Tsetse Immune Responses and Trypanosome Transmission: Implications for the Development of Tsetse-Based Strategies to Reduce Trypanosomiasis

Total Page:16

File Type:pdf, Size:1020Kb

Tsetse Immune Responses and Trypanosome Transmission: Implications for the Development of Tsetse-Based Strategies to Reduce Trypanosomiasis Tsetse immune responses and trypanosome transmission: Implications for the development of tsetse-based strategies to reduce trypanosomiasis Zhengrong Hao*, Irene Kasumba*, Michael J. Lehane†, Wendy C. Gibson‡, Johnny Kwon*, and Serap Aksoy*§ *Department of Epidemiology and Public Health, Section of Vector Biology, Yale University School of Medicine, New Haven, CT 06510; †School of Biological Sciences, University of Wales, Bangor LL57 2UW, United Kingdom; and ‡School of Biological Sciences, University of Bristol, Bristol BS8 IUG, United Kingdom Edited by John H. Law, University of Arizona, Tucson, AZ, and approved August 14, 2001 (received for review July 16, 2001) Tsetse flies are the medically and agriculturally important vectors Tsetse flies are in general refractory to parasite transmission, of African trypanosomes. Information on the molecular and bio- although little is known about the molecular basis for refracto- chemical nature of the tsetse͞trypanosome interaction is lacking. riness. In laboratory infections, transmission rates vary between Here we describe three antimicrobial peptide genes, attacin, de- 1 and 20%, depending on the fly species and parasite strain fensin, and diptericin, from tsetse fat body tissue obtained by (8–10), whereas in the field, infection with T. brucei spp. complex subtractive cloning after immune stimulation with Escherichia coli trypanosomes is typically detected in less than 1–5% of the fly and trypanosomes. Differential regulation of these genes shows population (11–13). Many factors, including lectin levels in the the tsetse immune system can discriminate not only between gut at the time of parasite uptake, fly species, sex, age, and molecular signals specific for bacteria and trypanosome infections symbiotic associations in the tsetse fly, apparently play a part in but also between different life stages of trypanosomes. The determining the success or failure of parasite infections (14). presence of trypanosomes either in the hemolymph or in the gut Tsetse flies have been shown to possess midgut lectin(s) that are early in the infection process does not induce transcription of capable of killing trypanosomes in vivo by a process resembling attacin and defensin significantly. After parasite establishment in programmed cell death (14), and there is also indirect evidence the gut, however, both antimicrobial genes are expressed at high to suggest that trypanosomes may be killed by an innate immune levels in the fat body, apparently not affecting the viability of response in the fly (15, 16). Although there is some information parasites in the midgut. Unlike other insect immune systems, the demonstrating antimicrobial activity (17–19), the prophenoloxi- antimicrobial peptide gene diptericin is constitutively expressed in dase cascade (20), lectin (21), and hemocyte types (22), no both fat body and gut tissue of normal and immune stimulated information is available on tsetse innate defense mechanisms at flies, possibly reflecting tsetse immune responses to the multiple molecular and biochemical levels. In addition to transmitting Gram-negative symbionts it naturally harbors. When flies were trypanosomes, tsetse flies also harbor multiple symbionts and immune stimulated with bacteria before receiving a trypanosome rely on these associations for nutrition and fecundity (23). The containing bloodmeal, their ability to establish infections was two gut symbionts, Sodalis glossinidius and Wigglesworthia severely blocked, indicating that up-regulation of some