UC San Diego UC San Diego Electronic Theses and Dissertations

Total Page:16

File Type:pdf, Size:1020Kb

UC San Diego UC San Diego Electronic Theses and Dissertations UC San Diego UC San Diego Electronic Theses and Dissertations Title Characterizing the Evolution of Epigenetic Clocks at Different Time Scales Permalink https://escholarship.org/uc/item/0ss7j7nt Author Wang, Tina Publication Date 2019 Supplemental Material https://escholarship.org/uc/item/0ss7j7nt#supplemental Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA SAN DIEGO Characterizing the Evolution of Epigenetic Clocks at Different Time Scales A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Biomedical Sciences by Tina Wang Committee in charge: Professor Trey Ideker, Chair Professor Peter Ernst Professor Bing Ren Professor Elizabeth Winzeler Professor Kun Zhang 2019 Copyright Tina Wang, 2019 All Rights Reserved. SIGNATURE PAGE The Dissertation of Tina Wang is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California San Diego 2019 iii DEDICATION This dissertation is dedicated to my parents, Rong-Qi Wang and Shu Guang Xu, for their everlasting support of my professional endeavors. To Brandon Santos, my loving husband who has been the best thing that’s ever happened to my life. To Belli(ni), my dog, without whom, this work would have never occurred. iv TABLE OF CONTENTS SIGNATURE PAGE ................................................................................................................ iii DEDICATION........................................................................................................................... iv TABLE OF CONTENTS ............................................................................................................ v LIST OF SUPPLEMENTARY FILES .....................................................................................viii LIST OF FIGURES ................................................................................................................... ix LIST OF TABLES ..................................................................................................................... xi ACKNOWLEDGEMENTS ...................................................................................................... xii VITA ....................................................................................................................................... xiv ABSTRACT OF THE DISSERTATION ................................................................................. xvi INTRODUCTION ...................................................................................................................... 1 References .............................................................................................................................. 3 CHAPTER 1: Evidence for a common evolutionary rate in metazoan transcriptional networks ... 6 1.1 Abstract ............................................................................................................................. 6 1.2 Introduction ....................................................................................................................... 6 1.3 Results .............................................................................................................................. 8 1.4 Discussion ....................................................................................................................... 13 1.5 Methods .......................................................................................................................... 15 1.6 Figures ............................................................................................................................ 29 1.7 Supplementary figures ..................................................................................................... 35 1.8 Supplementary tables & files ........................................................................................... 44 1.9 Author contributions ....................................................................................................... 47 1.10 Acknowledgements ....................................................................................................... 47 1.11 References ..................................................................................................................... 47 v CHAPTER 2: Epigenetic aging signatures in mice are slowed by dwarfism, calorie restriction and rapamycin treatment.................................................................................................................. 57 2.1 Abstract ........................................................................................................................... 57 2.2 Introduction ..................................................................................................................... 58 2.3 Results ............................................................................................................................ 60 2.4 Discussion ....................................................................................................................... 64 2.5 Conclusions ..................................................................................................................... 65 2.6 Methods .......................................................................................................................... 66 2.7 Figures ............................................................................................................................ 74 2.8 Supplementary figures ..................................................................................................... 78 2.9 Supplementary tables and files ........................................................................................ 82 2.10 Author contributions...................................................................................................... 85 2.11 Acknowledgements ....................................................................................................... 85 2.12 References ..................................................................................................................... 85 CHAPTER 3: A conserved epigenetic progression aligns human and dog age ........................... 