Thesis Vol I

Total Page:16

File Type:pdf, Size:1020Kb

Thesis Vol I Durham E-Theses Integrated Vector Management generation and use of evidence for more eective vector control WILSON, ANNE,LOUISE How to cite: WILSON, ANNE,LOUISE (2017) Integrated Vector Management generation and use of evidence for more eective vector control, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/12091/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk 2 Integrated Vector Management – generation and use of evidence for more effective vector control Anne Louise Wilson School of Biosciences Durham University Submitted to Durham University for the degree of Doctor of Philosophy December 2016 Abstract Vector-borne diseases (VBD) such as malaria, dengue and leishmaniasis have a major public health impact primarily in low and middle income countries in the tropics. Vector control methods including long-lasting insecticidal nets and indoor residual spraying contribute substantially to control of VBDs, particularly malaria. However, progress is being hampered by a number of factors including a lack of human, infrastructural and financial resources, and is threatened by the development of insecticide resistance. The World Health Organization (WHO) strongly advocates the use of Integrated Vector Management (IVM), a policy which has the potential to overcome many of the challenges facing vector control. IVM calls for evidence-based and adaptive use of vector control tools and involvement of multiple sectors to control VBDs. This thesis brings together work on the theme of IVM and the generation and use of evidence for better vector control programming. Specifically I ask how do we develop high quality evidence to improve the effectiveness of vector control? The writer has been a principal author of a recently published WHO Toolkit for IVM in sub-Saharan Africa (Volume II of this thesis). This toolkit for vector control programme managers builds on previous WHO guidance by providing practical detail on how to plan, implement, and monitor and evaluate an IVM programme. In order to provide guidance on choice of vector control interventions in the IVM toolkit, it was necessary to systematically review the evidence from field trials of vector control tools. Two systematic reviews are presented evaluating the efficacy of insecticide-treated nets, curtains and screening against non-malaria VBDs, and the efficacy of topical repellents against malaria. These found that: i) insecticide-treated materials in the home (nets, curtains and screening) are protective against cutaneous leishmaniasis and may be protective against dengue and Japanese encephalitis, ii) topical repellents are not protective against falciparum or vivax malaria in endemic populations. Systematic reviews revealed a paucity of well-conducted efficacy studies of vector control interventions which hinders evidence-based policy-making. A critical analysis of vector control study design and conduct is presented. This analysis identified common failings with vector control trials including a lack of randomisation and blinding, poor choice of outcome measures, lack of replication, no sample size calculations and contamination between clusters in cluster- randomised trials. Many of these failings could be easily rectified to produce better quality evidence and prevent waste in research. As well as evidence-based policy making on vector control interventions, IVM calls for use of evidence throughout the lifetime of the programme through entomological and epidemiological surveillance and monitoring and evaluation to choose and target interventions, measure their effectiveness and adapt the programme over time. One entomological parameter which should be measured is insecticide resistance. A study of the spatial and temporal pattern of knockdown resistance (kdr) resistance in Anopheles gambiae s.l. in a setting of high vector control use in the Upper River Region of The Gambia is presented which found that: i) An. arabiensis was the most common member of the species complex, ii) the odds of kdr were 24 times higher in An. gambiae s.s. in villages with both IRS and LLINs and 14 times higher in villages with LLINs alone, iii) the kdr mutation was more common in mosquitoes in the second year of the study and with increasing distance from the river. The result of this work is the IVM Toolkit for sub-Saharan Africa. IVM provides a logical framework to think through vector control and advocates for a more locally tailored and adaptive approach which engages partners within and beyond the health sector. Compared to current vector control, IVM has the potential to be more effective (through evidence-based use of interventions), cost- effective (through implementation of cost effective interventions and sharing of resources across sectors), sustainable (through engagement and mobilisation of communities and the non-health sector) and ecologically sound (through the use of non-insecticide-based tools). However, there are a number of challenges to utilisation of IVM. While this thesis outlines the theoretical framework for IVM, it does not test its use by programmes, and in fact there are few good examples of IVM in practice available. Policies and organisational structures of vector control programmes are currently not in support of IVM. Lack of resources (infrastructural, human and financial) hampers implementation of this more knowledge-intensive and adaptive approach to vector control. Deeply engrained silos and lack of political support may impede partnership working within and across sectors. An increased focus on vector control in the light of the recent Zika virus disease outbreak and high-level policy changes at WHO including development of the forthcoming Global Vector Control Response should galvanise support for vector control and reorientation of programmes towards an IVM approach. IVM can be implemented if there is additional and sustained financing for vector control, an investment in human resources and infrastructure, and more commitment to working across sectors. It is important to grasp this opportunity in order to exploit fully the potential of vector control to control and eliminate VBDs in the future. Contents List of Tables .......................................................................................................................................... vi List of Figures ........................................................................................................................................ vii List of Boxes ......................................................................................................................................... viii Abbreviations ......................................................................................................................................... ix Declaration ............................................................................................................................................. xi Statement of Copyright ......................................................................................................................... xii Acknowledgements .............................................................................................................................. xiii Introduction ............................................................................................................................................ 1 Aims and Objectives ................................................................................................................................ 3 Goal ..................................................................................................................................................... 3 Aim ...................................................................................................................................................... 3 Hypotheses ......................................................................................................................................... 3 Research Questions ................................................................................................................................ 4 Objectives ........................................................................................................................................... 4 Thesis Overview ...................................................................................................................................... 6 Contributions .......................................................................................................................................... 7 Chapter 1: Integrated Vector Management: an evidence-based, adaptive and multi-sectoral approach to control of vector-borne diseases globally .........................................................................