immune glossinidia, are Gram-negative bacteria closely related to Esch- responsive genes early in infection can act to block parasite erichia coli. How the trypanosomes and multiple symbionts can transmission. The results are discussed in relation to transgenic evade the natural immune mechanisms of tsetse is at present approaches proposed for modulating vector competence in tsetse. unknown. This is the first report, to our knowledge, on the molecular Glossina ͉ insect immunity ͉ vector control ͉ transgenesis ͉ symbiosis characterization of immune responsive genes from tsetse. By using a suppression subtractive hybridization approach, cDNA he life cycle of the parasitic African trypanosomes (Eugleno- fragments from Glossina morsitans morsitans were isolated from Tzoa: Kinetoplastida) in their insect vector, the tsetse fly fat body after immune challenge with E. coli and procyclic (Diptera: Glossinidae), begins when it feeds from an infected trypanosomes. We present data on the expression profiles of the mammalian host. For successful transmission, the parasite un- three antimicrobial peptide genes selected in this analysis, dergoes two stages of differentiation in the fly: first, establish- defensin, attacin, and diptericin, after challenge with bacteria and ment in midgut and then maturation in the mouthparts or trypanosomes by both microinjection and direct feeding ap- salivary glands. In the midgut, the mammalian bloodstream proaches. The regulation of immune peptide gene transcription parasites rapidly differentiate to procyclic forms and begin to in fat body was also studied in flies, which had established replicate (establishment). Once established in the midgut, try- parasite infections in the gut. In addition, the ability of tsetse panosomes migrate forwards to the proventriculus and the immune mechanism(s) to interfere with the establishment of mouthparts, where they begin to differentiate into epimastigotes parasite gut infections was investigated by stimulating tsetse and eventually colonize the proboscis or salivary glands, de- pending on the parasite species (1). Here they differentiate into metacyclic forms infective to mammals (maturation) and can be This paper was submitted directly (Track II) to the PNAS office. transmitted to the next host during blood feeding by the fly (2). Abbreviation: LPS, lipopolysaccharide. It is generally thought that during normal development in the fly, Data deposition: The sequences reported in this paper have been deposited in the GenBank there are no intracellular stages, although reports of intracellular database (accession nos. AF368906, AF368907, and AF368909). Trypanosoma brucei rhodesiense (3, 4) and Trypanosoma congo- §To whom reprint requests should be addressed at: Department of Epidemiology and Public Health, Section of Vector Biology, Yale University School of Medicine, 60 College Street, lense (5) in the anterior midgut cells have been published. It is 606 LEPH, New Haven, CT 06510. E-mail: [email protected]. also thought that during normal infection, trypanosomes do not The publication costs of this article were defrayed in part by page charge payment. This cross an epithelial barrier to enter the fly, although there are article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. several reports of trypanosomes in the hemolymph of flies (6, 7). §1734 solely to indicate this fact. 12648–12653 ͉ PNAS ͉ October 23, 2001 ͉ vol. 98 ͉ no. 22 www.pnas.org͞cgi͞doi͞10.1073͞pnas.221363798 Downloaded by guest on September 30, 2021 immune response(s) before delivering an infectious bloodmeal. Expression Analysis in Response to Immune Challenge. Three groups The potential to modulate the vector competence via transgen- of 40 flies each were microinjected with either 2 ␮l of PBS or live ϫ 5 esis is discussed in light of the role tsetse innate immune E. coli K12 