wakamatsu, K., Ito, S., Ishimaru, K., Hirata, T., . Kumai, H. (2005). The histological analysis, colorimetric evaluation, and chemical quantification of melanin content in 'suntanned' fish. Pigment Cell Research, 18, 465-468. Adams, M. J., Hossaek, B. R., Knapp, R. A., Corn, P. S., Diamond, S. A., Trenham, P. C., & Fagre, D. B. (2005). Distribution Patterns of Lentic-Breeding Amphibians in Relation to Ultraviolet Radiation Exposure in Western North America. Ecosystems, 8(5), 488-500. Adams, N.
    [Show full text]
  • Select Bibliography
    Select Bibliography by the late F. Seymour-Smith Reference books and other standard sources of literary information; with a selection of national historical and critical surveys, excluding monographs on individual authors (other than series) and anthologies. Imprint: the place of publication other than London is stated, followed by the date of the last edition traced up to 1984. OUP- Oxford University Press, and includes depart­ mental Oxford imprints such as Clarendon Press and the London OUP. But Oxford books originating outside Britain, e.g. Australia, New York, are so indicated. CUP - Cambridge University Press. General and European (An enlarged and updated edition of Lexicon tkr WeltliU!-atur im 20 ]ahrhuntkrt. Infra.), rev. 1981. Baker, Ernest A: A Guilk to the B6st Fiction. Ford, Ford Madox: The March of LiU!-ature. Routledge, 1932, rev. 1940. Allen and Unwin, 1939. Beer, Johannes: Dn Romanfohrn. 14 vols. Frauwallner, E. and others (eds): Die Welt Stuttgart, Anton Hiersemann, 1950-69. LiU!-alur. 3 vols. Vienna, 1951-4. Supplement Benet, William Rose: The R6athr's Encyc/opludia. (A· F), 1968. Harrap, 1955. Freedman, Ralph: The Lyrical Novel: studies in Bompiani, Valentino: Di.cionario letU!-ario Hnmann Hesse, Andrl Gilk and Virginia Woolf Bompiani dille opn-e 6 tUi personaggi di tutti i Princeton; OUP, 1963. tnnpi 6 di tutu le let16ratur6. 9 vols (including Grigson, Geoffrey (ed.): The Concise Encyclopadia index vol.). Milan, Bompiani, 1947-50. Ap­ of Motkm World LiU!-ature. Hutchinson, 1970. pendic6. 2 vols. 1964-6. Hargreaves-Mawdsley, W .N .: Everyman's Dic­ Chambn's Biographical Dictionary. Chambers, tionary of European WriU!-s.
    [Show full text]
  • Comparison of Central Peak Craters on the Moon and Ganymede
    Meteoritics & Planetary Science 43, Nr 12, 1–crossref to last page (2008) AUTHOR’S Abstract available online at http://meteoritics.org PROOF The effect of target properties on crater morphology: Comparison of central peak craters on the Moon and Ganymede Veronica J. BRAY1, 3*, Gareth S. COLLINS1, Joanna V. MORGAN1, and Paul M. SCHENK2 1Earth Science and Engineering Department, Imperial College London, Exhibition Road, London, SW7 2BP, UK 2Lunar and Planetary Institute, 3600 Bay Area Blvd., Houston, Texas, 77058, USA 3Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona, 85721, USA *Corresponding author. E-mail: [email protected] (Received 23 March 2008; revision accepted 01 December 2008) Abstract–We examine the morphology of central peak craters on the Moon and Ganymede in order to investigate differences in the near-surface properties of these bodies. We have extracted topographic profiles across craters on Ganymede using Galileo images, and use these data to compile scaling trends. Comparisons between lunar and Ganymede craters show that crater depth, wall slope and amount of central uplift are all affected by material properties. We observe no major differences between similar-sized craters in the dark and bright terrain of Ganymede, suggesting that dark terrain does not contain enough silicate material to significantly increase the strength of the surface ice. Below crater diameters of ∼12 km, central peak craters on Ganymede and simple craters on the Moon have similar rim heights, indicating comparable amounts of rim collapse. This suggests that the formation of central peaks at smaller crater diameters on Ganymede than the Moon is dominated by enhanced central floor uplift rather than rim collapse.
