Graph Homomorphisms: Structure and Symmetry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Homomorphisms of 3-Chromatic Graphs
Discrete Mathematics 54 (1985) 127-132 127 North-Holland HOMOMORPHISMS OF 3-CHROMATIC GRAPHS Michael O. ALBERTSON Department of Mathematics, Smith College, Northampton, MA 01063, U.S.A. Karen L. COLLINS Department of Mathematics, M.L T., Cambridge, MA 02139, U.S.A. Received 29 March 1984 Revised 17 August 1984 This paper examines the effect of a graph homomorphism upon the chromatic difference sequence of a graph. Our principal result (Theorem 2) provides necessary conditions for the existence of a homomorphism onto a prescribed target. As a consequence we note that iterated cartesian products of the Petersen graph form an infinite family of vertex transitive graphs no one of which is the homomorphic image of any other. We also prove that there is a unique minimal element in the homomorphism order of 3-chromatic graphs with non-monotonic chromatic difference sequences (Theorem 1). We include a brief guide to some recent papers on graph homomorphisms. A homomorphism f from a graph G to a graph H is a mapping from the vertex set of G (denoted by V(G)) to the vertex set of H which preserves edges, i.e., if (u, v) is an edge in G, then (f(u), f(v)) is an edge in H. If in addition f is onto V(H) and each edge in H is the image of some edge in G, then f is said to be onto and H is called a homomorphic image of G. We define the homomorphism order ~> on the set of finite connected graphs as G ~>H if there exists a homomorphism which maps G onto H. -
Graph Operations and Upper Bounds on Graph Homomorphism Counts
Graph Operations and Upper Bounds on Graph Homomorphism Counts Luke Sernau March 9, 2017 Abstract We construct a family of countexamples to a conjecture of Galvin [5], which stated that for any n-vertex, d-regular graph G and any graph H (possibly with loops), n n d d hom(G, H) ≤ max hom(Kd,d,H) 2 , hom(Kd+1,H) +1 , n o where hom(G, H) is the number of homomorphisms from G to H. By exploiting properties of the graph tensor product and graph exponentiation, we also find new infinite families of H for which the bound stated above on hom(G, H) holds for all n-vertex, d-regular G. In particular we show that if HWR is the complete looped path on three vertices, also known as the Widom-Rowlinson graph, then n d hom(G, HWR) ≤ hom(Kd+1,HWR) +1 for all n-vertex, d-regular G. This verifies a conjecture of Galvin. arXiv:1510.01833v3 [math.CO] 8 Mar 2017 1 Introduction Graph homomorphisms are an important concept in many areas of graph theory. A graph homomorphism is simply an adjacency-preserving map be- tween a graph G and a graph H. That is, for given graphs G and H, a function φ : V (G) → V (H) is said to be a homomorphism from G to H if for every edge uv ∈ E(G), we have φ(u)φ(v) ∈ E(H) (Here, as throughout, all graphs are simple, meaning without multi-edges, but they are permitted 1 to have loops). -
Helly Property and Satisfiability of Boolean Formulas Defined on Set
Helly Property and Satisfiability of Boolean Formulas Defined on Set Systems Victor Chepoi Nadia Creignou LIF (CNRS, UMR 6166) LIF (CNRS, UMR 6166) Universit´ede la M´editerran´ee Universit´ede la M´editerran´ee 13288 Marseille cedex 9, France 13288 Marseille cedex 9, France Miki Hermann Gernot Salzer LIX (CNRS, UMR 7161) Technische Universit¨atWien Ecole´ Polytechnique Favoritenstraße 9-11 91128 Palaiseau, France 1040 Wien, Austria March 7, 2008 Abstract We study the problem of satisfiability of Boolean formulas ' in conjunctive normal form whose literals have the form v 2 S and express the membership of values to sets S of a given set system S. We establish the following dichotomy result. We show that checking the satisfiability of such formulas (called S-formulas) with three or more literals per clause is NP-complete except the trivial case when the intersection of all sets in S is nonempty. On the other