XL-1 blue cells in PBS (OD600 0.6) or 1 10 responses play in trypanosome establishment. procyclic trypanosomes, respectively. Ten flies from each group were dissected at 6, 18, 30, and 48 h after microinjection, Materials and Methods respectively, and fat body was collected. Fat body was also Tsetse. The G. m. morsitans colony at Bristol University was collected from a control (unstimulated) group of flies 12 h after originally established from puparia collected in Zimbabwe. The their last bloodmeal. Similarly, three groups of 1-week-old flies ϫ 5 ͞ colony maintained in the insectary at Yale University was received bloodmeals containing 1 10 cells ml of cryopre- established from puparia obtained in 1994 from the Bristol served bloodstream or procyclic trypanosomes or E. coli, re- Tsetse Research Laboratory. Flies were maintained at 24 Ϯ 1°C spectively. Fat body was dissected and pooled from six flies in with 55–60% relative humidity and received defibrinated bovine each group 8 and 24 h after the bloodmeals were administered. Fat body from control (unstimulated) flies was similarly analyzed blood at Yale and horse and pig blood at Bristol every other day ␮ by using an artificial membrane system (24). 8 and 24 h after a regular bloodmeal. Total RNA (20 g per lane) was electrophoresed on 2% formaldehyde agarose gels and Immune Stimulation. Adult nonteneral G. m. morsitans (4–6 days transferred to nylon membranes (Hybond, Amersham Pharma- cia). The attacin and defensin specific hybridization probes were old) were microinjected through the wing base area of the prepared as described, and an RNA probe was generated for pteropleuron with 2 ␮l of a mixture of live E. coli K12 RM148 diptericin by using the RNA Labeling Kit (Amersham Pharma- at OD 0.4 in PBS containing 1 ϫ 104 procyclics of T. 600 cia, catalogue no. RPN 3100). Hybridization conditions were as congolense and T. brucei. For expression analysis, T. b. rho- described. The findings were confirmed by three separate desiense (strain Ytat 1.1) cells were used for immune challenge. experiments. cDNA Subtraction and Construction of Enriched Libraries. The In Vitro
Recommended publications
  • Synergy and Remarkable Specificity of Antimicrobial Peptides in 2 Vivo Using a Systematic Knockout Approach
    bioRxiv preprint doi: https://doi.org/10.1101/493817; this version posted December 13, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Synergy and remarkable specificity of antimicrobial peptides in 2 vivo using a systematic knockout approach 3 M.A. Hanson1*, A. Dostálová1, C. Ceroni1, M. Poidevin2, S. Kondo3, and B. Lemaitre1* 4 5 1 Global Health Institute, School of Life Science, École Polytechnique Fédérale de 6 Lausanne (EPFL), Lausanne, Switzerland. 7 2 Institute For Integrative Biology of the Cell, Université Paris-Saclay, CEA, CNRS, 8 Université Paris Sud, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France 9 3 Invertebrate Genetics Laboratory, Genetic Strains Research Center, National 10 Institute oF Genetics, Mishima, Japan 11 * Corresponding authors: M.A. Hanson ([email protected]), B. Lemaitre 12 ([email protected]) 13 14 ORCID IDs: 15 Hanson: https://orcid.org/0000-0002-6125-3672 16 Kondo : https://orcid.org/0000-0002-4625-8379 17 Lemaitre: https://orcid.org/0000-0001-7970-1667 18 19 Abstract 20 Antimicrobial peptides (AMPs) are host-encoded antibiotics that combat invading 21 microorganisms. These short, cationic peptides have been implicated in many 22 biological processes, primarily involving innate immunity. In vitro studies have 23 shown AMPs kill bacteria and Fungi at physiological concentrations, but little 24 validation has been done in vivo. We utilised CRISPR gene editing to delete all 25 known immune inducible AMPs oF Drosophila, namely: 4 Attacins, 4 Cecropins, 2 26 Diptericins, Drosocin, Drosomycin, Metchnikowin and DeFensin.