92 3.1 Abstract ........................................................................................................................... 92 3.2 Introduction ..................................................................................................................... 93 3.3 Results ............................................................................................................................ 94 3.4 Discussion ....................................................................................................................... 99 3.5 Methods .......................................................................................................................... 99 3.6 Figures .......................................................................................................................... 111 3.7 Supplementary Figures and Tables ................................................................................ 115 3.8 Author Contributions ..................................................................................................... 122 3.9 Acknowledgements ....................................................................................................... 122 vi 3.10 References ................................................................................................................... 123 CHAPTER 4: Discussion ........................................................................................................ 128 4.1 Summary ....................................................................................................................... 128 4.2 Limitations .................................................................................................................... 130 4.3 Outlook ......................................................................................................................... 131 4.4 References..................................................................................................................... 133 vii LIST OF SUPPLEMENTARY FILES Supplemental File S1.1: Accession numbers used in ChIP-seq analyses. Supplemental File S1.2: 648 segment-based ChIP analyses. Supplementary File S1.3: Influence of parameters choices when assessing GSTF binding divergence at segment resolution in mammals and insects. Supplemental File S2.1: Description of datasets used. Supplemental File S2.2: Sites used for mouse age model. Supplemental File S2.3: Treatment vs wild type stats. Supplementary File S3.1: Dogs used in study. Supplementary File S3.2: Mouse dataset description. viii LIST OF FIGURES Figure 1.1: Statistical framework to evaluate differences in evolutionary rates of change. ......... 29 Figure 1.2: Genomic sequences evolve more rapidly in mammals than in birds and insects. ...... 30 Figure 1.3: Gene expression levels diverge at a common rate in mammals, birds and insects..... 31 Figure 1.4: GSTF occupancy diverges at a common rate in mammals and insects. .................... 32 Figure 1.5: Regulatory sequences diverge at similar rates across lineages.................................. 34 Supplementary Figure S1.1: Comparative genomics platform for studying
Recommended publications
  • Β-Catenin-Mediated Hair Growth Induction Effect of 3,4,5-Tri-O- Caffeoylquinic Acid
    www.aging-us.com AGING 2019, Vol. 11, No. 12 Research Paper β-catenin-mediated hair growth induction effect of 3,4,5-tri-O- caffeoylquinic acid Meriem Bejaoui1, Myra O. Villareal1,2,3, Hiroko Isoda1,2,3 1School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba City, 305-8572 Japan 2Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba City, 305-8572 Japan 3Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba City, 305- 8572 Japan Correspondence to: Hiroko Isoda; email: [email protected] Keywords: 3,4,5-tri-O-caffeoylquinic acid (TCQA), β-catenin, dermal papilla, anagen, Wnt/β-catenin pathway Received: April 23, 2018 Accepted: June 17, 2019 Published: June 29, 2019 Copyright: Bejaoui et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT The hair follicle is a complex structure that goes through a cyclic period of growth (anagen), regression (catagen), and rest (telogen) under the regulation of several signaling pathways, including Wnt/ β-catenin, FGF, Shh, and Notch. The Wnt/β-catenin signaling is specifically involved in hair follicle morphogenesis, regeneration, and growth. β-catenin is expressed in the dermal papilla and promotes anagen induction and duration, as well as keratinocyte regulation and differentiation. In this study, we demonstrated the activation of β-catenin by a polyphenolic compound 3,4,5-tri-O-caffeoylquinic acid (TCQA) in mice model and in human dermal papilla cells to promote hair growth cycle.
    [Show full text]
  • A Chromosome Level Genome of Astyanax Mexicanus Surface Fish for Comparing Population
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.06.189654; this version posted July 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Title 2 A chromosome level genome of Astyanax mexicanus surface fish for comparing population- 3 specific genetic differences contributing to trait evolution. 4 5 Authors 6 Wesley C. Warren1, Tyler E. Boggs2, Richard Borowsky3, Brian M. Carlson4, Estephany 7 Ferrufino5, Joshua B. Gross2, LaDeana Hillier6, Zhilian Hu7, Alex C. Keene8, Alexander Kenzior9, 8 Johanna E. Kowalko5, Chad Tomlinson10, Milinn Kremitzki10, Madeleine E. Lemieux11, Tina 9 Graves-Lindsay10, Suzanne E. McGaugh12, Jeff T. Miller12, Mathilda Mommersteeg7, Rachel L. 10 Moran12, Robert Peuß9, Edward Rice1, Misty R. Riddle13, Itzel Sifuentes-Romero5, Bethany A. 11 Stanhope5,8, Clifford J. Tabin13, Sunishka Thakur5, Yamamoto Yoshiyuki14, Nicolas Rohner9,15 12 13 Authors for correspondence: Wesley C. Warren ([email protected]), Nicolas Rohner 14 ([email protected]) 15 16 Affiliation 17 1Department of Animal Sciences, Department of Surgery, Institute for Data Science and 18 Informatics, University of Missouri, Bond Life Sciences Center, Columbia, MO 19 2 Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 20 3 Department of Biology, New York University, New York, NY 21 4 Department of Biology, The College of Wooster, Wooster, OH 22 5 Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter FL 23 6 Department of Genome Sciences, University of Washington, Seattle, WA 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.06.189654; this version posted July 6, 2020.