hand, the satisfiability of S-formulas ' containing at most two literals per clause is decidable in polynomial time if S satisfies the Helly property, and is NP-complete otherwise (in the first case, we present an O(j'j · jSj · jDj)-time algorithm for deciding if ' is satisfiable). Deciding whether a given set family S satisfies the Helly property can be done in polynomial time. We also overview several well-known examples of Helly families and discuss the consequences of our result to such set systems and its relationship with the previous work on the satisfiability of signed formulas in multiple-valued logic. 1 Introduction The satisfiability of Boolean formulas in conjunctive normal form (SAT problem) is a fundamental problem in theoretical computer science and discrete mathematics. -
Coverings of Cubic Graphs and 3-Edge Colorability
Discussiones Mathematicae Graph Theory 41 (2021) 311–334 doi:10.7151/dmgt.2194 COVERINGS OF CUBIC GRAPHS AND 3-EDGE COLORABILITY Leonid Plachta AGH University of Science and Technology Krak´ow, Poland e-mail: [email protected] Abstract Let h: G˜ → G be a finite covering of 2-connected cubic (multi)graphs where G is 3-edge uncolorable. In this paper, we describe conditions under which G˜ is 3-edge uncolorable. As particular cases, we have constructed regular and irregular 5-fold coverings f : G˜ → G of uncolorable cyclically 4-edge connected cubic graphs and an irregular 5-fold covering g : H˜ → H of uncolorable cyclically 6-edge connected cubic graphs. In [13], Steffen introduced the resistance of a subcubic graph, a char- acteristic that measures how far is this graph from being 3-edge colorable. In this paper, we also study the relation between the resistance of the base cubic graph and the covering cubic graph. Keywords: uncolorable cubic graph, covering of graphs, voltage permuta- tion graph, resistance, nowhere-zero 4-flow. 2010 Mathematics Subject Classification: 05C15, 05C10. 1. Introduction 1.1. Motivation and statement of results We will consider proper edge colorings of G. Let ∆(G) be the maximum degree of vertices in a graph G. Denote by χ′(G) the minimum number of colors needed for (proper) edge coloring of G and call it the chromatic index of G. Recall that according to Vizing’s theorem (see [14]), either χ′(G) = ∆(G), or χ′(G) = ∆(G)+1. In this paper, we shall consider only subcubic graphs i.e., graphs G such that ∆(G) ≤ 3. -
Chromatic Number of the Product of Graphs, Graph Homomorphisms, Antichains and Cofinal Subsets of Posets Without AC
CHROMATIC NUMBER OF THE PRODUCT OF GRAPHS, GRAPH HOMOMORPHISMS, ANTICHAINS AND COFINAL SUBSETS OF POSETS WITHOUT AC AMITAYU BANERJEE AND ZALAN´ GYENIS Abstract. In set theory without the Axiom of Choice (AC), we observe new relations of the following statements with weak choice principles. • If in a partially ordered set, all chains are finite and all antichains are countable, then the set is countable. • If in a partially ordered set, all chains are finite and all antichains have size ℵα, then the set has size ℵα for any regular ℵα. • CS (Every partially ordered set without a maximal element has two disjoint cofinal subsets). • CWF (Every partially ordered set has a cofinal well-founded subset). • DT (Dilworth’s decomposition theorem for infinite p.o.sets of finite width). We also study a graph homomorphism problem and a problem due to Andr´as Hajnal without AC. Further, we study a few statements restricted to linearly-ordered structures without AC. 1. Introduction Firstly, the first author observes the following in ZFA (Zermelo-Fraenkel set theory with atoms). (1) In Problem 15, Chapter 11 of [KT06], applying Zorn’s lemma, Komj´ath and Totik proved the statement “Every partially ordered set without a maximal element has two disjoint cofinal subsets” (CS). In Theorem 3.26 of [THS16], Tachtsis, Howard and Saveliev proved that CS does not imply ‘there are no amorphous sets’ in ZFA. We observe ω that CS 6→ ACfin (the axiom of choice for countably infinite familes of non-empty finite − sets), CS 6→ ACn (‘Every infinite family of n-element sets has a partial choice function’) 1 − for every 2 ≤ n<ω and CS 6→ LOKW4 (Every infinite linearly orderable family A of 4-element sets has a partial Kinna–Wegner selection function)2 in ZFA. -