    [Show full text]
  • A Bioinformatic Study of Antimicrobial Peptides Identified in The
    www.nature.com/scientificreports OPEN A bioinformatic study of antimicrobial peptides identifed in the Black Soldier Fly (BSF) Hermetia illucens (Diptera: Stratiomyidae) Antonio Moretta1, Rosanna Salvia1, Carmen Scieuzo1, Angela Di Somma2, Heiko Vogel3, Pietro Pucci4, Alessandro Sgambato5,6, Michael Wolf7 & Patrizia Falabella1* Antimicrobial peptides (AMPs) play a key role in the innate immunity, the frst line of defense against bacteria, fungi, and viruses. AMPs are small molecules, ranging from 10 to 100 amino acid residues produced by all living organisms. Because of their wide biodiversity, insects are among the richest and most innovative sources for AMPs. In particular, the insect Hermetia illucens (Diptera: Stratiomyidae) shows an extraordinary ability to live in hostile environments, as it feeds on decaying substrates, which are rich in microbial colonies, and is one of the most promising sources for AMPs. The larvae and the combined adult male and female H. illucens transcriptomes were examined, and all the sequences, putatively encoding AMPs, were analysed with diferent machine learning-algorithms, such as the Support Vector Machine, the Discriminant Analysis, the Artifcial Neural Network, and the Random Forest available on the CAMP database, in order to predict their antimicrobial activity. Moreover, the iACP tool, the AVPpred, and the Antifp servers were used to predict the anticancer, the antiviral, and the antifungal activities, respectively. The related physicochemical properties were evaluated with the Antimicrobial Peptide Database Calculator and Predictor. These analyses allowed to identify 57 putatively active peptides suitable for subsequent experimental validation studies. With over one million described species, insects represent the most diverse as well as the largest class of organ- isms in the world, due to their ability to adapt to recurrent changes and to their resistance against a wide spectrum of pathogens1.
    [Show full text]
  • Interaction Between Drosophila Melanogaster Mbn-2 Cells and Bacteria
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 9 Interaction Between Drosophila melanogaster mbn-2 Cells and Bacteria KARIN JOHANSSON ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 UPPSALA ISBN 91-554-6140-9 2005 urn:nbn:se:uu:diva-4772 ! "##$ %#&## ' ' ' ( ) * + ) , -) "##$) . + /" ) 0 ) 1) !% ) ) .23 1%/$$!/4%!#/1 . ' / / ' ) * ' ' 5 ' 6 '' ' ' + / ' ) * ' ' + ' ' ) . + ' + 3/7 89/ + ' ) . ' + 5 + ' ' ' ' + ' ) 5 ' ' ) * ' ' /5 6 /") : + + + '' + ) / ! " # ! " ! $%& '()! ! *+,-./0 ! ; - , "##$ .223 %4$%/4"%! .23 1%/$$!/4%!#/1 & &&& /!<<" = &88 )5)8 > ? & &&& /!<<"@ List of Papers This thesis is based on the following papers, which will be referred to in the text by their Roman numerals: I Lindmark, H., Johansson, K. C., Stöven, S., Hultmark, D., Eng- ström, Y. and Söderhäll, K. Enteric bacteria counteract lipopoly- saccharide induction of antimicrobial peptide genes. J. Immunol. 2001. 167: 6920-6923. II Johansson, K. C., Metzendorf, C. and Söderhäll, K. Microarray
    [Show full text]
  • The Drosophila Baramicin Polypeptide Gene Protects Against Fungal 2 Infection
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.23.394148; this version posted February 1, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 The Drosophila Baramicin polypeptide gene protects against fungal 2 infection 3 4 M.A. Hanson1*, L.B. Cohen2, A. Marra1, I. Iatsenko1,3, S.A. Wasserman2, and B. 5 Lemaitre1 6 7 1 Global Health Institute, School of Life Science, École Polytechnique Fédérale de 8 Lausanne (EPFL), Lausanne, Switzerland. 9 2 Division of Biological Sciences, University of California San Diego (UCSD), La Jolla, 10 California, United States of America. 11 3 Max Planck Institute for Infection Biology, 10117, Berlin, Germany. 12 * Corresponding author: M.A. Hanson ([email protected]), B. Lemaitre 13 ([email protected]) 14 15 ORCID IDs: 16 Hanson: https://orcid.org/0000-0002-6125-3672 17 Cohen: https://orcid.org/0000-0002-6366-570X 18 Iatsenko: https://orcid.org/0000-0002-9249-8998 19 Wasserman: https://orcid.org/0000-0003-1680-3011 20 Lemaitre: https://orcid.org/0000-0001-7970-1667 21 22 Abstract 23 The fruit fly Drososphila melanogaster combats microBial infection by 24 producing a battery of effector peptides that are secreted into the haemolymph. 25 Technical difficulties prevented the investigation of these short effector genes until 26 the recent advent of the CRISPR/CAS era. As a consequence, many putative immune 27 effectors remain to Be characterized and exactly how each of these effectors 28 contributes to survival is not well characterized.