    [Show full text]
  • Increased Sensitivity of Diagnostic Mutation Detection by Re-Analysis Incorporating Local Reassembly of Sequence Reads
    This is a repository copy of Increased Sensitivity of Diagnostic Mutation Detection by Re-analysis Incorporating Local Reassembly of Sequence Reads. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/123432/ Version: Accepted Version Article: Watson, CM, Camm, N, Crinnion, LA et al. (7 more authors) (2017) Increased Sensitivity of Diagnostic Mutation Detection by Re-analysis Incorporating Local Reassembly of Sequence Reads. Molecular Diagnosis and Therapy, 21 (6). pp. 685-692. ISSN 1177-1062 https://doi.org/10.1007/s40291-017-0304-x © Springer International Publishing AG 2017. This is an author produced version of a paper published in Molecular Diagnosis and Therapy. Uploaded in accordance with the publisher's self-archiving policy. The final publication is available at Springer via https://doi.org/10.1007/s40291-017-0304-x. Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ TITLE Increased sensitivity of diagnostic mutation detection by re-analysis incorporating local reassembly of sequence reads RUNNING HEAD ABRA reassembly improves test sensitivity Christopher M.
    [Show full text]
  • Latest Version of Intermine in Any Repository
    InterMine Documentation InterMine Apr 26, 2021 Contents 1 Contents 3 1.1 System Requirements..........................................3 1.2 Get started................................................ 21 1.3 InterMine................................................. 52 1.4 Data Model................................................ 69 1.5 Database................................................. 78 1.6 Guide to Customising your Web Application.............................. 154 1.7 Web Services............................................... 250 1.8 Embedding InterMine components................................... 251 1.9 InterMine API Description........................................ 279 1.10 Support.................................................. 284 1.11 About Us................................................. 287 1.12 InterMine Video Tutorial Collection................................... 290 2 Indices 295 Index 297 i ii InterMine Documentation InterMine is an open source data warehouse built specifically for the integration and analysis of complex biological data. Developed by the Micklem lab at the University of Cambridge, InterMine enables the creation of biological databases accessed by sophisticated web query tools. Parsers are provided for integrating data from many common biological data sources and formats, and there is a framework for adding your own data. InterMine includes an attractive, user- friendly web interface that works ‘out of the box’ and can be easily customised for your specific needs, as well as a powerful, scriptable
    [Show full text]
  • A Curated Ortholog Database for Yeasts and Fungi Spanning 600 Million Years of Evolution
    bioRxiv preprint doi: https://doi.org/10.1101/237974; this version posted October 8, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. AYbRAH: a curated ortholog database for yeasts and fungi spanning 600 million years of evolution Kevin Correia1, Shi M. Yu1, and Radhakrishnan Mahadevan1,2,* 1Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada, ON 2Institute of Biomaterials and Biomedical Engineering, University of Toronto, Ontario, Canada Corresponding author: Radhakrishnan Mahadevan∗ Email address: [email protected] ABSTRACT Budding yeasts inhabit a range of environments by exploiting various metabolic traits. The genetic bases for these traits are mostly unknown, preventing their addition or removal in a chassis organism for metabolic engineering. To help understand the molecular evolution of these traits in yeasts, we created Analyzing Yeasts by Reconstructing Ancestry of Homologs (AYbRAH), an open-source database of predicted and manually curated ortholog groups for 33 diverse fungi and yeasts in Dikarya, spanning 600 million years of evolution. OrthoMCL and OrthoDB were used to cluster protein sequence into ortholog and homolog groups, respectively; MAFFT and PhyML were used to reconstruct the phylogeny of all homolog groups. Ortholog assignments for enzymes and small metabolite transporters were compared to their phylogenetic reconstruction, and curated to resolve any discrepancies. Information on homolog and ortholog groups can be viewed in the AYbRAH web portal (https://kcorreia.github. io/aybrah/) to review ortholog groups, predictions for mitochondrial localization and transmembrane domains, literature references, and phylogenetic reconstructions.
