Biogeography of Triassic Ammonoids
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
First Record of the Upper Illyrian Ammonoid Subzone Marker Reitziites Reitzi in the Karst Dinarides
75 The Mining-Geology-Petroleum Engineering Bulletin First record of the upper Illyrian UDC: 551.7:551.8 ammonoid subzone marker DOI: 10.17794/rgn.2020.2.7 Reitziites reitzi in the Karst Dinarides Original scientific paper Duje Smirčić1; Dražen Japundžić2; Nikolina GaberšeK1, Dunja Aljinović1, Nediljka Prlj-Šimić2, Katarina Krizmanić2, Uroš Barudžija1, Ivor Pavić1 1Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, Pierottijeva 6, HR10000 Zagreb 2Croatian Natural History Museum, Demetrova 1, HR10000 Zagreb Abstract Middle Triassic deposits in the Karst Dinarides (south Lika area, near Gračac) were investigated for petrological, sedi- mentological and biostratigraphic determinations. Within two continuously recorded sections of sedimentary carbon- ates and interlayered pyroclastic rocks (Mali Kunovac and Kunovac sections) reflecting variable sedimentary-magmatic environments, valuable cephalopod fauna ranging from the middle Illyrian to the upper Illyrian age was found. The most significant was the recovery of the ammonoids Asseretoceras sp., indicating the upper part of the Illyrian Paraceratites trinodosus Zone, and Reitziites reitzi species which marks the upper part of the Illyrian Reitziites reitzi Zone. The dis- covery of the Reitziites reitzi species was not known from the Karst Dinarides until this finding. Keywords: Karst Dinarides, Croatia, Middle Triassic, biostratigraphy, ammonoids 1. Introduction 2. Geological setting Biostratigraphic zonation according to ammonoids The investigated area is located in the southern part of has a very high resolution and is still considered one of Lika, in Croatia. In a geological sense, the area represents the best correlative principles for the Middle Triassic. the central part of the Karst Dinarides. The wider area of There are many recent works that consider ammonoids as Kunovac has been investigated in the frame of basic geo- the important correlative marker in spite of the wide use logical mapping, and the area of our interest covers the of conodonts in biostratigraphic correlations. -
Anisian (Middle Triassic) Ammonoids from North America: Quantitative Biochronology and Biodiversity
Anisian (Middle Triassic) ammonoids from North America: quantitative biochronology and biodiversity Claude Monnet and Hugo Bucher Paläontologisches Institut und Museum, Universität Zürich, Karl Schmid Strasse 4, CH-8006 Zürich, Switzerland email: [email protected]; [email protected] ABSTRACT: This study synthesizes and revises the ammonoid zonations as well as their correlation with each other for western Nevada (USA), British Columbia (Canada), and the Sverdrup Basin (Canada) by utilizing the unitary association method. Based on a standard- ized taxonomy, the Anisian in the studied areas contains 13, 10, and 3 zones and a total of 174, 90, and 7 species, respectively. The zonations are correlated by means of a ‘common taxa zonation’, which includes all taxa common to the studied basins. This leads to new and more precise correlations, which are at slight variance with those of the literature. Hence, the Buddhaites hagei Zone (Canada) corre- lates only with the Intornites mctaggarti Subzone (Nevada) and not with the entire Acrochordiceras hyatti Zone (Nevada). The Tetsaoceras hayesi Zone (Canada) appears to correlate with the Unionvillites hadleyi Subzone (Nevada) of the hyatti Zone and not with the Nevadisculites taylori Zone. The Hollandites minor Zone (Canada) more than likely correlates with the taylori Zone (Nevada) rather than the Balatonites shoshonensis Zone as is usually acknowledged. The unitary association method enables us to quantify the diachronism of the studied taxa, which affects about 67% of the genera and 18% of the species common to Nevada and British Columbia. Therefore, this diachronism is significant and its value for correlation should not be overlooked. -
Contributions in BIOLOGY and GEOLOGY