    [Show full text]
  • Mutations in the Drosophila Dtak1 Gene Reveal a Conserved Function for Mapkkks in the Control of Rel/NF-␬B-Dependent Innate Immune Responses
    Downloaded from genesdev.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press Mutations in the Drosophila dTAK1 gene reveal a conserved function for MAPKKKs in the control of rel/NF-␬B-dependent innate immune responses Sheila Vidal,1,3 Ranjiv S. Khush,1,3 François Leulier,1,3 Phoebe Tzou,1 Makoto Nakamura,2 and Bruno Lemaitre1,4 1Centre de Génétique Moléculaire, CNRS, 91198 Gif-sur-Yvette, France; 2National Institute for Basic Biology, Okasaki 444-8585, Japan In mammals, TAK1, a MAPKKK kinase, is implicated in multiple signaling processes, including the regulation of NF-␬B activity via the IL1-R/TLR pathways. TAK1 function has largely been studied in cultured cells, and its in vivo function is not fully understood. We have isolated null mutations in the Drosophila dTAK1 gene that encodes dTAK1, a homolog of TAK1. dTAK1 mutant flies are viable and fertile, but they do not produce antibacterial peptides and are highly susceptible to Gram-negative bacterial infection. This phenotype is similar to the phenotypes generated by mutations in components of the Drosophila Imd pathway. Our genetic studies also indicate that dTAK1 functions downstream of the Imd protein and upstream of the IKK complex in the Imd pathway that controls the Rel/NF-␬B like transactivator Relish. In addition, our epistatic analysis places the caspase, Dredd, downstream of the IKK complex, which supports the idea that Relish is processed and activated by a caspase activity. Our genetic demonstration of dTAK1’s role in the regulation of Drosophila antimicrobial peptide gene expression suggests an evolutionary conserved role for TAK1 in the activation of Rel/NF-␬B-mediated host defense reactions.
    [Show full text]
  • Insect Antimicrobial Peptides, a Mini Review
    toxins Review Insect Antimicrobial Peptides, a Mini Review Qinghua Wu 1,2, Jiˇrí Patoˇcka 3,4 and Kamil Kuˇca 2,* 1 College of Life Science, Yangtze University, Jingzhou 434025, China; [email protected] 2 Department of Chemistry, Faculty of Science, University of Hradec Kralove, 500 03 Hradec Kralove, Czech Republic 3 Department of Radiology and Toxicology, Faculty of Health and Social Studies, University of South Bohemia, 370 05 Ceske Budejovice, Czech Republic; [email protected] 4 Biomedical Research Centre, University Hospital, 500 03 Hradec Kralove, Czech Republic * Correspondence: [email protected] Received: 20 September 2018; Accepted: 5 November 2018; Published: 8 November 2018 Abstract: Antimicrobial peptides (AMPs) are crucial effectors of the innate immune system. They provide the first line of defense against a variety of pathogens. AMPs display synergistic effects with conventional antibiotics, and thus present the potential for combined therapies. Insects are extremely resistant to bacterial infections. Insect AMPs are cationic and comprise less than 100 amino acids. These insect peptides exhibit an antimicrobial effect by disrupting the microbial membrane and do not easily allow microbes to develop drug resistance. Currently, membrane mechanisms underlying the antimicrobial effects of AMPs are proposed by different modes: the barrel-stave mode, toroidal-pore, carpet, and disordered toroidal-pore are the typical modes. Positive charge quantity, hydrophobic property and the secondary structure of the peptide are important for the antibacterial activity of AMPs. At present, several structural families of AMPs from insects are known (defensins, cecropins, drosocins, attacins, diptericins, ponericins, metchnikowins, and melittin), but new AMPs are frequently discovered. We reviewed the biological effects of the major insect AMPs.