    [Show full text]
  • Meta-Analysis of 8Q24 for Seven Cancers Reveals a Locus Between
    Brisbin et al. BMC Medical Genetics 2011, 12:156 http://www.biomedcentral.com/1471-2350/12/156 RESEARCHARTICLE Open Access Meta-analysis of 8q24 for seven cancers reveals a locus between NOV and ENPP2 associated with cancer development Abra G Brisbin1, Yan W Asmann1, Honglin Song2, Ya-Yu Tsai3, Jeremiah A Aakre1, Ping Yang1, Robert B Jenkins4, Paul Pharoah2, Fredrick Schumacher5, David V Conti5, David J Duggan6, Mark Jenkins7, John Hopper7, Steven Gallinger8, Polly Newcomb9, Graham Casey5, Thomas A Sellers3 and Brooke L Fridley1* Abstract Background: Human chromosomal region 8q24 contains several genes which could be functionally related to cancer, including the proto-oncogene c-MYC. However, the abundance of associations around 128 Mb on chromosome 8 could mask the appearance of a weaker, but important, association elsewhere on 8q24. Methods: In this study, we completed a meta-analysis of results from nine genome-wide association studies for seven types of solid-tumor cancers (breast, prostate, pancreatic, lung, ovarian, colon, and glioma) to identify additional associations that were not apparent in any individual study. Results: Fifteen SNPs in the 8q24 region had meta-analysis p-values < 1E-04. In particular, the region consisting of 120,576,000-120,627,000 bp contained 7 SNPs with p-values < 1.0E-4, including rs6993464 (p = 1.25E-07). This association lies in the region between two genes, NOV and ENPP2, which have been shown to play a role in tumor development and motility. An additional region consisting of 5 markers from 128,478,000 bp - 128,524,000 (around gene POU5F1B) had p-values < 1E-04, including rs6983267, which had the smallest p-value (p = 6.34E-08).
    [Show full text]
  • Sudden Unexpected Death with Rare Compound Heterozygous Variants in PRICKLE1
    neurogenetics (2019) 20:39–43 https://doi.org/10.1007/s10048-018-0562-8 SHORT COMMUNICATION Sudden unexpected death with rare compound heterozygous variants in PRICKLE1 Yukiko Hata1 & Koji Yoshida2,3 & Naoki Nishida1 Received: 29 October 2018 /Accepted: 8 December 2018 /Published online: 18 December 2018 # Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Progressive myoclonus epilepsy-ataxia syndrome (EPM5) is an autosomal recessive form of progressive myoclonus epilepsy that has been associated with a homozygous missense mutation in PRICKLE1. We report a 23-year-old male who died shortly after refractory convulsion and respiratory failure. Autopsy showed unilateral hippocampal malformation without significant neuronal loss or gliosis. Genetic analysis that targeted both epilepsy and cardiac disease using next-generation sequencing revealed two variants of PRICKLE1. Additional investigation showed that the patient’s father (p.Asp760del) and mother (p.Asp201Asn) each had a mutation in this gene. The present case shows that EPM5 can also be caused by compound heterozygous mutations. Keywords Compound heterozygous mutation . Hippocampus . Neuropathology . PRICKLE1 . Progressive myoclonus epilepsy . Sudden death Introduction Here we report the autopsy of a young man with a complex heterozygous mutation in PRICKLE1 whodiedsuddenly Progressive myoclonus epilepsy (PME) is a complex of neu- without medical treatment antemortem. rodegenerative diseases that show action myoclonus, epileptic seizures and progressive neurologic
    [Show full text]
  • Dsir2 and Dmp53 Interact to Mediate Aspects of CR-Dependent Life Span
    β-catenin-mediated hair growth induction effect of 3,4,5-tri-O-caffeoylquinic acid 著者(英) Meriem Bejaoui, Myra Orlina VILLAREAL, Hiroko ISODA journal or Aging publication title volume 11 number 12 page range 4216-4237 year 2019-06 権利 Bejaoui et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. URL http://hdl.handle.net/2241/00157702 doi: 10.18632/aging.102048 Creative Commons : 表示 http://creativecommons.org/licenses/by/3.0/deed.ja www.aging-us.com AGING 2019, Vol. 11, No. 12 Research Paper β-catenin-mediated hair growth induction effect of 3,4,5-tri-O- caffeoylquinic acid Meriem Bejaoui1, Myra O. Villareal1,2,3, Hiroko Isoda1,2,3 1School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba City, 305-8572 Japan 2Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba City, 305-8572 Japan 3Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba City, 305- 8572 Japan Correspondence to: Hiroko Isoda; email: [email protected] Keywords: 3,4,5-tri-O-caffeoylquinic acid (TCQA), β-catenin, dermal papilla, anagen, Wnt/β-catenin pathway Received: April 23, 2018 Accepted: June 17, 2019 Published: June 29, 2019 Copyright: Bejaoui et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • 4 B Chromosome Conference
