Species Concepts and 13 Intraspecific Variation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Taxonomy of Primates in the Laboratory Context
P0800261_01 7/14/05 8:00 AM Page 3 C HAPTER 1 The Taxonomy of Primates T HE T in the Laboratory Context AXONOMY OF P Colin Groves RIMATES School of Archaeology and Anthropology, Australian National University, Canberra, ACT 0200, Australia 3 What are species? D Taxonomy: EFINITION OF THE The biological Organizing nature species concept Taxonomy means classifying organisms. It is nowadays commonly used as a synonym for systematics, though Disagreement as to what precisely constitutes a species P strictly speaking systematics is a much broader sphere is to be expected, given that the concept serves so many RIMATE of interest – interrelationships, and biodiversity. At the functions (Vane-Wright, 1992). We may be interested basis of taxonomy lies that much-debated concept, the in classification as such, or in the evolutionary implica- species. tions of species; in the theory of species, or in simply M ODEL Because there is so much misunderstanding about how to recognize them; or in their reproductive, phys- what a species is, it is necessary to give some space to iological, or husbandry status. discussion of the concept. The importance of what we Most non-specialists probably have some vague mean by the word “species” goes way beyond taxonomy idea that species are defined by not interbreeding with as such: it affects such diverse fields as genetics, biogeog- each other; usually, that hybrids between different species raphy, population biology, ecology, ethology, and bio- are sterile, or that they are incapable of hybridizing at diversity; in an era in which threats to the natural all. Such an impression ultimately derives from the def- world and its biodiversity are accelerating, it affects inition by Mayr (1940), whereby species are “groups of conservation strategies (Rojas, 1992). -
Species Concepts and the Evolutionary Paradigm in Modern Nematology
JOURNAL OF NEMATOLOGY VOLUME 30 MARCH 1998 NUMBER 1 Journal of Nematology 30 (1) :1-21. 1998. © The Society of Nematologists 1998. Species Concepts and the Evolutionary Paradigm in Modern Nematology BYRON J. ADAMS 1 Abstract: Given the task of recovering and representing evolutionary history, nematode taxonomists can choose from among several species concepts. All species concepts have theoretical and (or) opera- tional inconsistencies that can result in failure to accurately recover and represent species. This failure not only obfuscates nematode taxonomy but hinders other research programs in hematology that are dependent upon a phylogenetically correct taxonomy, such as biodiversity, biogeography, cospeciation, coevolution, and adaptation. Three types of systematic errors inherent in different species concepts and their potential effects on these research programs are presented. These errors include overestimating and underestimating the number of species (type I and II error, respectively) and misrepresenting their phylogenetic relationships (type III error). For research programs in hematology that utilize recovered evolutionary history, type II and III errors are the most serious. Linnean, biological, evolutionary, and phylogenefic species concepts are evaluated based on their sensitivity to systematic error. Linnean and biologica[ species concepts are more prone to serious systematic error than evolutionary or phylogenetic concepts. As an alternative to the current paradigm, an amalgamation of evolutionary and phylogenetic species concepts is advocated, along with a set of discovery operations designed to minimize the risk of making systematic errors. Examples of these operations are applied to species and isolates of Heterorhab- ditis. Key words: adaptation, biodiversity, biogeography, coevolufion, comparative method, cospeciation, evolution, nematode, philosophy, species concepts, systematics, taxonomy. -
Sewall Wright's Adaptive Landscapes: 1932 Vs. 1988