    [Show full text]
  • Focus Dendritic Cells
    CONTRIBUTIONS to SCIENCE, 8 (1): 61–68 (2012) Institut d’Estudis Catalans, Barcelona DOI: 10.2436/20.7010.01.135 ISSN: 1575­6343 focus www.cat-science.cat The Nobel Prizes of 2011 Dendritic cells (DC) and their Toll-like receptors (TLR): Vital elements at the core of all individual immune responses. On the Nobel Prize in Physiology or Medicine 2011 awarded to Bruce A. Beutler, Jules A. Hoffmann, and Ralph M. Steinman* Manel Juan i Otero1,2 1. Immunology Service, Hospital Clínic–August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona 2. Catalan Society for Immunology, Barcelona Resum. La protecció de la integritat dels individus que exer­ Summary. The protection of the personal integrity, which is ex­ ceix el sistema immunitari enfront dels patògens té mecanis­ ercised by the immune system against pathogens, has very ef­ mes molt efectius però invariants que s’agrupen sota el terme fective and invariant mechanisms; these invariant mechanisms immunitat innata. A diferència de la immunitat adaptativa (de­ are grouped under the concept of ‘innate immunity.’ Unlike senvolupada per immunoglobulines i limfòcits), la immunitat in­ ‘adaptive immunity’ (developed by lymphocytes and immu­ nata no millora amb contactes successius (no té la memòria noglobulins), innate immunity is not improved with consecutive immunològica que, per exemple, s’indueix amb les vacunes) contacts (it has not got the immunological memory, as vaccines sinó que es manté globalment inalterable al llarg de la vida de induce) and overall innate immunity remains
    [Show full text]
  • Synergy and Remarkable Specificity of Antimicrobial Peptides in Vivo
    RESEARCH ARTICLE Synergy and remarkable specificity of antimicrobial peptides in vivo using a systematic knockout approach Mark Austin Hanson1*, Anna Dosta´ lova´ 1, Camilla Ceroni1, Mickael Poidevin2, Shu Kondo3, Bruno Lemaitre1* 1Global Health Institute, School of Life Science, E´ cole Polytechnique Fe´de´rale de Lausanne (EPFL), Lausanne, Switzerland; 2Institute for Integrative Biology of the Cell (I2BC), Universite´ Paris-Saclay, CEA, CNRS, Universite´ Paris Sud, Gif-sur-Yvette, France; 3Invertebrate Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, Mishima, Japan Abstract Antimicrobial peptides (AMPs) are host-encoded antibiotics that combat invading microorganisms. These short, cationic peptides have been implicated in many biological processes, primarily involving innate immunity. In vitro studies have shown AMPs kill bacteria and fungi at physiological concentrations, but little validation has been done in vivo. We utilized CRISPR gene editing to delete most known immune-inducible AMPs of Drosophila, namely: 4 Attacins, 2 Diptericins, Drosocin, Drosomycin, Metchnikowin and Defensin. Using individual and multiple knockouts, including flies lacking these ten AMP genes, we characterize the in vivo function of individual and groups of AMPs against diverse bacterial and fungal pathogens. We found that Drosophila AMPs act primarily against Gram-negative bacteria and fungi, contributing either additively or synergistically. We also describe remarkable specificity wherein certain AMPs contribute the bulk of microbicidal activity against specific pathogens, providing functional demonstrations of highly specific AMP-pathogen interactions in an in vivo setting. DOI: https://doi.org/10.7554/eLife.44341.001 *For correspondence: [email protected] (MAH); [email protected] (BL) Introduction Competing interest: See While innate immune mechanisms were neglected during the decades where adaptive immunity cap- page 19 tured most of the attention, they have become central to our understanding of immunology.