Recommended publications
  • Malawi ALMA Quarterly Report, September 2011
    Malawi ALMA Quarterly Report Quarter Three, 2020 Scorecard for Accountability and Action Key Malaria is endemic in all parts of Malawi. The annual reported number of malaria cases in 2018 was 5,865,476 with 2,967 deaths. Target achieved or on track Progress but more effort required Not on track No data Not applicable Malawi ALMA Quarterly Report Quarter Three, 2020 Malaria Sustaining Essential Health Services During the COVID-19 Pandemic The COVID-19 pandemic is putting an incredible strain on health systems across Africa. Health systems are required to maintain routine health services for other illnesses even as they handle the additional burden. In order to prevent widespread morbidity and mortality, it is of vital importance that we work to sustain the delivery of essential life- saving interventions during this difficult time including for Reproductive, Maternal, Newborn, Adolescent and Child health and malaria. WHO underlines the critical importance of sustaining efforts to prevent, detect and treat malaria during the COVID-19 pandemic. It is of vital importance to ensure the continuity of malaria prevention and treatment services including distribution of insecticide-treated nets and indoor residual spraying, as well as chemoprevention for pregnant women (intermittent preventive treatment in pregnancy). Any intervention must consider the importance of both lowering malaria-related mortality and ensuring the safety of communities and health workers given the ease of transmission of COVID-19. For Malawi, it will be of vital importance to ensure that the planning for the universal coverage campaign for long-lasting insecticidal nets (LLINs) campaign scheduled for 2021 and the indoor residual spraying campaign go ahead, whilst taking into account physical distancing, in accordance with the recent guidance and recommendations from WHO and the RBM Partnership to End Malaria.
    [Show full text]
  • Community Knowledge and Acceptance Of
    Magaço et al. Malar J (2019) 18:27 https://doi.org/10.1186/s12936-019-2653-x Malaria Journal RESEARCH Open Access Community knowledge and acceptance of indoor residual spraying for malaria prevention in Mozambique: a qualitative study Amílcar Magaço1*, Carlos Botão1, Pedroso Nhassengo1, Mohomede Saide1, Arminda Ubisse1, Sérgio Chicumbe1 and Rose Zulliger2 Abstract Background: Malaria control remains a leading health challenge in Mozambique. Indoor residual spraying (IRS) is an efective strategy to control malaria transmission, but there are often barriers to reaching the coverage necessary for attaining maximum community protective efect of IRS. Mozambique recorded a high number of household refusals during the 2016 IRS campaign. This study sought to evaluate household and community factors related to the accept- ability of IRS to inform strategies for future campaigns in Mozambique and the region. Methods: A cross-sectional, qualitative study was conducted in eight urban and rural communities in two high malaria burden provinces in Mozambique. Data were collected through in-depth interviews with community mem- bers, leaders, sprayers, and representatives of district health directorates; focus group discussions with community members who accepted and who refused IRS during the 2016 campaign; systematic feld observations; and informal conversations. Data were systematically coded and analysed using NVIVO-11®. Results: A total of 61 interviews and 12 discussions were conducted. Community participants predominantly described IRS as safe, but many felt that it had limited efcacy. The main factors that participants mentioned as having infuenced their IRS acceptance or refusal were: understanding of IRS; community leader level of support; characteristics of IRS programmatic implementation; environmental, political and historical factors.