MILWAUKEE PUBLIC MUSEUM Contributions In BIOLOGY and GEOLOGY Number 51 November 29, 1982 A Compendium of Fossil Marine Families J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions in BIOLOGY and GEOLOGY Number 51 November 29, 1982 A COMPENDIUM OF FOSSIL MARINE FAMILIES J. JOHN SEPKOSKI, JR. Department of the Geophysical Sciences University of Chicago REVIEWERS FOR THIS PUBLICATION: Robert Gernant, University of Wisconsin-Milwaukee David M. Raup, Field Museum of Natural History Frederick R. Schram, San Diego Natural History Museum Peter M. Sheehan, Milwaukee Public Museum ISBN 0-893260-081-9 Milwaukee Public Museum Press Published by the Order of the Board of Trustees CONTENTS Abstract ---- ---------- -- - ----------------------- 2 Introduction -- --- -- ------ - - - ------- - ----------- - - - 2 Compendium ----------------------------- -- ------ 6 Protozoa ----- - ------- - - - -- -- - -------- - ------ - 6 Porifera------------- --- ---------------------- 9 Archaeocyatha -- - ------ - ------ - - -- ---------- - - - - 14 Coelenterata -- - -- --- -- - - -- - - - - -- - -- - -- - - -- -- - -- 17 Platyhelminthes - - -- - - - -- - - -- - -- - -- - -- -- --- - - - - - - 24 Rhynchocoela - ---- - - - - ---- --- ---- - - ----------- - 24 Priapulida ------ ---- - - - - -- - - -- - ------ - -- ------ 24 Nematoda - -- - --- --- -- - -- --- - -- --- ---- -- - - -- -- 24 Mollusca ------------- --- --------------- ------ 24 Sipunculida ---------- --- ------------ ---- -- --- - 46 Echiurida ------ - --- - - - - - --- --- - -- --- - -- - - --- -
The Magnetobiostratigraphy of the Middle Triassic and the Latest Early Triassic from Spitsbergen, Arctic Norway Mark W
Intercalibration of Boreal and Tethyan time scales: the magnetobiostratigraphy of the Middle Triassic and the latest Early Triassic from Spitsbergen, Arctic Norway Mark W. Hounslow,1 Mengyu Hu,1 Atle Mørk,2,6 Wolfgang Weitschat,3 Jorunn Os Vigran,2 Vassil Karloukovski1 & Michael J. Orchard5 1 Centre for Environmental Magnetism and Palaeomagnetism, Geography, Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster, LA1 4YQ, UK 2 SINTEF Petroleum Research, NO-7465 Trondheim, Norway 3 Geological-Palaeontological Institute and Museum, University of Hamburg, Bundesstrasse 55, DE-20146 Hamburg, Germany 5 Geological Survey of Canada, 101-605 Robson Street, Vancouver, BC, V6B 5J3, Canada 6 Department of Geology and Mineral Resources Engineering, Norwegian University of Sciences and Technology, NO-7491 Trondheim, Norway Keywords Abstract Ammonoid biostratigraphy; Boreal; conodonts; magnetostratigraphy; Middle An integrated biomagnetostratigraphic study of the latest Early Triassic to Triassic. the upper parts of the Middle Triassic, at Milne Edwardsfjellet in central Spitsbergen, Svalbard, allows a detailed correlation of Boreal and Tethyan Correspondence biostratigraphies. The biostratigraphy consists of ammonoid and palynomorph Mark W. Hounslow, Centre for Environmental zonations, supported by conodonts, through some 234 m of succession in two Magnetism and Palaeomagnetism, adjacent sections. The magnetostratigraphy consists of 10 substantive normal— Geography, Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster, LA1 reverse polarity chrons, defined by sampling at 150 stratigraphic levels. The 4YQ, UK. E-mail: [email protected] magnetization is carried by magnetite and an unidentified magnetic sulphide, and is difficult to fully separate from a strong present-day-like magnetization. doi:10.1111/j.1751-8369.2008.00074.x The biomagnetostratigraphy from the late Olenekian (Vendomdalen Member) is supplemented by data from nearby Vikinghøgda. -
Triassic Stratigraphy and Sedimentary Evolution of the Annapurna Tethys Himalaya (Manang Area, Central Nepal)