Biol Philos (2008) 23:591–603 DOI 10.1007/s10539-008-9124-z Sewall Wright’s adaptive landscapes: 1932 vs. 1988 Massimo Pigliucci Received: 13 November 2007 / Accepted: 16 July 2008 / Published online: 6 August 2008 Ó Springer Science+Business Media B.V. 2008 Abstract Sewall Wright introduced the metaphor of evolution on ‘‘adaptive landscapes’’ in a pair of papers published in 1931 and 1932. The metaphor has been one of the most influential in modern evolutionary biology, although recent theo- retical advancements show that it is deeply flawed and may have actually created research questions that are not, in fact, fecund. In this paper I examine in detail what Wright actually said in the 1932 paper, as well as what he thought of the matter at the very end of his career, in 1988. While the metaphor is flawed, some of the problems which Wright was attempting to address are still with us today, and are in the process of being reformulated as part of a forthcoming Extended Evolutionary Synthesis. Keywords Adaptive landscapes Evolutionary theory Genetic drift Natural selection Á Á Á The idea of an adaptive landscape is arguably the most influential metaphor in evolutionary biology after Darwin’s own parallel between natural and artificial selection. It is commonly presented in textbooks (Hartl and Clark 1989; Futuyma 1998) and has inspired a wealth of (largely theoretical) research (Kauffman and Levin 1987; Conrad 1990; Schluter and Nychka 1994; Whitlock 1995; Coyne et al. 1997; Gavrilets 1997; Svensson and Sinervo 2000; Hadany and Beker 2003; Jones et al. 2004; Kramer and Donohue 2006; Prusinkiewicz et al. -
Changes at a Critical Branchpoint in the Anthocyanin Biosynthetic Pathway Underlie the Blue to Orange Flower Color Transition in Lysimachia Arvensis
fpls-12-633979 February 16, 2021 Time: 19:16 # 1 ORIGINAL RESEARCH published: 22 February 2021 doi: 10.3389/fpls.2021.633979 Changes at a Critical Branchpoint in the Anthocyanin Biosynthetic Pathway Underlie the Blue to Orange Flower Color Transition in Lysimachia arvensis Edited by: Mercedes Sánchez-Cabrera1*†‡, Francisco Javier Jiménez-López1‡, Eduardo Narbona2, Verónica S. Di Stilio, Montserrat Arista1, Pedro L. Ortiz1, Francisco J. Romero-Campero3,4, University of Washington, Karolis Ramanauskas5, Boris Igic´ 5, Amelia A. Fuller6 and Justen B. Whittall7 United States 1 2 Reviewed by: Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Seville, Spain, Department of Molecular 3 Stacey Smith, Biology and Biochemical Engineering, Pablo de Olavide University, Seville, Spain, Institute for Plant Biochemistry 4 University of Colorado Boulder, and Photosynthesis, University of Seville – Centro Superior de Investigación Científica, Seville, Spain, Department 5 United States of Computer Science and Artificial Intelligence, University of Seville, Seville, Spain, Department of Biological Science, 6 Carolyn Wessinger, University of Illinois at Chicago, Chicago, IL, United States, Department of Chemistry and Biochemistry, Santa Clara 7 University of South Carolina, University, Santa Clara, CA, United States, Department of Biology, College of Arts and Sciences, Santa Clara University, United States Santa Clara, CA, United States *Correspondence: Mercedes Sánchez-Cabrera Anthocyanins are the primary pigments contributing to the variety of flower colors among [email protected] angiosperms and are considered essential for survival and reproduction. Anthocyanins † ORCID: Mercedes Sánchez-Cabrera are members of the flavonoids, a broader class of secondary metabolites, of which orcid.org/0000-0002-3786-0392 there are numerous structural genes and regulators thereof. -
PAULETTE F. BIERZYCHUDEK Professor of Biology William Swindells, Sr