    [Show full text]
  • Chimeric Antimicrobial Peptides Exhibit Multiple Modes of Action
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector International Journal of Peptide Research and Therapeutics, Vol. 11, No. 1, March 2005 (Ó 2005), pp. 29–42 DOI: 10.1007/s10989-004-1719-x Chimeric Antimicrobial Peptides Exhibit Multiple Modes of Action Laszlo Otvos Jr.,1,4 Christine Snyder,1 Barry Condie,1 Philippe Bulet,2 and John D. Wade3 (Accepted September 25, 2004) Pyrrhocoricin and drosocin, representatives of the short, proline-rich antimicrobial peptide family kill bacteria by inactivating the bacterial heat shock protein DnaK and inhibiting chaperone-assisted protein folding. The molecular architecture of these peptides features an N-terminal DnaK-binding half and a C-terminal delivery unit, capable of crossing bacterial membranes. Cell penetration is enhanced if multiple copies of pyrrhocoricin are conjugated. To obtain drug leads with improved antimicrobial properties, and possible utility as therapeutic agents, we synthesized chimeric dimers, in which pyrrhocoricin’s potent DnaK-binding domain was connected to drosocin’s superior cell penetrating module. Indeed, the new constructs not only exhibited enhanced in vitro antibacterial properties against the originally sensitive strains Escherichia coli, Klebsiella pneumoniae and Salmonella typhimurium, but also showed activity against Staphylococcus aureus, a bacterial strain resistant to native pyrrhocoricin and drosocin. The improved antimicrobial profile could be demonstrated with assays designed to distinguish intracellular or membrane activities. While a novel mixed pyrrhocoricin–drosocin dimer and the purely pyrrhocoricin- based old dimer bound E. coli DnaK with an identical 4 lM Kd, the mixed dimers penetrated a significantly larger number of E.
    [Show full text]
  • A Recessive Mutation, Immune Deficiency
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 9465-9469, October 1995 Genetics A recessive mutation, immune deficiency (imd), defines two distinct control pathways in the Drosophila host defense (antibacterial peptides/antifungal peptides/insect immunity) BRUNO LEMAITRE*, ELISABETH KROMER-METZGER, LYDIA MICHAUT, EMMANUELLE NICOLAS, MARIE MEISTER, PHILIPPE GEORGEL, JEAN-MARC REICHHART, AND JULES A. HOFFMANN Institut de Biologie Moleculaire et Cellulaire, Unite Propre de Recherche 9022 du Centre National de la Recherche Scientifique, 15 rue Rene Descartes-67084, Strasbourg Cedex, France Communicated by Fotis C. Kafatos, European Molecular Biology Laboratory, Heidelberg, Germany, June 23, 1995 (received for review April 13, 1995) ABSTRACT In this paper we report a recessive mutation, bacterial peptides, the antifungal peptide drosomycin remains immune deficiency (imd), that impairs the inducibility of all inducible in a homozygous imd mutant background. These genes encoding antibacterial peptides during the immune results point to the existence of two different pathways leading response of Drosophila. When challenged with bacteria, flies either to the expression of the genes encoding antibacterial carrying this mutation show a lower survival rate than peptides or to the expression of the drosomycin gene. wild-type flies. We also report that, in contrast to the anti- bacterial peptides, the antifungal peptide drosomycin remains inducible in a homozygous imd mutant background. These MATERIALS AND METHODS results point to the existence oftwo different pathways leading Drosophila Stocks and Culture Medium. OregonR flies were to the expression of two types of target genes, encoding either used as a standard wild-type strain. The transgenic strain, the antibacterial peptides or the antifungal peptide drosomy- Dipt2.2-lacZ:1, is a ry56 C.S.