    [Show full text]
  • General Disclaimer One Or More of the Following Statements May Affect
    General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) Nwor u MORPHOLOGIC STUDIES OF THE MOON AND PLANETS (NSC-7188) FINAL TECHNICAL REPORT to Planetary Geology Program Division of Solar System Exploration Office of Space Science and Applications National Aeronautics and Space Administration Peiiod Covered: July 1, 1976 - August 31, 1984 (NASA-CR-- 17388b) MORPI10iOGIC STUDIES OF THE n84-33319 NGON AND PLANETS kinal Technical Report, 1 Jul. 1576 - 31 Aug. 1984 (Itek Corp.) 18 p He A02/MF A01 CSCL 03 B Unclas x G3/91 20353 i Principal Investigator: Farouk E1-Baz (July 1, 1976 - June 30, 1982) Itek Optical Systems Division 10 Maguire Road E Lexington, MA 02173 Principal Investigator: Ted A. Maxwell (July 1, 1982 - August 31, 1984) Center for Earth and Planetary Studies^^ National Air and Space Museum 1 Smithsonian Institution Washington, D.C.
    [Show full text]
  • Locating the LCROSS Impact Craters
    Space Sci Rev (2012) 167:71–92 DOI 10.1007/s11214-011-9765-0 Locating the LCROSS Impact Craters William Marshall · Mark Shirley · Zachary Moratto · Anthony Colaprete · Gregory Neumann · David Smith · Scott Hensley · Barbara Wilson · Martin Slade · Brian Kennedy · Eric Gurrola · Leif Harcke Received: 1 November 2010 / Accepted: 1 March 2011 / Published online: 6 May 2011 © Springer Science+Business Media B.V. 2011 Abstract The Lunar CRater Observations and Sensing Satellite (LCROSS) mission im- pacted a spent Centaur rocket stage into a permanently shadowed region near the lunar south pole. The Sheperding Spacecraft (SSC) separated ∼9 hours before impact and performed a small braking maneuver in order to observe the Centaur impact plume, looking for evidence of water and other volatiles, before impacting itself. This paper describes the registration of imagery of the LCROSS impact region from the mid- and near-infrared cameras onboard the SSC, as well as from the Goldstone radar. We compare the Centaur impact features, positively identified in the first two, and with a con- sistent feature in the third, which are interpreted as a 20 m diameter crater surrounded by a 160 m diameter ejecta region. The images are registered to Lunar Reconnaisance Orbiter (LRO) topographical data which allows determination of the impact location. This location is compared with the impact location derived from ground-based tracking and propagation of the spacecraft’s trajectory and with locations derived from two hybrid imagery/trajectory methods. The four methods give a weighted average Centaur impact location of −84.6796°, −48.7093°, with a 1σ uncertainty of 115 m along latitude, and 44 m along longitude, just 146 m from the target impact site.
    [Show full text]
  • 2019 Publication Year 2020-12-23T11:19:33Z Acceptance
    Publication Year 2019 Acceptance in OA@INAF 2020-12-23T11:19:33Z Title Structural Analysis of the Victoria Quadrangle Fault Systems on Mercury: Timing, þÿGeometries, Kinematics, and Relationship with the High Mg Region Authors GALLUZZI, VALENTINA; Ferranti, Luigi; MASSIRONI, MATTEO; GIACOMINI, LORENZA; GUZZETTA, Laura Giovanna; et al. DOI 10.1029/2019JE005953 Handle http://hdl.handle.net/20.500.12386/29146 Journal JOURNAL OF GEOPHYSICAL RESEARCH (PLANETS) Number 124 RESEARCH ARTICLE Structural Analysis of the Victoria Quadrangle Fault 10.1029/2019JE005953 Systems on Mercury: Timing, Geometries, Kinematics, Key Points: and Relationship with the High‐Mg Region • The Victoria quadrangle of Mercury encompasses three coeval fault V. Galluzzi1 , L. Ferranti2,1 , M. Massironi3, L. Giacomini1 , L. Guzzetta1 , systems 4,1 • The three systems were formed by a and P. Palumbo nonisotropic stress field 1 2 • Fault nucleation was controlled by Istituto di Astrofisica e Planetologia Spaziali (IAPS), INAF, Rome, Italy, Dipartimento di Scienze della Terra, preexisting crustal heterogeneities dell'Ambiente e delle Risorse, Università degli Studi di Napoli “Federico II”, Naples, Italy, 3Dipartimento di Geoscienze, Università degli Studi di Padova, Padua, Italy, 4Dipartimento di Scienze e Tecnologie, Università degli Studi di Napoli Supporting Information: “Parthenope”, Naples, Italy • Supporting Information S1 • Table S1 Abstract Three nonparallel fault systems occur in the Victoria quadrangle of Mercury. The most prominent system (Victoria system) includes the NNW‐SSE trending Victoria Rupes‐Endeavour Correspondence to: Rupes‐Antoniadi Dorsum (VEA) array, one of the major fault alignments on the planet, and shorter parallel V. Galluzzi, [email protected] fault arrays. West and northwest of the Victoria system, two additional fault systems with NE‐SW (Larrocha system) and NW‐SE (Carnegie system) trends, are found.