No Finite-Infinite Antichain Duality in the Homomorphism Poset D of Directed Graphs
NO FINITE-INFINITE ANTICHAIN DUALITY IN THE HOMOMORPHISM POSET D OF DIRECTED GRAPHS PETER¶ L. ERDOS} AND LAJOS SOUKUP Abstract. D denotes the homomorphism poset of ¯nite directed graphs. An antichain duality is a pair hF; Di of antichains of D such that (F!) [ (!D) = D is a partition. A generalized duality pair in D is an antichain duality hF; Di with ¯nite F and D: We give a simpli¯ed proof of the Foniok - Ne·set·ril- Tardif theorem for the special case D, which gave full description of the generalized duality pairs in D. Although there are many antichain dualities hF; Di with in¯nite D and F, we can show that there is no antichain duality hF; Di with ¯nite F and in¯nite D. 1. Introduction If G and H are ¯nite directed graphs, write G · H or G ! H i® there is a homomorphism from G to H, that is, a map f : V (G) ! V (H) such that hf(x); f(y)i is a directed edge 2 E(H) whenever hx; yi 2 E(G). The relation · is a quasi-order and so it induces an equivalence relation: G and H are homomorphism-equivalent if and only if G · H and H · G. The homomorphism poset D is the partially ordered set of all equivalence classes of ¯nite directed graphs, ordered by ·. In this paper we continue the study of antichain dualities in D (what was started, in this form, in [2]). An antichain duality is a pair hF; Di of disjoint antichains of D such that D = (F!) [ (!D) is a partition of D, where the set F! := fG : F · G for some F 2 Fg, and !D := fG : G · D for some D 2 Dg. -
Solution-Graphs of Boolean Formulas and Isomorphism∗
Journal on Satisfiability, Boolean Modeling, and Computation 10 (2019) 37-58 Solution-Graphs of Boolean Formulas and Isomorphism∗ Patrick Scharpfeneckery [email protected] Jacobo Tor´an [email protected] University of Ulm Institute of Theoretical Computer Science Ulm, Germany Abstract The solution-graph of a Boolean formula on n variables is the subgraph of the hypercube Hn induced by the satisfying assignments of the formula. The structure of solution-graphs has been the object of much research in recent years since it is important for the performance of SAT-solving procedures based on local search. Several authors have studied connectivity problems in such graphs focusing on how the structure of the original formula might affect the complexity of the connectivity problems in the solution-graph. In this paper we study the complexity of the isomorphism problem of solution-graphs of Boolean formulas. We consider the classes of formulas that arise in the CSP-setting and investigate how the complexity of the isomorphism problem depends on the formula type. We observe that for general formulas the solution-graph isomorphism problem can be solved in exponential time while in the cases of 2CNF formulas, as well as for CPSS formulas, the problem is in the counting complexity class C=P, a subclass of PSPACE. We also prove a strong property on the structure of solution-graphs of Horn formulas showing that they are just unions of partial cubes. In addition, we give a PSPACE lower bound for the problem on general Boolean functions. We prove that for 2CNF, as well as for CPSS formulas the solution-graph isomorphism problem is hard for C=P under polynomial time many-one reductions, thus matching the given upper bound. -
A Convexity Lemma and Expansion Procedures for Bipartite Graphs