Riv. It. Paleont. Strat. v. 100 n.z pp. 195-226 tav. i-3 Ottobre 1994 TRIASSIC STRATIGRAPHY AND SEDIMENTARY EVOLUTION OF THE ANNAPURNA TETHYS HIMALAYA (MANANG AREA, CENTRAL NEPAL) EDUARDO GARZANTI, ALDA NICORA 6. ANDREA TINTORI Key-uords: Tethys Himalaya, Triassic, Ammonoids, Conodonts, Brachiopods, Corals, Stratigraphy, Arenite petrography. Riassanto. Dopo I'apertura iniziale della Neotetide nel Permiano, la subsidenza rermica conrinua nel Triassico inferiore, ceraÍterizzato da tre orizzonti condensati di carbonati pelagici, di erà Griesbachiana infe- riore-Dieneriana inferiore, Smithiana inferiore-media e Smithiana sommitale-Egeica basale, separari da argilliri nere (Formazione di Tamba Kurkur). Le strutture sedimentarie indicano un ambiente di piattaforma non molto profonda per le argille, mentre per i carbonati nodulari la ricca fauna ad Ammoniti e Conodonti suggerisce profondità massime attorno ai 150 + 200 m, raggiunte sulla piattaforma esterna durante fasi trasgressive. La Formazione di Mukut contiene marne e calcari marnosi deposti in ambienti di piattaforma dall' Anisico inferiore al Norico basale. Peliti calcaree e siltose sono più abbondanti nella parte carnica della formazione, dove i tassi di accumulo in rapido aumento suggeriscono una nuova fase tettonica estensiva. La potente Formazione di Tarap, anribuibile in gran parte alla parte centrale del Norico, è costituita da una fitta alternanza di peliti scure e di subarkose a grana fine ("membro inferiore"), seguite localmente da patch-reefs a Coralli ("membro centrale") e quindi da peliti intercalate ad areniti ibride spesso conrenenti chamosite e deposte durante eventi trasgressivi ("membro superiore"). La successione Triassica termina con quarzareniti ibride e subarkose alternate con peliti e calcari ("Quartzite Series"), seguite da carbonati di piattaforma (Calcari di Kioto). -
Anisian Ammonoids from Qingyan
1661-8726/08/020546-16 Swiss J. Geosci. 101 (2008) 547–562 DOI 10.1007/s00015-008-1274-0 Birkhäuser Verlag, Basel, 2008 Anisian ammonoids from Qingyan, southwestern China: biostratigraphical implications for the age of the Qingyan Formation FRANK STILLER1, * & HUGO BUCHER 2 Key words: ammonoids, Anisian, Qingyan Formation, southwestern China, taxonomy, biostratigraphy ABSTRACT The Upper Qingyan Formation in the northeastern vicinity of Qingyan, Gui- blage correlates with the Billingsites cordeyi Subzone in northwestern Nevada zhou Province, southwestern China, yields an ammonoid sequence comprising and the Rieppelites cimeganus Zone in Lombardy. The middle/late Anisian a latest middle Anisian assemblage in its lower part followed by an earliest late boundary is situated in the upper middle part of the highly fossiliferous sec- Anisian assemblage in its middle and upper parts. Age-diagnostic genera of tion at Leidapo. Judging from re-study of available and figured specimens, the lower assemblage include Bulogites and Acrochordiceras; additional gen- reports of stratigraphically younger taxa such as Paraceratites trinodosus from era comprise Proarcestes, Sageceras, and Beyrichitinae gen. indet. This assem- the Upper Qingyan Formation of this area are based on misidentifications. blage well correlates with the Bulogites mojsvari Subzone in northwestern Ne- The time interval represented by the Qingyan Formation at its type locality is vada and the Bulogites zoldianus Zone in Lombardy and Hungary. The upper not equal to the Anisian as has long been supposed in Chinese stratigraphy. assemblage comprises the age-diagnostic genera Rieppelites and Judicarites; An earliest late Anisian age for the uppermost strata of the Qingyan Forma- additional characteristic genera include Ptychites and Gosauites. -
ABHANDLUNGEN DER GEOLOGISCHEN BUNDESANSTALT Abh
©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at ABHANDLUNGEN DER GEOLOGISCHEN BUNDESANSTALT Abh. Geol. B.-A. ISSN 0016–7800 ISBN 3-85316-14-X Band 57 S. 407–422 Wien, Februar 2002 Cephalopods – Present and Past Editors: H. Summesberger, K. Histon & A. Daurer Scavenging or Predation? – Mississippian Ammonoid Accumulations in Carbonate Concretion Halos Around Rayonnoceras (Actinoceratoidea – Nautiloidea) Body Chambers from Arkansas ROYAL H. MAPES & RODNEY B. DALTON*) 3 Text-Figures, 1 Table and 4 Plates USA Arkansas Carboniferous Mississippian Cephalopods Ammonoidea Nautiloidea Predation Contents Zusammenfassung ...................................................................................................... 