PAULETTE F. BIERZYCHUDEK Professor of Biology William Swindells, Sr. Professor of Natural Science Lewis & Clark College, Portland, OR 97219 Phone: (503) 768-7522; FAX: (503) 768-7658 e-mail: [email protected] Education: Ph.D. 1981, Cornell University: ecology and evolutionary biology B.S. cum laude 1974, University of Washington: botany B.A. cum laude 1974, University of Washington: zoology 1969-1971, attended University of Chicago (no degree received) Positions Held: 2003-2005, 2009-2010: Chair, Dept. of Biology, Lewis & Clark College 1994-present: Professor of Biology, Lewis & Clark College 2002-2003: Visiting Professor, University of California at Santa Cruz 1993: Professor of Biology, Pomona College 1990-1993: Chair, Department of Biology, Pomona College 1986-1993: Associate Professor of Biology, Pomona College 1987: Visiting Professor of Biology, University of Chicago 1983-1984: Visiting Professor of Botany, Duke University 1982-1993: Botany faculty, Claremont Graduate School 1980-1986: Assistant Professor of Biology, Pomona College Honors and Awards: 2011: David Savage Award for Service to Lewis & Clark College 1994: named William Swindells, Sr. Professor in the Natural Sciences, Lewis & Clark College 1991: Wig Award for Teaching, Pomona College 1991: Sears-Roebuck Foundation Teaching Excellence and Campus Leadership Award 1990: named John and Magdalena Dexter Professor of Botany, Pomona College External Funding: 2010-2011: Oregon Zoo Foundation ($2,718) ''Disentangling evolutionary relationships for Speyeria zerene hippolyta, the Oregon silverspot butterfly.'' (in collaboration with Greta Binford) 2007-2009: M. J. Murdock Trust ($46,000) “Restoring habitat for the endangered Oregon silverspot butterfly”. 2006: National Fish and Wildlife Foundation’s Native Plant Conservation Initiative ($31,487) “Restoring habitat for endangered butterflies”. -
Vascular Flora of the Liebre Mountains, Western Transverse Ranges, California Steve Boyd Rancho Santa Ana Botanic Garden
Aliso: A Journal of Systematic and Evolutionary Botany Volume 18 | Issue 2 Article 15 1999 Vascular flora of the Liebre Mountains, western Transverse Ranges, California Steve Boyd Rancho Santa Ana Botanic Garden Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Boyd, Steve (1999) "Vascular flora of the Liebre Mountains, western Transverse Ranges, California," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 18: Iss. 2, Article 15. Available at: http://scholarship.claremont.edu/aliso/vol18/iss2/15 Aliso, 18(2), pp. 93-139 © 1999, by The Rancho Santa Ana Botanic Garden, Claremont, CA 91711-3157 VASCULAR FLORA OF THE LIEBRE MOUNTAINS, WESTERN TRANSVERSE RANGES, CALIFORNIA STEVE BOYD Rancho Santa Ana Botanic Garden 1500 N. College Avenue Claremont, Calif. 91711 ABSTRACT The Liebre Mountains form a discrete unit of the Transverse Ranges of southern California. Geo graphically, the range is transitional to the San Gabriel Mountains, Inner Coast Ranges, Tehachapi Mountains, and Mojave Desert. A total of 1010 vascular plant taxa was recorded from the range, representing 104 families and 400 genera. The ratio of native vs. nonnative elements of the flora is 4:1, similar to that documented in other areas of cismontane southern California. The range is note worthy for the diversity of Quercus and oak-dominated vegetation. A total of 32 sensitive plant taxa (rare, threatened or endangered) was recorded from the range. Key words: Liebre Mountains, Transverse Ranges, southern California, flora, sensitive plants. INTRODUCTION belt and Peirson's (1935) handbook of trees and shrubs. Published documentation of the San Bernar The Transverse Ranges are one of southern Califor dino Mountains is little better, limited to Parish's nia's most prominent physiographic features. -
THEODOSIUS DOBZHANSKY January 25, 1900-December 18, 1975
NATIONAL ACADEMY OF SCIENCES T H E O D O S I U S D O B ZHANSKY 1900—1975 A Biographical Memoir by F R A N C I S C O J . A Y A L A Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1985 NATIONAL ACADEMY OF SCIENCES WASHINGTON D.C. THEODOSIUS DOBZHANSKY January 25, 1900-December 18, 1975 BY FRANCISCO J. AYALA HEODOSIUS DOBZHANSKY was born on January 25, 1900 Tin Nemirov, a small town 200 kilometers southeast of Kiev in the Ukraine. He was the only child of Sophia Voinarsky and Grigory Dobrzhansky (precise transliteration of the Russian family name includes the letter "r"), a teacher of high school mathematics. In 1910 the family moved to the outskirts of Kiev, where Dobzhansky lived through the tumultuous years of World War I and the Bolshevik revolu- tion. These were years when the family was at times beset by various privations, including hunger. In his unpublished autobiographical Reminiscences for the Oral History Project of Columbia University, Dobzhansky states that his decision to become a biologist was made around 1912. Through his early high school (Gymnasium) years, Dobzhansky became an avid butterfly collector. A schoolteacher gave him access to a microscope that Dob- zhansky used, particularly during the long winter months. In the winter of 1915—1916, he met Victor Luchnik, a twenty- five-year-old college dropout, who was a dedicated entomol- ogist specializing in Coccinellidae beetles. -