Europ. J. Combinatorics (1998) 19, 677±685 Article No. ej980229 A Convexity Lemma and Expansion Procedures for Bipartite Graphs WILFRIED IMRICH AND SANDI KLAVZARÏ ² A hierarchy of classes of graphs is proposed which includes hypercubes, acyclic cubical com- plexes, median graphs, almost-median graphs, semi-median graphs and partial cubes. Structural properties of these classes are derived and used for the characterization of these classes by expan- sion procedures, for a characterization of semi-median graphs by metrically de®ned relations on the edge set of a graph and for a characterization of median graphs by forbidden subgraphs. Moreover, a convexity lemma is proved and used to derive a simple algorithm of complexity O(mn) for recognizing median graphs. c 1998 Academic Press 1. INTRODUCTION Hamming graphs and related classes of graphs have been of continued interest for many years as can be seen from the list of references. As the subject unfolded, many interesting problems arose which have not been solved yet. In particular, it is still open whether the known algorithms for recognizing partial cubes or median graphs, which comprise an important subclass of partial cubes, are optimal. The best known algorithms for recognizing whether a graph G is a member of the class of partial cubes have complexity O(mn), where m and n denote, respectively, the numbersPC of edges and vertices of G, see [1, 13]. As the recognition process involves a coloring of the edges of G, which is a special case of sorting, one might be tempted to look for an algorithm of complexity O(m log n). -
Steps in the Representation of Concept Lattices and Median Graphs Alain Gély, Miguel Couceiro, Laurent Miclet, Amedeo Napoli
Steps in the Representation of Concept Lattices and Median Graphs Alain Gély, Miguel Couceiro, Laurent Miclet, Amedeo Napoli To cite this version: Alain Gély, Miguel Couceiro, Laurent Miclet, Amedeo Napoli. Steps in the Representation of Concept Lattices and Median Graphs. CLA 2020 - 15th International Conference on Concept Lattices and Their Applications, Sadok Ben Yahia; Francisco José Valverde Albacete; Martin Trnecka, Jun 2020, Tallinn, Estonia. pp.1-11. hal-02912312 HAL Id: hal-02912312 https://hal.inria.fr/hal-02912312 Submitted on 5 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Steps in the Representation of Concept Lattices and Median Graphs Alain Gély1, Miguel Couceiro2, Laurent Miclet3, and Amedeo Napoli2 1 Université de Lorraine, CNRS, LORIA, F-57000 Metz, France 2 Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France 3 Univ Rennes, CNRS, IRISA, Rue de Kérampont, 22300 Lannion, France {alain.gely,miguel.couceiro,amedeo.napoli}@loria.fr Abstract. Median semilattices have been shown to be useful for deal- ing with phylogenetic classication problems since they subsume me- dian graphs, distributive lattices as well as other tree based classica- tion structures. Median semilattices can be thought of as distributive _-semilattices that satisfy the following property (TRI): for every triple x; y; z, if x ^ y, y ^ z and x ^ z exist, then x ^ y ^ z also exists. -
Graphs of Acyclic Cubical Complexes
Europ . J . Combinatorics (1996) 17 , 113 – 120 Graphs of Acyclic Cubical Complexes H A N S -J U ¨ R G E N B A N D E L T A N D V I C T O R C H E P O I It is well known that chordal graphs are exactly the graphs of acyclic simplicial complexes . In this note we consider the analogous class of graphs associated with acyclic cubical complexes . These graphs can be characterized among median graphs by forbidden convex subgraphs . They possess a number of properties (in analogy to chordal graphs) not shared by all median graphs . In particular , we disprove a conjecture of Mulder on star contraction of median graphs . A restricted class of cubical complexes for which this conjecture would hold true is related to perfect graphs . ÷ 1996 Academic Press Limited 1 . C U B I C A L C O M P L E X E S A cubical complex is a finite set _ of (graphic) cubes of any dimensions which is closed under taking subcubes and non-empty intersections . If we replace each cube of _ by a solid cube , then we obtain the geometric realization of _ , called a cubical polyhedron ; for further information consult van de Vel’s book [18] . Vertices of a cubical complex _ are 0-dimensional cubes of _ . In the ( underlying ) graph G of the complex two vertices of _ are adjacent if they constitute a 1-dimensional cube . Particular cubical complexes arise from median graphs . In what follows we consider only finite graphs . -