407 Abstract ................................................................................................................. 408 1. Introduction ............................................................................................................. 408 2. Previous Reports and Discussion ......................................................................................... 408 3. Focus of this Study ...................................................................................................... 409 4. Localities ............................................................................................................... 409 4.1. Fayetteville Formation Concretions .................................................................................. 409 4.2. Comparative Concretions from Other Places and -
Middle Triassic) Ptychitid Ammonoids from Nevada, USA
Journal of Paleontology, 94(5), 2020, p. 829–851 Copyright © 2020, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/20/1937-2337 doi: 10.1017/jpa.2020.25 Ontogenetic analysis of Anisian (Middle Triassic) ptychitid ammonoids from Nevada, USA Eva A. Bischof1* and Jens Lehmann1 1Geowissenschaftliche Sammlung, Fachbereich Geowissenschaften, Universität Bremen, Leobener Strasse 8, 28357 Bremen, Germany <[email protected]>, <[email protected]> Abstract.—Ptychites is among the most widely distributed ammonoid genera of the Triassic and is namesake of a family and superfamily. However, representatives of the genus mostly show low-level phenotypic disparity. Furthermore, a large number of taxa are based on only a few poorly preserved specimens, creating challenges to determine ptychitid taxonomy. Consequently, a novel approach is needed to improve ptychitid diversity studies. Here, we investigate Ptychites spp. from the middle and late Anisian of Nevada. The species recorded include Ptychites embreei n. sp., which is distinguished by an average conch diameter that is much smaller and shows a more evolute coiling than most of its relatives. The new species ranges from the Gymnotoceras mimetus to the Gymnotoceras rotelliformis zones, which makes it the longest-ranging species of the genus. For the first time, the ontogenetic development of Pty- chites was obtained from cross sections where possible. Cross-sectioning highlights unique ontogenetic trajectories in ptychitids. -
Paleontological Contributions
THE UNIVERSITY OF KANSAS PALEONTOLOGICAL CONTRIBUTIONS May 15, 1970 Paper 47 SIGNIFICANCE OF SUTURES IN PHYLOGENY OF AMMONOIDEA JURGEN KULLMANN AND JOST WIEDMANN Universinit Tubingen, Germany ABSTRACT Because of their complex structure ammonoid sutures offer best possibilities for the recognition of homologies. Sutures comprise a set of individual elements, which may be changed during the course of ontogeny and phylogeny as a result of heterotopy, hetero- morphy, and heterochrony. By means of a morphogenetic symbol terminology, sutural formulas may be established which show the composition of adult sutures as well as their ontogenetic development. WEDEKIND ' S terminology system is preferred because it is the oldest and morphogenetically the most consequent, whereas RUZHENTSEV ' S system seems to be inadequate because of its usage of different symbols for homologous elements. WEDEKIND ' S system includes only five symbols: E (for external lobe), L (for lateral lobe), I (for internal lobe), A (for adventitious lobe), U (for umbilical lobe). Investigations on ontogenetic development show that all taxonomic groups of the entire superorder Ammonoidea can be compared one with another by means of their sutural development, expressed by their sutural formulas. Most of the higher and many of the lower taxa can be solely characterized and arranged in phylogenetic relationship by use of their sutural formulas. INTRODUCTION Today very few ammonoid workers doubt the (e.g., conch shape, sculpture, growth lines) rep- importance of sutures as indication of ammonoid resent less complicated structures; therefore, phylogeny. The considerable advances in our numerous homeomorphs restrict the usefulness of knowledge of ammonoid evolution during recent these features for phylogenetic investigations. -