Plant-Environment Interactions: from Sensory Plant Biology to Active
Signaling and Communication in Plants Series Editors František Baluška Department of Plant Cell Biology, IZMB, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany Jorge Vivanco Center for Rhizosphere Biology, Colorado State University, 217 Shepardson Building, Fort Collins, CO 80523-1173, USA František Baluška Editor Plant-Environment Interactions From Sensory Plant Biology to Active Plant Behavior Editor František Baluška Department of Plant Cell Biology IZMB University of Bonn Kirschallee 1 D-53115 Bonn Germany email: [email protected] ISSN 1867-9048 ISBN 978-3-540-89229-8 e-ISBN 978-3-540-89230-4 DOI: 10.1007/978-3-540-89230-4 Library of Congress Control Number: 2008938968 © 2009 Springer-Verlag Berlin Heidelberg This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: WMXDesign GmbH, Heidelberg, Germany Printed on acid-free paper 9 8 7 6 5 4 3 2 1 springer.com František Baluška dedicates this book to Prof. -
Speciation in Geographical Setting
Speciation Speciation 2019 2019 The degree of reproductive isolation Substantial variation exists in among geographical sets of species - anagenesis populations within an actively 1859 1859 evolving species complex is often Achillea - yarrow tested by crossing experiments — as in the tidy tips of California 100K bp 100K bp back in time back in time back Rubus parviforus K = 4 mean population assignment 2 mya 2 mya ID CO WI_Door 5 mya BC_Hixton BC_MtRob WI_BruleS 5 mya BC_McLeod CA_Klamath MI_Windigo WA_Cascade WA_BridgeCr SD_BlackHills OR_Willamette MI_Drummond Speciation Speciation 2019 Reproductive isolation will ultimately stop all Although simple in concept, the recognition of species and thus the definition genetic connections among sets of populations of what are species have been controversial — more than likely due to the – cladogenesis or speciation continuum nature of the pattern resulting from the process of speciation 1859 Example: mechanical isolation via floral shape changes and pollinators between two parapatric species of California Salvia (sage) 100K bp back in time back 2 mya S. mellifera 5 mya Salvia apiana 1 Speciation Speciation Although simple in concept, the recognition of species and thus the definition Animal examples of speciation often show of what are species have been controversial — more than likely due to the clear reproductive barriers - hence zoologists continuum nature of the pattern resulting from the process of speciation preference (as opposed to botanists) for the Reproductive isolating Biological -
Leptosiphon and Flower Color: Investigating Color Acquisition in Polemoniaceae Using Phylogenetics Margarita Hernandez A,B, Jacob B
Leptosiphon and flower color: investigating color acquisition in Polemoniaceae using phylogenetics Margarita Hernandez a,b, Jacob B. Landis a,c, Douglas E. Soltis a,c, Pamela S. Soltis a a Florida Museum of Natural History, b College of Agriculture and Life Sciences, c Department of Biology, University of Florida Transitions in flower color are asymmetric over evolutionary time, with some transitions more favorable than others. Several selective pressures and mechanisms involving pollinators often drive these color changes, while other forces such as genetic drift and pleiotropic effects may drive others. In this project, we investigated transitions in flower color in Leptosiphon (Polemoniaceae). Leptosiphon comprises 38 species and has a center of distribution in California. Based on our initial analyses, it appears that flower color (blue/purple, pink, and yellow) has been gained in many independent transitions from a