    BMC Proceedings 2019, 13(Suppl 4):4 https://doi.org/10.1186/s12919-019-0165-x BMC Proceedings MEETING ABSTRACTS Open Access Abstract Book - 4th B Chromosome Conference Botucatu, Brazil. 20 - 23 July 2019 Published: 17 June 2019 I-01 last few years). Recent advances in next generation sequencing (NGS) Welcome to the 4th B Chromosome Conference technologies and high-throughput molecular biology protocols have led to Cesar Martins (Chair: 4th B Chromosome Conference) B chromosomes becoming the subject of massive data analysis, thus Institute of Biosciences at Botucatu, São Paulo State University (UNESP), enabling an investigation of structural and functional issues at a level that Botucatu, SP, Brazil was previously never considered possible. Therefore, the 4th BCC in Brazil is BMC Proceedings 2019, 13(Suppl 4):I-01 an excellent opportunity to bring exciting B-chromosome related topics and new technologies together for discussion under the view of the most Correspondence: Cesar Martins ([email protected]) outstanding chromosome biologists. Furthermore, this meeting will, for the Organization first time, promote an educational activity focused on science and biology Institute of Biosciences at Botucatu, São Paulo State University teachers in order to highlight methodologies and practical approaches that (UNESP) can be used in chromosome teaching/learning. Support The importance of B chromosomes is illustrated by the series of conferences International Chromosome and Genome Society on this issue that have been organized during the last three decades - 1st, Brazilian Genetics Society 2nd and 3rd B Chromosome Conferences - organized in 1993 (Spain), 2004 (Spain), and 2014 (Germany), respectively. The first B Chromosome Funding Support Conference (BCC) took place in Miraflores de la Sierra (Madrid, Spain) from The conference and this publication was funded by Fundação de Amparo à 21 to 25 of September 1993.
    [Show full text]
  • Downloaded from the UCSC Xena Platform [42]
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.10.244343; this version posted August 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Data Integration with SUMO Detects Latent Relationships Between Patients in Lower-Grade Gliomas Karolina Sienkiewicz1,7, Jinyu Chen2,7, Ajay Chatrath3, John T Lawson1,4, Nathan C Sheffield1,3,4,5,6, Louxin Zhang2, and Aakrosh Ratan1,5,6,* 1Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA 2Department of Mathematics and Computational Biology Program, National University of Singapore, Singapore 119076 3Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA 4Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA 5Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22908, USA 6University of Virginia Cancer Center, Charlottesville, VA 22908, USA 7These authors contributed equally to this work. *Correspondence should be addressed to Aakrosh Ratan, [email protected] Abstract Joint analysis of multiple genomic data types can facilitate the discovery of complex mechanisms of biological processes and genetic diseases. We present a novel data integration framework based on non-negative matrix factorization that uses patient similarity networks. Our implementation supports continuous multi-omic datasets for molecular subtyping and handles missing data without using imputation, making it more efficient for genome-wide assays in large cohorts. Applying our approach to gene expression, microRNA expression, and methylation data from patients with lower grade gliomas, we identify a subtype with a significantly poorer prognosis.