    [Show full text]
  • Toolkit for the Sound Management of Ddt for Disease Vector Control
    Stockholm Convention on Persistent Organic Pollutants (POPs) Scientific and Technical Document Series: DDT TOOLKIT FOR THE SOUND MANAGEMENT OF DDT FOR DISEASE VECTOR CONTROL Acknowledgements The Secretariat of the Stockholm Convention (SSC) acknowledges the collaboration and support extended by the Global Malaria Programme of the World Health Organization and its Africa and South-East Asia regional offices for technical inputs in the development of this document. Contributions by delegates representing national malaria control programmes and national focal points of the Stockholm Convention from Botswana, Cambodia, China, Congo DRC, Comoros, Eritrea, Ethiopia, Ghana, India, Indonesia, Kenya, Malaysia, Mauritius, Morocco, Mozambique, Namibia, Nepal, Papua New Guinea, Senegal, South Africa, Sri Lanka, Swaziland, Vietnam and Zambia, and those from academia and non- governmental organizations are gratefully acknowledged. The Secretariat acknowledges the collaboration and support in organizing the workshops provided by Jiangsu Institute of Parasitic Diseases (JIPD), Wuxi, Jiangsu province, China, The Basel Convention Regional Centre for Asia and the Pacific/Stockholm Convention Regional Centre for Capacity-building and the Transfer of Technology in Asia and the Pacific, China and the Stockholm Convention Regional Center, Kenya. The financial support of Government of France on this work is gratefully acknowledged. The views expressed herein can in no way be taken to reflect the official opinion of France. 2 Copyright @ Secretariat of the Stockholm Convention (SSC), January 2016 This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the copyright holder, i.e. SSC, provided acknowledgement of the source is made. SSC would appreciate receiving a copy of any publication that uses this publication as a source.
    [Show full text]
  • An Observational Analysis of the Impact of Indoor Residual Spraying
    Wagman et al. Malar J (2018) 17:19 https://doi.org/10.1186/s12936-017-2168-2 Malaria Journal RESEARCH Open Access An observational analysis of the impact of indoor residual spraying with non‑pyrethroid insecticides on the incidence of malaria in Ségou Region, Mali: 2012–2015 Joseph Wagman1*, Christelle Gogue1, Kenzie Tynuv1, Jules Mihigo2, Elie Bankineza3, Mamadou Bah3, Diadier Diallo4, Andrew Saibu5, Jason H. Richardson6, Diakalkia Kone7, Seydou Fomba7, Jef Bernson8, Richard Steketee9, Laurence Slutsker9 and Molly Robertson1 Abstract Background: Ségou Region in Central Mali is an area of high malaria burden with seasonal transmission, high access to and use of long-lasting insecticidal nets (LLINs), and resistance to pyrethroids and DDT well documented in Anoph- eles gambiae s.l. (the principal vector of malaria in Mali). Ségou has recently received indoor residual spraying (IRS) sup- ported by Mali’s collaboration with the US President’s Malaria Initiative/Africa Indoor Residual Spraying programme. From 2012 to 2015, two diferent non-pyrethroid insecticides: bendiocarb in 2012 and 2013 and pirimiphos-methyl in 2014 and 2015, were used for IRS in two districts. This report summarizes the results of observational analyses carried out to assess the impact of these IRS campaigns on malaria incidence rates reported through local and district health systems before and after spraying. Methods: A series of retrospective time series analyses were performed on 1,382,202 rapid diagnostic test-confrmed cases of malaria reported by district routine health systems in Ségou Region from January 2012 to January 2016. Malaria testing, treatment, surveillance and reporting activities remained consistent across districts and years dur- ing the study period, as did LLIN access and use estimates as well as An.