white-flowered ancestor. A well-supported species-level phylogeny will allow for better mapping of floral characteristics. To refine phylogenetic relationships, plant material was obtained from field, herbaria, and greenhouse collections for 197 accessions, representing all 38 species, plus Phlox as an outgroup. We selected 96 samples, including all species and each color morph for a targeted gene capture protocol using MYbaits, a procedure that allows custom design of baits. Probe sequences were created through a reciprocal blast using four transcriptomes (two species of Phlox, Fouqueria macdouglaii, and Ternstroemia gymanthera) and the Arabidopsis genome. One hundred probes were created, with markers with large introns discarded. After gene capture, samples were multiplexed and sequenced with Illumina. Reads were assembled, and phylogenetic analyses were conducted on concatenated and individual gene data sets. -
Is the Biological Species Concept Showing Its Age? Mohamed A.F
Research Update TRENDS in Ecology & Evolution Vol.17 No.4 April 2002 153 Research News Is the biological species concept showing its age? Mohamed A.F. Noor A recent paper by Chung-I Wu in the Journal not been attained. Hence, such a strict and whether Wu’s proposed revision has of Evolutionary Biology questions the value definition would not match the intuition any advantages. Most of those who of the popular biological species concept of most biologists. Second, speciation responded on these issues were not (BSC) and offers an alternative ‘genic’ is usually driven by natural or sexual favorable to Wu’s proposal. concept based on possessing ‘loci of selection causing functional divergence. Wu presents examples in which the differential adaptation.’ Wu suggests that However, the BSC does not delineate the BSC delineates taxa as species that would recent empirical results from genetic studies evolutionary forces that cause divergence. not attain this designation under his genic of speciation necessitate this revision. As such, the BSC considers reproductively definition. For example, he notes that Several prominent evolutionary biologists isolated units to be species, even if taxa infected with different strains of responded in the same issue, many noting differential adaptation is not apparent. Wolbachia (hence preventing gene excitement over the recent empirical results, Wu proposes what he calls a ‘genic view exchange through cytoplasmic few agreeing with an abandonment of the of the process of speciation’. He suggests incompatibility) would be defined as BSC, and none wholeheartedly embracing that the point in divergence at which species by the BSC. Is this species the new genic concept. -
A Checklist of Vascular Plants Endemic to California
Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 3-2020 A Checklist of Vascular Plants Endemic to California James P. Smith Jr Humboldt State University, [email protected] Follow this and additional works at: https://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr, "A Checklist of Vascular Plants Endemic to California" (2020). Botanical Studies. 42. https://digitalcommons.humboldt.edu/botany_jps/42 This Flora of California is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. A LIST OF THE VASCULAR PLANTS ENDEMIC TO CALIFORNIA Compiled By James P. Smith, Jr. Professor Emeritus of Botany Department of Biological Sciences Humboldt State University Arcata, California 13 February 2020 CONTENTS Willis Jepson (1923-1925) recognized that the assemblage of plants that characterized our flora excludes the desert province of southwest California Introduction. 1 and extends beyond its political boundaries to include An Overview. 2 southwestern Oregon, a small portion of western Endemic Genera . 2 Nevada, and the northern portion of Baja California, Almost Endemic Genera . 3 Mexico. This expanded region became known as the California Floristic Province (CFP). Keep in mind that List of Endemic Plants . 4 not all plants endemic to California lie within the CFP Plants Endemic to a Single County or Island 24 and others that are endemic to the CFP are not County and Channel Island Abbreviations .