    [Show full text]
  • Lecture Slides
    The Antimicrobial Defense of Drosophila, A Paradigm for Innate Immunity Jules Hoffmann, Strasbourg, France Viruses Bacteria Protozoa Fungi Jos Pierre Hoffmann Joly 1911-2000 1913-1996 Antimicrobial Defenses in I nsects : First Investigations Metchnikoff Paillot Phagocytosis Antimicrobial substances in the blood « Cellular Immunity » Metchnikoff, 1880 « Humoral Immunity» Paillot 1920-1935 Glaser Induction of an antimicrobial activity in Drosophila by an immune challenge 1 Hyalophora Injection cecropia of bacteria Antimicrobial activity in the 2 cell-free Hans Boman hemolymph 1924-2008 3 Control 0 3 6 9 12 24 48 Time (h) Systemi c (“ humoral”) antimicrobial response in Drosophila – identification of antimicrobial peptides P G G P P G P P G G G P GG G GG G G G G Diptericin G G G Fat body G G G G G G G cells P P G P P P G G G G G G G Metchnikowin Attacin Cecropin Defensin Drosocin NF-κB response elements in the promoter of the diptericin gene -1 kb -150 -140 -62 -31 coding sequence of enhancer the diptericin gene κB-Response element 1 NLS 678 REL 1 Ank 482 Stewart 1987 DORSAL CACTUS Diptericin-LacZ reporter gene Unchallenged Challenged Versailles, 18 years ago, Innate Immunity Conference Michael Zasloff Klas Kärre Alan Ezekowitz Jean-Marc Reichhart Danièle Hoffmann Bob Lehrer Hans Boman Dan Hultmark Shunji Natori Charlie Janeway Charles Hetru Ingrid Faye Gene cascade controlling the dorso-ventral axis in the Drosophila embryo CHORION Christiane Easter PERIVITELLIN Nüsslein-Vol hard SPACE Spätzle Snake EMBRYO Gastrulation Defective Tube Cactus
    [Show full text]
  • Antimicrobial Peptide Genes Lipopolysaccharide Induction Of
    Enteric Bacteria Counteract Lipopolysaccharide Induction of Antimicrobial Peptide Genes1 Hans Lindmark,* Karin C. Johansson,* Svenja Sto¨ven,† Dan Hultmark,† Ylva Engstro¨m,‡ and Kenneth So¨derha¨ll2* The humoral immunity of Drosophila involves the production of antimicrobial peptides, which are induced by evolutionary conserved microbial molecules, like LPS. By using Drosophila mbn-2 cells, we found that live bacteria, including E. coli, Salmonella typhimurium, Erwinia carotovora, and Pseudomonas aeruginosa, prevented LPS from inducing antimicrobial peptide genes, while Micrococcus luteus and Streptococcus equi did not. The inhibitory effect was seen at bacterial levels from 20 per mbn-2 cell, while antimicrobial peptides were induced at lower bacterial concentrations (<2 bacteria per cell) also in the absence of added LPS. Gel shift experiment suggests that the inhibitory effect is upstream or at the level of the activation of the transcription factor Relish, a member of the NF-␬B/Rel family. The bacteria have to be in physical contact with the cells, but not phagocytosed, to prevent LPS induction. Interestingly, the inhibiting mechanism is, at least for E. coli, independent of the type III secretion system, indicating that the inhibitory mechanism is unrelated to the one earlier described for YopJ from Yersinia. The Journal of Immunology, 2001, 167: 6920–6923. roduction of antimicrobial peptides is one part of the in- Materials and Methods nate immunity in invertebrates as well as in mammals and Cell line and bacterial strains plants. Signaling cascades leading to expression of anti- P The Drosophila tumorous blood cell line mbn-2 was cultivated and in- microbial peptides are triggered by extracellular host molecules rec- fected essentially as previously described (15), although antibiotics were ognizing microbial molecules, like LPS, peptidoglycan, and ␤-1,3 not used.
    [Show full text]