    [Show full text]
  • The Impact of Indoor Residual Spraying (IRS) on Malaria Prevalence Between 2001 and 2009 in Mpumalanga Province, South Africa
    The impact of indoor residual spraying (IRS) on malaria prevalence between 2001 and 2009 in Mpumalanga province, South Africa By LINDOKUHLE M. NGOMANE A dissertation submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN EPIDEMIOLOGY in the School of Health Systems and Public Health Faculty of Health Sciences UNIVERSITY OF PRETORIA SUPERVISOR: PROF C. DE JAGER January 2012 © University of Pretoria © University of Pretoria ACKNOWLEDGEMENTS I would like to thank my supervisor, Prof Christiaan de Jager for his valuable and professional guidance and support as well as continuous motivation throughout this project. A special thank you to the Mpumalanga Department of Health: Malaria Control Programme for providing me with malaria data and support with additional relevant documents. I also thank the South African Weather Service for assisting me with climate data. This study would not have been possible without these Departments’ assistance with data provided in a timely manner. I thank Dr Steve Olorunju of the Medical Research Council (MRC) for his assistance with the statistical analysis and interpretation of the data. I am grateful to Mandla Zwane from Mpumalanga Department of Health for his comments and suggestions as well as support and encouragement during this project. Lastly, I thank my family, friends and colleagues for their patience, continued encouragement and support. L.M. Ngomane University of Pretoria, 2012 i DECLARATION I declare that the dissertation, which I hereby submit for the degree Master of Science (MSc) in Epidemiology at the University of Pretoria, is my own work and has not previously been submitted by me for a degree at this or any other tertiary institution.
    [Show full text]
  • E Abstracts with Advt 12.02.2019
    International Conference ee ABSTRACTSABSTRACTS Goa, 13th - 16th February, 2019 Organizers Society for Vector Ecology (Indian Region) and ICMR - National Institute of Malaria Research, FU, Goa I N D E X S.No. Name of the Delegate Page No. S.No. Name of the Delegate Page No. 1 A. N. Anoopkumar 45 42 Narayani Prasad Kar 50 2 Agenor Mafra-Neto 40 43 Naren babu N 63 3 Ajeet Kumar Mohanty 72 44 Naveen Rai Tuli 10-11 4 Alex Eapen 17 45 Neil Lobo 23 5 Algimantas Paulauskas 33 46 Nidhish G 65 6 Aneesh Embalil Mathachan 46 47 Norbert Becker 12 7 Aneesh Embalil Mathachan 28 48 O.P. Singh 78 8 Anju Viswan K 64 49 P. K. Rajagopalan 2-9 9 Ankita Sindhania 62 50 P. K. Sumodan 30 10 Ashwani Kumar 25 51 Paulo F. P. Pimenta 27 11 Ayyadevera Rambabu 29 52 Poonam Singh 90 12 Bhavana Gupta 43 53 Pradeep Kumar Shrivastava 20 13 Charles Reuben Desouza 89 54 R. S. Sharma 22 14 Dan Kline 37 55 R.K. Dasgupta 21 15 Deepa Jha 61 56 Rajendra Thapar 76 16 Deeparani K. Prabhu 68 57 Rajnikant Dixit 74 17 Devanathan Sukumaran 82 58 Rajpal Singh Yadav 1 18 Devi Shankar Suman 16 59 Raju Parulkar 84 19 Farah Ishtiaq 36 60 Rakhi Dhawan 73 20 Gourav Dey 88 61 Ramesh C Dhiman 32 21 Gunjan Sharma 86 62 Ranjana Rani 42 22 Hanno Schmidt 18 63 Roop Kumari 19 23 Hemachandra Bhovi 75 64 S. R. Pandian 49 24 Hemanth Kumar 53 65 Sajal Bhattacharya 31 25 Jagbir Singh 34 66 Sam Siao Jing 77 26 Jitender Gawade 83 67 Sanchita Bhattacharaya 56 27 John E.