Not Every Bipartite Double Cover Is Canonical
Volume 82 BULLETIN of the February 2018 INSTITUTE of COMBINATORICS and its APPLICATIONS Editors-in-Chief: Marco Buratti, Donald Kreher, Tran van Trung Boca Raton, FL, U.S.A. ISSN1182-1278 BULLETIN OF THE ICA Volume 82 (2018), Pages 51{55 Not every bipartite double cover is canonical Tomaˇz Pisanski University of Primorska, FAMNIT, Koper, Slovenia and IMFM, Ljubljana, Slovenia. [email protected]. Abstract: It is explained why the term bipartite double cover should not be used to designate canonical double cover alias Kronecker cover of graphs. Keywords: Kronecker cover, canonical double cover, bipartite double cover, covering graphs. Math. Subj. Class. (2010): 05C76, 05C10. It is not uncommon to use different terminology or notation for the same mathematical concept. There are several reasons for such a phenomenon. Authors independently discover the same object and have to name it. It is• quite natural that they choose different names. Sometimes the same concept appears in different mathematical schools or in• different disciplines. By using particular terminology in a given context makes understanding of such a concept much easier. Sometimes original terminology is not well-chosen, not intuitive and it is difficult• to relate the name of the object to its meaning. A name that is more appropriate for a given concept is preferred. One would expect terminology to be as simple as possible, and as easy to connect it to the concept as possible. However, it should not be too simple. Received: 8 October 2018 51 Accepted: 21 January 2018 In other words it should not introduce ambiguity. Unfortunately, the term bipartite double cover that has been used lately in several places to replace an older term canonical double cover, also known as the Kronecker cover, [1,4], is ambiguous. -
Graph Relations and Constrained Homomorphism Partial Orders (Relationen Von Graphen Und Partialordungen Durch Spezielle Homomorphismen) Long, Yangjing
Graph Relations and Constrained Homomorphism Partial Orders Der Fakultät für Mathematik und Informatik der Universität Leipzig eingereichte DISSERTATION zur Erlangung des akademischen Grades DOCTOR RERUM NATURALIUM (Dr.rer.nat.) im Fachgebiet Mathematik vorgelegt von Bachelorin Yangjing Long geboren am 08.07.1985 in Hubei (China) arXiv:1404.5334v1 [math.CO] 21 Apr 2014 Leipzig, den 20. März, 2014 献给我挚爱的母亲们! Acknowledgements My sincere and earnest thanks to my ‘Doktorväter’ Prof. Dr. Peter F. Stadler and Prof. Dr. Jürgen Jost. They introduced me to an interesting project, and have been continuously giving me valuable guidance and support. Thanks to my co-authers Prof. Dr. Jiří Fiala and Prof. Dr. Ling Yang, with whom I have learnt a lot from discussions. I also express my true thanks to Prof. Dr. Jaroslav Nešetřil for the enlightening discussions that led me along the way to research. I would like to express my gratitude to my teacher Prof. Dr. Yaokun Wu, many of my senior fellow apprentice, especially Dr. Frank Bauer and Dr. Marc Hellmuth, who have given me a lot of helpful ideas and advice. Special thanks to Dr. Jan Hubička and Dr. Xianqing Li-jost, not only for their guidance in mathematics and research, but also for their endless care and love—they have made a better and happier me. Many thanks to Dr. Danijela Horak helping with the artwork in this thesis, and also to Dr. Andrew Goodall, Dr. Johannes Rauh, Dr. Chao Xiao, Dr. Steve Chaplick and Mark Jacobs for devoting their time and energy to reading drafts of the thesis and making language corrections.