    [Show full text]
  • Prognostic B-Cell Signatures Using Mrna-Seq in Patients with Subtype-Specific Breast and Ovarian Cancer
    Published OnlineFirst June 10, 2014; DOI: 10.1158/1078-0432.CCR-13-3368 Clinical Cancer Biology of Human Tumors Research Prognostic B-cell Signatures Using mRNA-Seq in Patients with Subtype-Specific Breast and Ovarian Cancer Michael D. Iglesia1,2, Benjamin G. Vincent1,3, Joel S. Parker1,4, Katherine A. Hoadley1,4, Lisa A. Carey1,3, Charles M. Perou1,4,5, and Jonathan S. Serody1,3,6 Abstract Purpose: Lymphocytic infiltration of tumors predicts improved survival in patients with breast cancer. Previous studies have suggested that this survival benefit is confined predominantly to the basal-like subtype. Immune infiltration in ovarian tumors is also associated with improved prognosis. Currently, it is unclear what aspects of the immune response mediate this improved outcome. Experimental Design: Using The Cancer Genome Atlas mRNA-seq data and a large microarray dataset, we evaluated adaptive immune gene expression by genomic subtype in breast and ovarian cancer. To investigate B-cells observed to be prognostic within specific subtypes, we developed methods to analyze B- cell population diversity and degree of somatic hypermutation (SHM) from B-cell receptor (BCR) sequences in mRNA-seq data. Results: Improved metastasis-free/progression-free survival was correlated with B-cell gene expression signatures, which were restricted mainly to the basal-like and HER2-enriched breast cancer subtypes and the immunoreactive ovarian cancer subtype. Consistent with a restricted epitope-driven response, a subset of basal-like and HER2-enriched breast tumors and immunoreactive ovarian tumors showed high expression of a low-diversity population of BCR gene segments. More BCR segments showed improved prognosis with increased expression in basal-like breast tumors and immunoreactive ovarian tumors compared with other subtypes.
    [Show full text]
  • Research Report 2012 Research Report 2012 Research Report 2012
    Research Report 2012 Report Research Research Report 2012 www.cemm.at Research Report 2012 Director’s Intro — Discussion on the Origin of Ideas — pp. 6—8 pp. 9—15 Research Section — pp. 16—57 ,QÁXHQFH³5HÁHFWLRQ³ pp. 18—23 pp. 24—29 5HQHZDO³$FFXUDF\³$VVRFLDWLRQ³'\QDPLFV³ pp. 30—35 pp. 36—43 pp. 44—49 pp. 50—57 3ULQFLSDO,QYHVWLJDWRUV³/HFWXUH6HULHV³¬ pp. 60—75 pp. 84—89 Workshops and Conferences — CeMM and Society — pp. 94—97 pp. 98—99 Brain Lounge Opening — Ph.D. Program and pp. 104—106 6RFLDO/LIHDW&H00³6FLHQWLÀF$GYLVRU\%RDUG³ pp. 107—113 pp. 118—120 Sponsor Us — Directory — Publications — Facts pp. 122—123 pp. 124—129 pp. 130—133 DQG)LJXUHV³$FNQRZOHGJHPHQWV³+RZWR5HDFK pp. 134–137 pp. 140—141 CeMM — Imprint pp. 142–143 pp. 144 It is almost scary. After an “annus mirabilis” in There have been too many important scientific arts, economy, and politics. Seldom has society 2011, the year 2012 has been just as full of events, achievements to summarize them all here and been so much in wanting of really new, good advancements and achievements. The last few I do not want to anticipate too much of the ideas. And again we were lucky. We found in CeMM years have become one long adrenaline rush. Yet following report. Yet I would like to highlight the Vienna-based designer duo Walking Chair, we are certainly still far from a peak of productiv- the discovery of the mechanism by which a Fidel Peugeot and Karl Emilio Pircher, two very ity, given the last Principal Investigator to join, long non-coding RNA molecule, called Airn, congenial partners who made the Brain Lounge, Christoph Bock, started only in January 2012, and negatively affects transcription of the IGFR2 against their own economic logic, a priority.
    [Show full text]