    [Show full text]
  • RE-INTRODUCTION of INDOOR RESIDUAL SPRAYING INTO PACIFIC ISLANDS Background and Current Status
    RE-INTRODUCTION OF INDOOR RESIDUAL SPRAYING INTO PACIFIC ISLANDS Background and current status Dr Tessa Knox WHO Vanuatu Country Liaison Office APMEN Tech Talks - 30 September 2020 1 Background: Solomon Islands including targeted IRS 1/10/2020 2 Source: Adapted from - Solomon Islands Strategic Plan for Malaria Control and Elimination, 2012-2025 Background: Papua New Guinea 1/10/2020 3 Source: Papua New Guinea National Malaria Strategic Plan, 2012-2025 Background: Vanuatu Deaths, cases by parasite species, and annual parasite incidence (API) (2000-19) Tropical Cyclone Pam Source: National Malaria and Other Vector Borne Diseases Control Program Similarities across three Pacific countries • Ongoing persistent malaria transmission in some areas (An. farauti) • High vulnerability to natural disasters and outbreaks • High rural population and severe logistical challenges • Issues with LLIN access, usage or efficacy • Additional measures required to accelerate progress towards malaria elimination • IRS used successfully in the past though no empirical evidence • New tools (insecticide formulations, spray machines) give opportunity to increase spray quality and efficacy • Additional funding through GF (regular allocation, MEMTI and PAAR) • Recent Malaria Program Reviews and new Malaria Strategic Plans present renewed opportunity to emphasise importance of IRS Status: New strategic plans SOLOMON ISLANDS PAPUA NEW GUINEA VANUATU LLINs (mass + continuous) LLINs (mass + continuous) LLINs (mass + continuous) IRS in outbreak areas IRS in high burden/low LLIN use Responsive IRS in outbreaks (non-pyrethroid) areas (non-pyrethroid) and foci (non-pyrethroid) Alternative tools + personal Supplementary tools + personal Alternative tools + personal protection (high-risk, high- protection (high-risk, high- protection (high-risk, high- exposure populations) exposure populations) exposure populations) 6 Focal responsive (outbreaks, foci) Status: progress and plans • Drive is to re-commenced IRS in all three countries by 2021 • Additional resources identified (eg.
    [Show full text]
  • Indoor Residual Spraying for Preventing Malaria (Review)
    Indoor residual spraying for preventing malaria (Review) Pluess B, Tanser FC, Lengeler C, Sharp BL This is a reprint of a Cochrane review, prepared and maintained by The Cochrane Collaboration and published in The Cochrane Library 2010, Issue 4 http://www.thecochranelibrary.com Indoor residual spraying for preventing malaria (Review) Copyright © 2010 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. TABLE OF CONTENTS HEADER....................................... 1 ABSTRACT ...................................... 1 PLAINLANGUAGESUMMARY . 2 BACKGROUND .................................... 2 OBJECTIVES ..................................... 4 METHODS ...................................... 4 RESULTS....................................... 7 Figure1. ..................................... 10 Figure2. ..................................... 11 DISCUSSION ..................................... 18 AUTHORS’CONCLUSIONS . 19 ACKNOWLEDGEMENTS . 19 REFERENCES ..................................... 20 CHARACTERISTICSOFSTUDIES . 27 DATAANDANALYSES. 45 HISTORY....................................... 45 CONTRIBUTIONSOFAUTHORS . 45 DECLARATIONSOFINTEREST . 45 SOURCESOFSUPPORT . 45 DIFFERENCES BETWEEN PROTOCOL AND REVIEW . .... 45 Indoor residual spraying for preventing malaria (Review) i Copyright © 2010 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. [Intervention Review] Indoor residual spraying for preventing malaria Bianca Pluess1, Frank C Tanser2, Christian Lengeler1, Brian L Sharp3 1Public Health and Epidemiology, Swiss Tropical
    [Show full text]
  • Reducing Health Risks Through Sound Management of Pesticides Project Report
    REDUCING HEALTH RISKS THROUGH SOUND MANAGEMENT OF PESTICIDES PROJECT REPORT WORLD HEALTH ORGANIZATION CONTROL OF NEGLECTED TROPICAL DISEASES (NTD) WHO PESTICIDE EVALUATION SCHEME (WHOPES) iv 1 REDUCING HEALTH RISKS THROUGH SOUND MANAGEMENT OF PESTICIDES PROJECT REPORT WORLD HEALTH ORGANIZATION CONTROL OF NEGLECTED TROPICAL DISEASES (NTD) WHO PESTICIDE EVALUATION SCHEME (WHOPES) 2 WHO Library Cataloguing-in-Publication Data : Reducing health risks through sound management of pesticides: project report. 1.Pest Control, Biological. 2.Pesticides - standards. 3.Harzardous substances. 4.Waste management. 5.Public health – legislation and jurisprudence. I.World Health Organization. ISBN 978 92 4 150610 6 (NLM classification: WA 240) © World Health Organization 2013 All rights reserved. Publications of the World Health Organization are available on the WHO web site (www.who.int) or can be purchased from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications –whether for sale or for non-commercial distribution– should be addressed to WHO Press through the WHO web site (www.who.int/about/licensing/copyright_form/en/index.html). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement.