Als PDF Herunterladen
References Autor(en): [s.n.] Objekttyp: ReferenceList Zeitschrift: Eclogae Geologicae Helvetiae Band (Jahr): 82 (1989) Heft 3 PDF erstellt am: 25.09.2021 Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der ETH-Bibliothek ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch http://www.e-periodica.ch 984 H. Bucher Fig. 26. Suture line (x 6) of Ussurites sp. indet. at D 24 mm. USNM 438373. Ussurites detwilleri n. sp. Plate 7, Figure 1 Description. Inner whorls evolute, rounded and ribbed. Further development shows increasing spacing of radial ribs which gradually fade on outer whorls. Whorl section simultaneously changes into an ovoid outline. Umbilical margin is then well individualized and slightly convex flanks gently converge towards the permanently broadly arched venter. -
X. Paleontology, Biostratigraphy
BIBLIOGRAPHY OF THE GEOLOGY OF INDONESIA AND SURROUNDING AREAS Edition 7.0, July 2018 J.T. VAN GORSEL X. PALEONTOLOGY, BIOSTRATIGRAPHY www.vangorselslist.com X. PALEONTOLOGY, BIOSTRATIGRAPHY X. PALEONTOLOGY, BIOSTRATIGRAPHY ................................................................................................... 1 X.1. Quaternary-Recent faunas-microfloras and distribution ....................................................................... 60 X.2. Tertiary ............................................................................................................................................. 120 X.3. Jurassic- Cretaceous ........................................................................................................................ 161 X.4. Triassic ............................................................................................................................................ 171 X.5. Paleozoic ......................................................................................................................................... 179 X.6. Quaternary Hominids, Mammals and associated stratigraphy ........................................................... 191 This chapter X of the Bibliography 7.0 contains 288 pages with >2150 papers. These are mainly papers of a more general or regional nature. Numerous additional paleontological papers that deal with faunas/ floras from specific localities are listed under those areas in this Bibliography. It is organized in six sub-chapters: - X.1 on modern and sub-recent -
University of Nevada Reno Paleoecology of Upper Triassic
University of Nevada Reno Paleoecology of Upper Triassic Bioherms in the Pilot Mountains, Mineral County, West-Central Nevada A tiles is submitted in partial fulfillment of the requirements for the degree of Master of Science in Geology by Diane Elinor Cornwall May 1979 University of Nevada Reno ACKNOWLEDGEMENTS I would like to thank Dr. James R. Firby for his supervision, support and for his guidance through those difficult "rough spots." Dan Howe was a constant source of interesting ideas and enthusiasm, especially during the early stages of the thesis project. Throughout my research Fred Gustafson and I worked together, he always being an interested and understanding coworker and friend throughout the lonely weeks of research. Dr. Joseph Lintz, Jr. was invaluable in his assistance in procurement of materials and equipment and in his unselfish desire to solve any problem. I thank Dr. Mead for joining my committee. I greatly appreciate those hearty souls who ventured out into the desert with me and braved the hazards and extremes; these include Barbara Foster, Mickie Dunn, Micheal Judge and my parents who spent all their vacations in my field area. I would also like to acknowledge the moral support given by my parents, special and other friends. i n ABSTRAC In the Pilot Mountains, Mineral County, Nevada, up to five horizons of bioherms are present within the top 76 meters of the lower member of the Upper Triassic (Karnian) Luning Formation. These bio herms are located in the carbonate portions of small terrigenous- carbonate rhythms. The biohermal mounds, less than 15 meters high^exhibit four of Wilson's (1975) seven facies.