    [Show full text]
  • GRAIL Gravity Observations of the Transition from Complex Crater to Peak-Ring Basin on the Moon: Implications for Crustal Structure and Impact Basin Formation
    Icarus 292 (2017) 54–73 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus GRAIL gravity observations of the transition from complex crater to peak-ring basin on the Moon: Implications for crustal structure and impact basin formation ∗ David M.H. Baker a,b, , James W. Head a, Roger J. Phillips c, Gregory A. Neumann b, Carver J. Bierson d, David E. Smith e, Maria T. Zuber e a Department of Geological Sciences, Brown University, Providence, RI 02912, USA b NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA c Department of Earth and Planetary Sciences and McDonnell Center for the Space Sciences, Washington University, St. Louis, MO 63130, USA d Department of Earth and Planetary Sciences, University of California, Santa Cruz, CA 95064, USA e Department of Earth, Atmospheric and Planetary Sciences, MIT, Cambridge, MA 02139, USA a r t i c l e i n f o a b s t r a c t Article history: High-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission provide Received 14 September 2016 the opportunity to analyze the detailed gravity and crustal structure of impact features in the morpho- Revised 1 March 2017 logical transition from complex craters to peak-ring basins on the Moon. We calculate average radial Accepted 21 March 2017 profiles of free-air anomalies and Bouguer anomalies for peak-ring basins, protobasins, and the largest Available online 22 March 2017 complex craters. Complex craters and protobasins have free-air anomalies that are positively correlated with surface topography, unlike the prominent lunar mascons (positive free-air anomalies in areas of low elevation) associated with large basins.
    [Show full text]
  • Science Concept 3: Key Planetary
    Science Concept 6: The Moon is an Accessible Laboratory for Studying the Impact Process on Planetary Scales Science Concept 6: The Moon is an accessible laboratory for studying the impact process on planetary scales Science Goals: a. Characterize the existence and extent of melt sheet differentiation. b. Determine the structure of multi-ring impact basins. c. Quantify the effects of planetary characteristics (composition, density, impact velocities) on crater formation and morphology. d. Measure the extent of lateral and vertical mixing of local and ejecta material. INTRODUCTION Impact cratering is a fundamental geological process which is ubiquitous throughout the Solar System. Impacts have been linked with the formation of bodies (e.g. the Moon; Hartmann and Davis, 1975), terrestrial mass extinctions (e.g. the Cretaceous-Tertiary boundary extinction; Alvarez et al., 1980), and even proposed as a transfer mechanism for life between planetary bodies (Chyba et al., 1994). However, the importance of impacts and impact cratering has only been realized within the last 50 or so years. Here we briefly introduce the topic of impact cratering. The main crater types and their features are outlined as well as their formation mechanisms. Scaling laws, which attempt to link impacts at a variety of scales, are also introduced. Finally, we note the lack of extraterrestrial crater samples and how Science Concept 6 addresses this. Crater Types There are three distinct crater types: simple craters, complex craters, and multi-ring basins (Fig. 6.1). The type of crater produced in an impact is dependent upon the size, density, and speed of the impactor, as well as the strength and gravitational field of the target.
    [Show full text]
  • Radar Imaging of Solar System Ices
    RADAR IMAGING OF SOLAR SYSTEM ICES A DISSERTATION SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Leif J. Harcke May 2005 © Copyright by Leif J. Harcke 2005 All Rights Reserved ii iv Abstract We map the planet Mercury and Jupiter’s moons Ganymede and Callisto using Earth-based radar telescopes and find that all bodies have regions exhibiting high, depolarized radar backscatter and polarization inversion (µc > 1). Both characteristics suggest volume scat- tering from water ice or similar cold-trapped volatiles. Synthetic aperture radar mapping of Mercury’s north and south polar regions at fine (6 km) resolution at 3.5 cm wavelength corroborates the results of previous 13 cm investigations of enhanced backscatter and po- larization inversion (0:9 µc 1:3) from areas on the floors of craters at high latitudes, ≤ ≤ where Mercury’s near-zero obliquity results in permanent Sun shadows. Co-registration with Mariner 10 optical images demonstrates that this enhanced scattering cannot be caused by simple double-bounce geometries, since the bright, reflective regions do not appear on the radar-facing wall but, instead, in shadowed regions not directly aligned with the radar look direction. A simple scattering model accounts for exponential, wavelength-dependent attenuation through a protective regolith layer. Thermal models require the existence of this layer to protect ice deposits in craters at other than high polar latitudes. The additional attenuation (factor 1:64 15%) of the 3.5 cm wavelength data from these experiments over previous 13 cm radar observations supports multiple interpretations of layer thickness, ranging from 0 11 to 35 15 cm, depending on the assumed scattering law exponent n.
    [Show full text]