    [Show full text]
  • Evaluating the Additive Effect of an Indoor Residual Spraying Campaign
    Evaluating the additive effect of an indoor residual spraying campaign for reducing the burden of malaria in an Eritrean low-transmission setting Impact Evaluation Concept Note IRS Impact Evaluation: Eritrea: version 05.14.09 1 Table of Contents A. Background ........................................................................................................................ 3 B. Project Goal ........................................................................................................................ 3 C. Research Design and Methods ........................................................................................... 4 C.1. Study Site Description ..................................................................................................... 5 C.2. Intervention and Control Arm Description ..................................................................... 5 C.3. Evaluation Plan ............................................................................................................... 6 C.4. Study Outcomes and Indicators....................................................................................... 6 C.5. Sampling Design ............................................................................................................. 7 C.6. Sample Size and Power Calculations .............................................................................. 8 C.7. Data Collection Activities ............................................................................................... 8 C.7.1 Entomological
    [Show full text]
  • Is Indoor Residual Spraying Broken and What Should Be Fixed?
    SL-1 Is Indoor Residual Spraying broken and what should be fixed? Hindrik Bouwman*1, Henrik Kylin1,2, Riana Bornman3 1Research Unit: Environmental Sciences and Management, North-West University, South Africa 2Department of Thematic Studies, Linkoping University, Sweden 3University of Pretoria Centre for Sustainable Malaria Control, and School of Health Systems and Public Health, University of Pretoria, South Africa Indoor residual spraying (IRS) has been and is still a very successful method to control malaria. We are concerned that not enough research attention is given to improving IRS and that most funding goes towards modern but seemingly still ineffectual methods. We believe that there is ample scope for improving IRS, while reducing insecticide exposure Keywords: Indoor residual spray, IRS, Botha de Meillon, policy 1. Introduction Indiscriminate use and use in agriculture may have The effectiveness of DDT and other insecticides led to resistance in many areas. Combining basic when properly used as indoor residual spray (IRS) biological knowledge about reproductive behaviour to prevent the transmission of malaria is not in of the female vector mosquito with residual question [1] (Fig 1). We can safely assume that toxic chemicals within and close to residential millions of lives have been saved in the more than areas where most infections occur, is effective at 80 years since it was first used [1]. The high body preventing transmission, but bad at preventing burden of DDT of those protected by IRS, as well as chemical exposure and uptake of the chemicals by the human health consequences of those protected residents - posing a paradox. by all IRS insecticides are of great concern [1,2].
    [Show full text]
  • BCIL Vector Biology PDF.Pdf
    Vector Biology and Control An Update for Malaria Elimination Initiative in India Edited by Vas Dev M.Sc. (Hons.), Ph.D (Notre Dame), FNASc The National Academy of Sciences, India 2020 Vector Biology and Control: An Update for Malaria Elimination Initiative in India Edited by Vas Dev Contributors Sylvie Manguin, Vas Dev, Surya Kant Sharma, Rajpal Singh Yadav, Kamaraju Raghavendra, Poonam Sharma Velamuri, Vaishali Verma, Sreehari Uragayala, Susanta Kumar Ghosh, Khageswar Pradhan, Vijay Veer, Varun Tyagi, Manoj Kumar Das, Pradyumna Kishore Mohapatra, Ashwani Kumar, K. Hari Krishan Raju, Anupkumar Anvikar, Chazhoor John Babu, Virendra Kumar Dua, Tapan Kumar Barik, Usha Rani Acharya, Debojit Kumar Sarma, Dibya Ranjan Bhattacharyya, Anil Prakash, Nilanju Pran Sarmah Copyright © 2020 NASI Individual chapters of this book are open access under the terms of the Creative Commons Attribution 3.0 Licence (http://creativecommons.org/licenses/by/3.0) which permits users download, build upon published article, distribution, reproduction in any medium so long as the author(s) and publisher are properly credited. The author(s) have the right to reproduce their contribution in toto or part thereof for wider dissemination provided they explicitly identify the original source. All rights to the book are reserved by the National Academy of Sciences (NASI), India. The book as a whole (compilation) cannot be reproduced, distributed, or used for commercial purposes without NASI written permission. Enquiries concerning the use of the book be directed to NASI ([email protected]). Violations are liable to be prosecution under the governing Copyright law. Notice Statement and opinions expressed in the chapter are those of the contributor(s) and not necessarily those of the Editor or Publisher or the Organization.
    [Show full text]